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Summary. Live-trapping capture–recapture studies of animal populations with fixed trap locations in-
evitably have a spatial component: animals close to traps are more likely to be caught than those far away.
This is not addressed in conventional closed-population estimates of abundance and without the spatial com-
ponent, rigorous estimates of density cannot be obtained. We propose new, flexible capture–recapture models
that use the capture locations to estimate animal locations and spatially referenced capture probability. The
models are likelihood-based and hence allow use of Akaike’s information criterion or other likelihood-based
methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial
or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability
may be modeled as in conventional capture–recapture. The method is tested by simulation, using a model
in which capture probability depends only on location relative to traps. Point estimators are found to be
unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-
eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A.
Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A
variety of additional spatially explicit models are fitted; these include models with temporal stratification,
behavioral response, and heterogeneous animal home ranges.
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1. Introduction
Terrestrial wildlife populations and sampling methods have
spatial structure: individuals typically range over some area,
and sampling usually involves detection or capture effort at
specific locations. Capture–recapture sampling is a widely
used method of estimating population size, but the spatial
nature of capture–recapture data is usually neglected in anal-
ysis. This article addresses that issue.

We consider the common situation in which a biological
population extends indefinitely in two dimensions beyond the
immediate vicinity of the traps. The biological parameter
of interest is the density of the population sampled at the
traps. Conventional capture–recapture methods estimate an
ill-defined population size Ntraps, which in these circumstances
is not a parameter of direct biological interest, although it is
often used as a surrogate for density. Estimates of animal den-
sity from N̂traps depend conventionally on the effective trap-
ping area (ETA). This is assumed to be the area within some
distance W of the traps. Most methods for determining W

are ad hoc, and the precise definition of the ETA remains
uncertain (Otis et al., 1978; Jett and Nichols, 1987; Efford,
Dawson, and Robbins, 2004). This reduces the reliability of
density estimates constructed from Ntraps.

Efford (2004) proposed an alternative formulation that
avoided ETA by treating observations with a known trap
layout as a function of density and a two-parameter capture
function. The three parameters can be estimated jointly by
simulation and inverse prediction (Brown, 1982), using con-
ventional capture–recapture statistics as predictors (Efford
et al., 2004). Despite some success, this method of estimation
is limited with respect to model selection and the inclusion of
covariates.

We develop likelihood-based methods for spatial capture–
recapture data. These share some features with the
simulation-based methods of Efford et al. (2004), and may
also be used to estimate density without the conventional con-
cept of ETA, but in many respects they are more flexible and
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more general. Our models can be viewed as mixture mod-
els in which the mixture is over the distribution of animal
locations. Estimators are based on the marginal distribution
obtained by integrating the joint likelihood over the distribu-
tion of the unobserved locations. A variety of mixture mod-
els for capture probability exist in the capture–recapture lit-
erature (Burnham, 1972; Pledger, 2000; Dorazio and Royle,
2003). The key difference between our model and existing
likelihood-based capture–recapture models is that ours takes
explicit account of the spatial nature of the sampling process.

We give our notation in Section 2 and develop the basic
likelihood model in Section 3. Section 4 deals with imple-
mentation issues, and Section 5 with interval estimation. In
Section 6, we deal with the range of models accommodated
by our formulation, including models with observable covari-
ates. Results of a simulation study are given in Section 7. In
Section 8, we apply our methods to estimate the density of a
bird population.

2. Key Notation
We consider a trapping study in which the underlying den-
sity of a closed population is to be estimated by placing K
traps in a region containing animals having home ranges with
fixed centers. Once an animal is caught in a trap it remains
there until released. Traps are checked at regular intervals and
trapped animals are released after being marked in such a way
that their complete capture history is known. The period pre-
ceding each trap check is called a trapping occasion. We define
“occasion” as an interval rather than an instantaneous sam-
pling time as in conventional capture–recapture (Otis et al.,
1978) to focus attention on the capture process over the in-
terval. We assume, initially, that animals are equally at risk
of being caught on every occasion. In Sections 6 and 8, we
discuss models for more general scenarios.

