Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Associate Professor John Reynolds

John ReynoldsAssociate Professor John Reynolds’ primary focus is on learning and movement generation processes in the basal ganglia and cerebral cortex.

In the basal ganglia, the emphasis is on unraveling the normal role of dopamine in learning and memory in vivo. Normal functioning of this process is critical to our ability to learn and perform new skills. The dysfunction of cells in the substantia nigra and striatum underlies the pathophysiology of brain disorders such as Parkinson’s and Huntington’s, respectively. This research involves a variety of techniques including electrophysiological recording, molecular biology, immunohistochemistry and operant behaviour.

Current collaborations include local groups in the University of Otago Departments of Physiology (Hyland lab), Psychology (Abraham lab), Chemistry (Tan and Jameson labs), Biochemistry (Dearden lab) and Anatomy (Parr-Brownlie and Oorschot labs), and national and international groups in Sheffield (Prof Peter Redgrave), and Okinawa (Professors Jeff Wickens and Gordon Arbuthnott).

Recently, his lab has begun to investigate synaptic plasticity processes in the cerebral cortex, taking a translational approach to their application for recovery from stroke, with collaborators at the University of Otago (Shemmell lab), the University of Auckland (Drs Stinear and Winston Byblow), the University of Western Australia (Professor Chris Lind) and in Chicago (Dr Kuei-Yuan Tseng).

Find out more about Associate Professor Reynolds’ research.

^ Top of page

Publications

Smith, L. M., Parr-Brownlie, L. C., Duncan, E. J., Black, M. A., Gemmell, N. J., Dearden, P. K., & Reynolds, J. N. J. (2016). Striatal mRNA expression patterns underlying peak dose L-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat. Neuroscience, 324, 238-251. doi: 10.1016/j.neuroscience.2016.03.012

Schulz, J. M., & Reynolds, J. N. J. (2013). Pause and rebound: Sensory control of cholinergic signaling in the striatum. Trends in Neurosciences, 36(1), 41-50. doi: 10.1016/j.tins.2012.09.006

Schulz, J. M., Oswald, M. J., & Reynolds, J. N. J. (2011). Visual-induced excitation leads to firing pauses in striatal cholinergic interneurons. Journal of Neuroscience, 31(31), 11133-11143. doi: 10.1523/JNEUROSCI.0661-11.2011

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2004). Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. Journal of Neuroscience, 24(44), 9870-9877.

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. (2001). A cellular mechanism of reward-related learning. Nature, 413, 67-70.

Major Reviews - prior to 2003

Reynolds, J. N. J., & Wickens, J. (2002). Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks.

^ Top of page

Chapter in Book - Research

Redgrave, P., Coizet, V., & Reynolds, J. (2010). Phasic dopamine signaling and basal ganglia function. In H. Steiner & K. Y. Tseng (Eds.), Handbook of basal ganglia structure and function. (pp. 549-559). London: Academic Press.

Reynolds, J. N. J. (2005). Convergence and plasticity of inputs to striatal cholinergic interneurons: The generation of synchronised pauses. In J. P. Bolam, C. A. Ingham, & P. J. Magill (Eds.), The basal ganglia VIII. (pp. 77-90). New York, NY: Plenum Press.

^ Top of page

Journal - Research Article

Sizemore, R. J., Zhang, R., Lin, N., Goddard, L., Wastney, T. B., Parr-Brownlie, L. C., Reynolds, J. N. J., Oorschot, D. E. (2016). Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons and striatal spiny projection neurons in the rat. Journal of Comparative Neurology, 524(5), 1062-1080. doi: 10.1002/cne.23891

Smith, L. M., Parr-Brownlie, L. C., Duncan, E. J., Black, M. A., Gemmell, N. J., Dearden, P. K., & Reynolds, J. N. J. (2016). Striatal mRNA expression patterns underlying peak dose L-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat. Neuroscience, 324, 238-251. doi: 10.1016/j.neuroscience.2016.03.012

Evans, M. C., Clark, V. W., Manning, P. J., De Ridder, D., & Reynolds, J. N. J. (2015). Optimizing deep brain stimulation of the nucleus accumbens in a reward preference rat model. Neuromodulation, 18(7), 531-541. doi: 10.1111/ner.12339

Hinow, P., Radunskaya, A., Mackay, S. M., Reynolds, J. N. J., Schroeder, M., Tan, E. W., & Tucker, I. G. (2015). Signaled drug delivery and transport across the blood-brain barrier. Journal of Liposome Research. Advance online publication. doi: 10.3109/08982104.2015.1102277

Mujoo, H., Reynolds, J. N. J., & Tucker, I. G. (2015). The influence of bile salts on the response of liposomes to ultrasound. Journal of Liposome Research. Advance online publication. doi: 10.3109/08982104.2015.1019515

Oswald, M. J., Schulz, J. M., Kelsch, W., Oorschot, D. E., & Reynolds, J. N. J. (2015). Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons. Frontiers in Cellular Neuroscience, 9, 116. doi: 10.3389/fncel.2015.00116

Brownjohn, P. W., Reynolds, J. N. J., Matheson, N., Fox, J., & Shemmell, J. B. H. (2014). The effects of individualized theta burst stimulation on the excitability of the human motor system. Brain Stimulation, 7(2), 260-268. doi: 10.1016/j.brs.2013.12.007

Wilson, M. T., Goodwin, D. P., Brownjohn, P. W., Shemmell, J., & Reynolds, J. N. J. (2014). Numerical modelling of plasticity induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 36(3), 499-514. doi: 10.1007/s10827-013-0485-1