The traps are left in place for S trapping occasions. The kth
trap is located at Cartesian coordinates xk and the locations
of the traps in the study is x

¯
= (x1, . . . ,xK). The number of

unique animals caught is n. X is the location associated with
the animal—this might be its home-range center, but it need
not be. However, for ease of reference we refer to X as the
home-range center. See Figure 1.

Let ωi· = 1 if animal i was captured on any of the S occa-
sions and ωi· = 0 otherwise. In addition, let ωis = k if animal i
was captured in trap k on occasion s (s = 1, . . . ,S), and ωis =
0 otherwise. The history of capture locations for the ith ani-
mal is ω i = (ωi1, . . . , ωiS).

Let pks(X ; θ) be the probability that an animal with home-
range center at X is caught in trap k on occasion s, where θ
is the capture probability parameter vector. Let p·s(X ; θ) be
the probability that it is caught in any one of the K traps on
occasion s and p·(X ; θ) be the probability that it is caught
at all over the S capture occasions: p·(X i; θ) = Pr(ωi· = 1 |
X i; θ). We consider capture probability functional forms in
Section 3.3.

3. Likelihood Formulation
3.1 The Likelihood
The likelihood, or equivalently here, the joint distribution of
the number of animals captured n, and their capture histories
ω 1, . . . ,ωn can be written in terms of the marginal distribu-
tion of n and the conditional distribution of ω 1, . . . ,ωn, given

Figure 1. Notation for trap location, home-range center lo-
cation and distance from center to trap: dk(X i) is the distance
from the ith animal’s home range center at X i to the kth trap
at xk .

n, as

L(φ , θ | n,ω 1, . . . ,ωn)

= Pr(n | φ , θ)Pr(ω 1, . . . ,ωn | n, θ ,φ), (1)

where θ is the vector of capture function parameters and φ is
a vector of parameters of the spatial point process governing
animal density and distribution. We expand on the forms of
Pr(n | φ , θ) and Pr(ω 1, . . . ,ωn | n, θ ,φ) below.

Suppose home-range centers occur independently in a
plane according to an inhomogeneous Poisson process with
rate parameter D(X ;φ), with associated parameter vec-
tor φ . Then assuming independent captures between ani-
mals, the marginal for n is Poisson with rate parameter
λ(φ , θ) that arises from integrating the Poisson process with
the probability of being caught at least once: λ(φ , θ) =∫
R2 D(X ;φ)p·(X ; θ) dX .
To enhance readability, we sometimes omit the pa-

rameter vectors as arguments in our development below.
Assuming independent captures between captured animals,
the conditional distribution for ω 1, . . . ,ωn, given n is
Pr(ω 1, . . . ,ωn | n,φ , θ) ≡ Pr(ω 1, . . . ,ωn | ω1· > 0, . . . , ωn· >
0,φ , θ) = ( n

n1,...,nC
)
∏n

i=1 Pr(ω i | ωi· > 0,φ , θ), where n1, . . . ,
nC are the frequencies with which each of the C unique ob-
served capture histories were observed, ( n

n1,...,nC
) is the assoc-

iated multinomial coefficient, and Pr(ω i | ωi· > 0, φ, θ)=
∫
R2

Pr(ω i | ωi· > 0, θ ,X )f(X | ωi· > 0, φ, θ) dX is the probabil-
ity of observing capture history ω i for individual i, given
that it was captured.

We can express each of the terms inside the integral in
terms of the capture probability function pks(X ; θ) and in-
homogeneous Poisson process rate D(X ;φ). The probabil-
ity of observing capture history ω i for individual i, given
that its home-range center is at X , and that it was cap-
tured (omitting θ for readability), is Pr(ω i | ωi· > 0,X ) =

p·(X )−1
∏S

s=1

∏K

k=1 pks(X )δk(ωis) [1 − p.s(X )]1−δ·(ωis), where
δk(ωis) = 1 if ωis = k and is zero otherwise, δ·(ωis) = 1
if δk (ωis) > 0 for any k = 1, . . . ,K and is zero otherwise.
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Assuming independence of capture between occasions,
p·(X ) = 1 −

∏S

s=1 [1 − p.s(X )].
The second term in the integral, the conditional density

of home-range centers given an animal is captured, can be
expressed as follows:

f(X | ωi· > 0,φ , θ) =
D(X;φ)p·(X ; θ)∫

R2
D(X ;φ)p·(X ; θ) dX

=
D(X ;φ)p·(X ; θ)

λ(φ , θ)
.

The model parameters θ and φ can be estimated by maxi-
mizing the likelihood equation (1) with respect to them. Eval-
uating D(X ;φ) at the maximum likelihood estimate (MLE)
φ̂ provides an estimate of the density surface. The mean value
of D(X ; φ̂) over an area is the MLE of the mean animal den-
sity in the area, and the MLE of number of animals in the
area is the integral N̂ =

∫
D(X ; φ̂) dX .

3.2 Special Case: Homogeneous Poisson Density
When animal home-range centers occur according to a homo-
geneous Poisson process with rate parameter D, the likelihood
function simplifies to

L(θ ,D) =
{Da(θ)}n exp{−Da(θ)}

n!

×
(

n
n1,...,nC

) n∏
i=1

∫
Pr(ω i | X ; θ) dX

a(θ)
(2)

where Pr(ω i | X ; θ) =
∏
s

∏
k
pks(X ; θ)δk(ωis){1 − p.s(X ;

θ)}1−δ·(ωis) and a(θ) =
∫
p·(X ; θ) dX.

In this case, the parameters θ of the capture function (and
hence capture probabilities for individual animals) can be es-
timated from the conditional likelihood, given that n animals
were captured (i.e., from Ln(θ) =

∏n

i=1 Pr(ω i | X i; θ)/a(θ))
without estimating the parameter D. MLEs of θ from the
conditional and full likelihood functions are equivalent (Sand-
land and Cormack, 1984). This allows for estimation of D
using a Horvitz–Thompson-like estimator similar to that pro-
posed by Huggins (1989) and Alho (1990). Having obtained
the MLE θ̂ and hence â = a(θ̂) from the conditional likeli-
hood, D is estimated by D̂ = n/â. More generally, when cap-
ture probability and a depend on other covariates z (see be-
low), D̂ =

∑n

i=1 â(z i)
−1.

We note in passing that a likelihood similar to equation (1)
for fixed animal abundance N in an arbitrary area can be
constructed by formulating Pr(n | φ , θ) as Pr(n | φ , θ) =(
N
n

)
pc(φ , θ)n(1 − pc(φ , θ))N−n, where pc(φ , θ) =

∫
p·(X ;

θ)f(X ;φ) dX , f(X ;φ) = D(X ;φ)/
∫
D(X ;φ) dX and inte-

gration is over the arbitrary area. See Sandland and Cor-
mack (1984) and Cormack and Jupp (1991) for discussion
of Poisson versus multinomial likelihood functions for
capture–recapture experiments.

3.3 Capture Probability Models
In this section, we consider the form of the capture probability
function pks(X ; θ) and for brevity we omit the parameter θ .
We consider only the case in which animals can only be caught

in one trap on any occasion. The probability of an animal
with home-range center X being caught on occasion s (during
which animals are at risk of capture for a time Ts) is modeled
using a competing risks survival model. A typical application
of such models in survival analysis is one in which there are K
possible causes of death, some more likely to cause death than
others, but only one of which will ultimately be responsible for
the death of an individual. The kth cause has associated with
it a hazard function, hk (t) corresponding to the instantaneous
probability of death due to cause k at time t. The causes
“compete” to end the life of an individual.

In our context, “death” is capture, each trap is a differ-
ent cause of “death” and “deaths” are reversed at the end
of each trapping occasion when animals are released from
traps. In addition, our hazard functions depend crucially on
the distance dk(X ) of the animal’s home range center from
the trap, and given this distance, remain constant for the
duration of each trapping occasion. We consider more gen-
eral hazard functions in Sections 6 and 8. With this formu-
lation, the probability of capture in any one of the K traps
is

p·s(X ) = 1 − exp

{
−Ts

K∑
k=1

h(dk(X ))

}
,

= 1 − e−Tsh·(X), (3)

where h·(X ) =
∑K

k=1 h(dk(X )) is the total hazard of capture
given X , h(dk(X )) is the capture hazard function for trap k
at distance dk(X ) from X (see Figure 1). We assume T s =
1 for all s below, although the models are also applicable for
cases in which Ts is different for different s. It follows that
the probability of being caught in trap k on the occasion is
pks(X ) = {1 − e−h·(X)}h(dk(X ))/h·(X ).