Fisher, S. D., & Reynolds, J. N. J. (2014). The intralaminar thalamus: An expressway linking visual stimuli to circuits determining agency and action selection. Frontiers in Behavioral Neuroscience, 8, 115. doi: 10.3389/fnbeh.2014.00115

Clements, K. M., Devonshire, I. M., Reynolds, J. N. J., & Overton, P. G. (2014). Enhanced visual responses in the superior colliculus in an animal model of attention deficit hyperactivity disorder and their suppression by D-amphetamine. Neuroscience, 274, 289-298. doi: 10.1016/j.neuroscience.2014.05.054

Barry, M. D., Boddington, L. J., Igelström, K. M., Gray, J. P., Shemmell, J., Tseng, K. Y., Oorschot, D. E., Reynolds, J. N. J. (2014). Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model. Experimental Neurology, 261, 258-266. doi: 10.1016/j.expneurol.2014.05.023

Nakano, T., Chin, C., Myint, D. M. A., Tan, E. W., Hale, P. J., Krishna M, B. M., Reynolds, J. N. J., … Dani, K. M. (2014). Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems. Scientific Reports, 4, 5398. doi: 10.1038/srep05398

Fisher, S. D., Gray, J. P., Black, M. J., Davies, J. R., Bednark, J. G., Redgrave, P., Franz, E. A., Abraham, W. C., Reynolds, J. N. J. (2014). A behavioral task for investigating action discovery, selection and switching: Comparison between types of reinforcer. Frontiers in Behavioral Neuroscience, 8, 398. doi: 10.3389/fnbeh.2014.00398

Schulz, J. M., & Reynolds, J. N. J. (2013). Pause and rebound: Sensory control of cholinergic signaling in the striatum. Trends in Neurosciences, 36(1), 41-50. doi: 10.1016/j.tins.2012.09.006

Bednark, J. G., Reynolds, J. N. J., Stafford, T., Redgrave, P., & Franz, E. A. (2013). Creating a movement heuristic for voluntary action: Electrophysiological correlates of movement-outcome learning. Cortex, 49(3), 771-780. doi: 10.1016/j.cortex.2011.12.005

Redgrave, P., Vautrelle, N., & Reynolds, J. N. J. (2011). Functional properties of the basal ganglia'sre-entrant loop architecture: Selection and reinforcement. Neuroscience, 198, 138-151. doi: 10.1016/j.neuroscience.2011.07.060

Schulz, J. M., Pitcher, T. L., Savanthrapadian, S., Wickens, J. R., Oswald, M. J., & Reynolds, J. N. J. (2011). Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo. Journal of Physiology, 589(17), 4365-4381. doi: 10.1113/jphysiol.2011.212944

Goldberg, J. A., & Reynolds, J. N. J. (2011). Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum [Review]. Neuroscience, 198, 27-43. doi: 10.1016/j.neuroscience.2011.08.067

Schulz, J. M., Oswald, M. J., & Reynolds, J. N. J. (2011). Visual-induced excitation leads to firing pauses in striatal cholinergic interneurons. Journal of Neuroscience, 31(31), 11133-11143. doi: 10.1523/JNEUROSCI.0661-11.2011

Schulz, J. M., Redgrave, P., & Reynolds, J. N. J. (2010). Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways. Frontiers in Synaptic Neuroscience, 2, 23. doi: 10.3389/fnsyn.2010.00023

Connelly, W. M., Schulz, J. M., Lees, G., & Reynolds, J. N. J. (2010). Differential short-term plasticity at convergent inhibitory synapses to the substantia nigra pars reticulata. Journal of Neuroscience, 30(44), 14854-14861. doi: 10.1523/JNEUROSCI.3895-10.2010

Sizemore, R. J., Reynolds, J. N. J., & Oorschot, D. E. (2010). Number and type of synapses on the distal dendrite of a rat striatal cholinergic interneuron: A quantitative, ultrastructural study. Journal of Anatomy, 217, 223-235. doi: 10.1111/j.1469-7580.2010.01264.x

Oswald, M. J., Oorschot, D. E., Schulz, J. M., Lipski, J., & Reynolds, J. N. J. (2009). IH current generates the afterhyperpolarisation following activation of subthreshold cortical synaptic inputs to striatal cholinergic interneurons. Journal of Physiology, 587(24), 5879-5897. doi: 10.1113/jphysiol.2009.177600

Schulz, J. M., Redgrave, P., Mehring, C., Aertsen, A., Clements, K. M., Wickens, J. R., & Reynolds, J. N. J. (2009). Short-latency activation of striatal spiny neurons via subcortical visual pathways. Journal of Neuroscience, 29(19), 6336-6347. doi: 10.1523/jneurosci.4815-08.2009

Redgrave, P., Gurney, K., & Reynolds, J. (2008). What is reinforced by phasic dopamine signals? Brain Research Reviews, 58(2), 322-339. doi: 10.1016/j.brainresrev.2007.10.007

Reynolds, J. N. J., & Wickens, J. R. (2004). The corticostriatal input to giant aspiny interneurons in the rat: A candidate pathway for synchronising the response to reward-related cues. Brain Research, 1011, 115-128.

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2004). Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. Journal of Neuroscience, 24(44), 9870-9877.

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. (2001). A cellular mechanism of reward-related learning. Nature, 413, 67-70.

Reynolds, J. N. J., & Wickens, J. (2000). Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience, 99(2), 199-203.

More publications...