When there is only one trap present we refer to p·s(X ) as
the “capture function” and denote it p1

s(X ). This function is
related to, but not the same as the animal’s home range (the
wider the animal’s range, the wider the capture function) and
its shape is determined by the hazard function, h(dk(X )).
Although dk(X ) is a scalar, this does not necessarily imply
that home ranges are circularly symmetric: circular symmetry
of p1

s(X ) could just reflect our ignorance of the orientation of
possibly asymmetric home ranges.

There is a wide variety of forms of hazard model that can be
used for the capture function. (We omit subscript k in describ-
ing them in the remainder of this section.) One we consider
is defined specifically to give a capture function with circular
bivariate normal shape: p1

s(X ) = h0g(d(X )). Here g(d(X )) =
exp {−d(X )2/(2σ2)}. The corresponding hazard function is
h(d(X )) = − ln{1 − h0g(d(X ))}. This is the form of capture
function used by Efford (2004); it has a parameter vector
θ = (h0, σ). We also consider a second form of hazard func-
tion, with parameter vector θ = (h0, σ, b), which is designed
to give a capture function with the hazard-rate form of Hayes
and Buckland (1983), but with intercept h0. This has a haz-
ard function h(d(X )) = − ln(1 − h0[1 − exp{−(d(X )/σ)−b}]).
Proportional hazard functions of the following form may also
be appropriate: h(d(X )) = h0g(d(X )), where g(0) = 1.
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4. Implementation Issues
4.1 Multiple Sets of Traps
In general, animals do not distribute themselves in space ac-
cording to a homogeneous Poisson process. However, mod-
eling density using a homogeneous Poisson process may be
reasonable over small areas, particularly when multiple, ran-
domly located sets of traps are used to infer density over a
larger area. See Efford et al. (2005) for an example of this sort
of design. With random location of trap sets, nonuniformities
in expected density in the vicinity of sets will tend to average
out, making the homogeneous Poisson model more reasonable
across all sets.

Using the data pooled over sets, mean density and the pa-
rameters of the capture function can be estimated under the
assumption of homogeneous Poisson home-range center dis-
tribution by maximization of equation (2).

4.2 Integration Limits and Numerical Issues
The likelihoods above have been formulated using integrals
over the whole plane. Realistic capture functions decay to zero
within a finite distance of home-range centers, or they decline
to sufficiently close to zero that integration beyond some fi-
nite range has no effect on the estimates. In implementing the
methods, integration is therefore over a finite area, A, chosen
by the analyst. A may be defined to exclude (mask) parts of
the plane in which home-range centers cannot lie, e.g., non-
habitat such as roadways. The estimated density then applies
to habitat areas only.

Estimation for this article used the Broydon–Fletcher–
Goldfarb–Shanno (BFGS) minimization algorithm as imple-
mented by Debord (2004). For minimization, parameters were
transformed to a log scale (D, σ) or logit scale (h0, ψ) as
needed to constrain them within feasible ranges. Reasonable
starting values were needed to avoid floating point overflow;
these were obtained for D, h0 and σ by the method of Efford
et al. (2004, Appendix).

4.3 Estimation of Home-Range Centers
Estimates of density model parameters φ can be used
to estimate the probability density function (PDF) of an-
imal home-range centers in area A as follows: π̂(X ) =
D̂(X )/

∫
A
D̂(X ) dX . Moreover, given the capture history ω i

of individual i, and an estimate of the capture function param-
eter vector θ , the probability density for the location of this
individual’s home-range center X can be estimated as f̂(X i |
ω i) = P̂r(ω i | X i)π̂(X i)/

∫
A

P̂r(ω i | X )π̂(X ) dX . In the ho-

mogeneous Poisson case this reduces to f̂(X i | ω i) = P̂r(ω i |
X i)/

∫
A

P̂r(ω i | X ) dX .

5. Interval Estimation
Profile likelihood confidence intervals for D can be constructed
from the likelihood equation (1) or (2). Estimates of the
asymptotic variances and covariances of parameters can be
obtained directly from the inverse of the information matrix
when either one of these likelihoods is maximized. Bootstrap-
ping of capture histories is potentially useful, but for the mo-
ment prohibitively slow.

6. More General Models
In the interests of readability, our development thus far
has dealt with relatively simple spatially explicit capture–

recapture models. In this section we discuss more compli-
cated models. While our models are considerably more gen-
eral than those considered by Otis et al. (1978), their notation
for categorizing models has become standard in the capture–
recapture literature, and we use it here as a convenient means
of structuring the more general models.

The first generalization is inclusion of observed covariates,
which is an important generalization with wide application.
The capture function can be made to depend on covariates
(which we denote z) and/or animal density can be made to
depend on covariates. Dependence of density on covariates can
be achieved in a number of ways, including (a) making the rate
parameter of the Poisson distribution of home-range centers
(D(X )) depend on them and (b) specifying a joint distribu-
tion for X and z . The joint distribution might conveniently
be specified using the marginal of X and the conditional dis-
tribution of z given X (f(z | X )). Knowledge of the spatial
distribution of z will help in formulating a suitable form for
f(z | X ) and conversely, inferences about f(z | X ) from the
capture–recapture study may be of interest in themselves.

We assume in the discussion below that the capture func-
tion has the proportional hazards form and depends on covari-
ates z :h(dk(X ), z) = h0(z)g(dk(X ), z). The covariate vector
z could contain categorical, ordinal, or continuous variables
and these variables could occur at the survey level (e.g., occa-
sion index, time traps were out, etc.) or at the trap level (e.g.,
trap type) or at the environment level (e.g., kind of habitat)
or at the individual animal level (e.g., an indicator of previous
capture, age, size, etc.).

With dependence on z , the rate parameter of the observed
Poisson process becomes λ =

∫ ∫
D(X , z)p·(X , z) dz dX .

Evaluation of the likelihood then requires that a suitable
form for the density surface (D(X , z)) be specified and this
adds complexity. Variables z , which occur at the survey level,
rather than attached to individual animals, and which can be
observed throughout the survey region, are relatively easy to
incorporate. If, for example, z represented habitat, one might
have a separate density parameter for each habitat: Dz(X )
for habitat z . Animal-level zs present the greatest difficulty
because, unlike the survey-level case, not all the zs for the
population are observed and inference about the density of
unobserved zs may depend heavily on the model chosen for
D(X , z).

For the general case in which p·(X , z) and D(X , z) depend
onX and z , we define a(z) = E[n(z)]/D(z), where E[n(z)] =∫
p·(X , z)D(X , z) dX and D(z) =

∫
D(X , z) dX . When D

is constant and there are no covariates, this reduces to the
a of equation (2). The quantity a can be thought of as the
effective sampling area: If all animals in an area of size a were
detected and none outside of it were detected, the expected n
would be the same as that from the actual survey.

6.1 Mt and Mb Models
There are a variety of ways in which the capture function can
be made to depend on trapping occasion (Mt) and whether an-
imals have been captured previously (Mb). A model in which
only h0 is a function of occasion is appropriate if individual an-
imals’ ranges remain unaltered over trapping occasions, but
their capture probability changes between occasions. Simi-
larly, h0 could be made a function of an index, bsi say, which
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is 1 if animal i has been captured prior to occasion s and is
zero otherwise.

If traps are left for different lengths of time on different oc-
casions, it makes sense to consider a capture function model
that accommodates this. The hazard formulation does so eas-
ily (see equation 3).

One might want to consider models in which range changed
in response to capture or between occasions. This could be
implemented through the scale parameter(s) of g(d(X )). For
example, in the case of a circularly symmetric hazard with
normal PDF shape, g(d(X ), s) = exp{−d(X )2/(2σ2

s)}, where
σs is an occasion-specific scale parameter.

6.2 Mh Models
Mh models deal with differences in animal-level capture prob-
ability (individual heterogeneity). This can cause substantial
bias if it is not accommodated appropriately in estimation.
While the methods of this paper have been developed specifi-
cally to accommodate individual heterogeneity due to proxim-
ity to traps, there may be additional individual heterogeneity.

Some sources of individual heterogeneity may be due to
observable variables (animals’ age, sex, etc.) and some due to
unobservable sources. Huggins (1989) and Alho (1990) devel-
oped methods for incorporating observable variables causing
heterogeneity in estimation, while Burnham (1972), Agresti
(1994), Norris and Pollock (1996), Pledger (2000), and Do-
razio and Royle (2003) developed methods for accommodat-
ing heterogeneity due to unobserved variables.

The finite mixture methods developed by Pledger (2000)
are adapted below for our spatially explicit models. “Infinite
mixture” models like those of Dorazio and Royle (2003) could
also be adapted. We define a nominal unobservable variable
u = 1, . . . ,U to index the U notional subpopulations com-
prising the population of interest. Following Pledger (2000),
we assume that animals independently become members of
subpopulation u, with probability ψu(

∑U

u=1 ψu = 1).
Different subpopulations have different capture probabil-

ities and there is a variety of ways to model this. Either
the intercept h0(·) or the scale parameter of the g(·) can be
made dependent on u as a means of giving different subpop-
ulations different capture probabilities. If individual differ-
ences manifest themselves primarily through differences in
ranges, the latter seems more appropriate. This model ac-
commodates heterogeneity in capture probability due to het-
erogeneous home ranges. If differences manifest themselves in
a way that leaves home ranges unchanged, then a formulation
for the hazard function like h(d, u) = h0ug(d(X )) is natural.

Including u in the capture function (as a factor with U
levels) makes the probability of observing capture history ω
depend on u, so we now write it as Pr(ω | X , u). This leads
to the following finite mixture model likelihood:

L(N, θ ,φ ,ψ ) =

(
N

n

) n∏
i=1

U∑
u=1

ψu

∫
Pr(ω i | X , u)π(X ) dX

×
[

U∑
u=1

ψu

∫
{1 − p·(X , u)}π(X ) dX

]N−n

,

where ψ = (ψ1, . . . , ψU ) and π(X ) = D(X )/
∫
D(X ) dX .

By including u as an unobserved random variable in equa-
tion (1), we construct a Poisson mixture model:

L(θ ,φ ,ψ ) =
λne−λ

n!

n∏
i=1

U∑
u=1

∫
f(X , u | ω· > 0)

×Pr(ω i | X , u)/p·(X , u) dX ,

where λ =
∑U

u=1 ψu
∫
D(X )p·(X , u) dX , and f(X , u | ω· >

0) is equal to D(X )p·(X , u)ψu/(
∑U

u=1

∫
D(X )p·(X , u) ×

ψu dX ).

6.3 Habitat Type and Non-uniform Spatial Distribution
The development in Section 3.1 specifically allows non-
uniform distribution of home-range centers in space. If a suit-
able parametric functional form is available for D(X ) then
estimation presents no difficulties in principle. If D(X ) is
to be modeled nonparametrically (using smoothing splines,
for example) direct maximization of the likelihood may be
more difficult. If environmental variables that affect density
are available, D(X ) can be made a function of these as well
as of location, X .

6.4 Other Extensions
Different trap types are readily accommodated in the model
by having h0 depend on an index for trap type (h0j for trap
type j). Alternatively, if there is some continuous variable(s) z
associated with the trap that might affect capture probability,
h0 could be made a continuous function of z . A log-linear form
h0(z) = exp(θTz z) as is commonly used with proportional haz-
ard models, might be appropriate.

It may be desirable to relocate some/all traps from one cap-
ture occasion to the next. Our model readily accommodates
this by allowing xk and hi · to depend on occasion: xkshi·s.
Similarly, the addition or removal of traps on any occasion
presents no problem for the model.

Known deaths can be accommodated by setting the number
of occasions considered (S) to be equal to ri , where ri is the
occasion on which the animal died.

6.5 Model Selection and Diagnostics
Likelihood-based methods of model selection, and Akaike’s
information criterion (AIC) in particular (Akaike, 1973) can
be used to select between competing models for the capture
function. Decisions include the form the dependence of the
capture function on covariates, which covariates to include
and, if a mixture model of the sort described in Section 6.2
is used, how many mixtures to use. Similar decisions may be
required for the spatial intensity function D(X ).

We follow Cooch and White (2006) and use a Monte
Carlo test based on the scaled deviance [−2 log(L̂) +
2 log(Lsat)]/∆df . Here L̂ is the value of the likelihood eval-
uated at its maximum, Lsat is the likelihood of the satu-
rated model (below) at its maximum, and ∆df is the differ-
ence between the degrees of freedom of the saturated model
and that of L. In the case of the conditional likelihood,
the saturated log likelihood evaluated at its maximum is
log(n!) −

∑
ω

log(nω!) +
∑

ω
nω log(nω

n
); that for the homo-

geneous Poisson full likelihood equation (2) is n log(n) − n−∑
ω

log(nω!) +
∑

ω
nω log(nω

n
), where

∑
ω is the sum over the
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observed capture histories, nω is the number of animals with
capture history ω and n =

∑
ωnω.

7. Simulation Testing
For comparison with the results of Efford (2004) and inverse
prediction method performance, we simulated surveys from a
square grid of 144 traps at 30-meter intervals, over 5 trapping
occasions. The true capture function was p1

s(X ) = h0g(d(X ))
where h0 = 0.1 and g(d(X )) is half-normal density function
with scale parameter σ = 40. (The parameter h0 is equiva-
lent to the “g(0)” parameter of Efford (2004).) Animals were
generated in a square region extending 5σ beyond the grid of
traps. This corresponds to a region that would contain 99.99%
of captured animals and simulated animal with range center
at the edge of this area has less than 1 chance in 10,000 of be-
ing caught over five occasions. The number of animals within
the region was drawn from a Poisson distribution with mean
DA (A = 53.29 ha) and animals’ locations were draws from a
two-dimensional uniform density function on the region. Cap-
ture probability contours are shown in Figure 2.

Density and capture function parameters were esti-
mated by maximizing the likelihood equation (2). Variance
was estimated using the inverse of the estimated infor-
mation matrix. Simulations were conducted using pro-
gram DENSITY version 4.0 (Efford, 2007; available from
http://www.otago.ac.nz/density).

Results from simulations with density D = 0.5 and 5.0 an-
imals per hectare are shown in Table 1. The low-density sce-
nario has a mean number of unique animals captured just less
than 14, while that of the high-density scenario is just under
140. In both scenarios the MLEs of density (D̂) are unbiased

Figure 2. Trapping grid used in simulations. The curves
are 10% contours (from 10% to 90%) of estimated capture
probability p·(X ) as a function of animal location, X . The
integral of this function is the effective sampling area.

with both integration buffer widths (IBWs). The MLEs of
the standard errors of the density estimates are very nearly
unbiased.

Because these simulated data were from a large grid we may
obtain comparable estimates with the conventional “nested
subgrid” method of MacLulich (1951) as implemented by Otis
et al. (1978). Efford (2004, Table 1) found that method gave
estimates with large bias (>20%) for density in the range
0.5 to 5 ha−1 when detection parameters matched those we
used; nominal precision was similar to our present simulation
results, but confidence interval coverage was poor.

8. Application
Birds were mist-netted in forest on the Patuxent Research
Refuge, Maryland, U.S.A., by C. S. Robbins each year from
1961 to 1972. Nets on a 4 × 11 grid, with spacing 100 m be-
tween rows and 61 m along rows, were operated for six non-
consecutive days in early summer. Birds were banded with
uniquely numbered aluminum bands (see Efford et al., 2004,
for details). Some birds were captured in more than one year,
but each annual sample was analyzed as if from a separate
closed population. We chose to analyze data for the most com-
monly caught species, Red-eyed Vireo (Vireo olivaceus), which
yielded 721 within-year capture histories.

8.1 Model Description
A variety of models for these data were considered. Our mod-
els (and the likelihoods developed above) contain two kinds
of parameters: those associated with density, and those asso-
ciated with capture probability. It is useful to consider the
capture function parameters in two categories: those relating
to the scale parameter (σ), and those relating to the intercept
(h0). The models support a wide variety of parameterizations
of density and of capture probability parameters. We denote
them using the following subscripts:

·: Constant parameter value. For example, a model with
σ· has a single shape parameter.

y: Separate parameter for each year. For example a
model with Dy has a separate density parameter for
each year and h0y has a separate h0 parameter for each
year.

v: Constant density within 3-year strata but separate
density parameters for each multi-year stratum. From
a biological perspective, models with constant den-
sity over years or density changing between years
are sensible and of interest. We consider temporal
stratification by 3-year strata purely for comparabil-
ity with the results of Efford et al. (2004). The sub-
script v is used to denote multiyear stratum, as follows:
v = (1961–1963), (1964–1966), (1967–1969), (1970–
1972). For example, a model with σv has four shape
parameters, one for each multiyear stratum.

ψU : Random parameter individual heterogeneity model
such that the parameter being subscripted is drawn
from a distribution supported at U points, with prob-
ability mass ψu at the uth point (u = 1, . . . ,U). For
example, σψ3 denotes a model with support at three
values of σ, with probability ψu of being σu (u = 1,
2, 3).
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Table 1
Mean and standard error (in parentheses) of estimates from 100 independent simulations with density (D) of 0.5 and 5.0

animals per hectare and two levels of IBW. IBW was preset to a multiple of the known home-range width parameter σ. D̂ is the
mean estimated density; n+ is the mean number of captures per simulation including recaptures; n is the mean number of

different animals caught per simulation; SE denotes standard error; %Bias(D̂) is the percentage bias of D̂ (i.e.,
100(D̂ −D)/D); and h0 is the intercept parameter of the capture function.

D = 0.5 animals per ha D = 5.0 animals per ha

IBW 3σ 5σ 3σ 5σ

n+ 28.1 (0.89) 28.9 (0.99) 291.2 (2.8) 290.8 (2.9)
n 13.6 (0.39) 13.8 (0.41) 138.1 (1.1) 139.3 (1.2)

%Bias D̂ 0.6 (3.2) 3.0 (3.2) −0.4 (0.82) 1.2 (0.88)

D̂ 0.503 (0.016) 0.515 (0.016) 4.98 (0.041) 5.06 (0.044)

ŝe(D̂) 0.148 (0.003) 0.153 (0.005) 0.448 (0.002) 0.453 (0.002)

ĥ0 0.103 (0.003) 0.108 (0.004) 0.101 (0.001) 0.101 (0.001)

ŜE(ĥ0) 0.035 (0.001) 0.037 (0.001) 0.010 (10−4) 0.010 (10−4)
σ̂ 40.3 (0.62) 39.4 (0.64) 40.1 (0.17) 29.8 (0.17)

ŜE(σ̂) 6.31 (0.19) 6.10 (0.21) 1.79 (0.02) 1.79 (0.02)

b: Trap-response such that individuals that have been
captured have a different value for the parameter be-
ing subscripted from as yet uncaptured individuals.
For example, a model denoted h0b has two h0 param-
eters, one for as yet uncaptured animals and another
for animals that have been captured before.

In addition, we consider density models with exponential
change between years, which we denote D(y), where D(y) =
exp(β0 + β1y) for year y. Note that with this model exp(β1)
is the finite population growth rate parameter (often denoted
λ).

The half-normal form (denoted “hn”) and the hazard-rate
form of Hayes and Buckland (1983) (denoted “hz”) were con-
sidered for the capture function. So for example, hn(h0·, σψ2)
denotes a half-normal capture function model with a single h0

parameter and a two-component finite mixture of σ param-
eters (with probability ψ1 of parameter σ1 and probability
ψ2 = (1 − ψ1) of parameter σ2), while hz(h0ψ2 , σ·) denotes
a hazard-rate capture function model with a two-component
finite mixture of h0 parameters (with probability ψ1 of param-
eter h01 and probability ψ2 = (1 − ψ1) of parameter h01), and

Table 2
Maximum likelihood and inverse prediction method estimates of density D̂ and model parameters ĥ0 and σ̂

(see text for details) for Patuxent Research Refuge Red-eyed Vireo capture data. Estimated standard errors are
shown in parentheses; n is the number of different birds captured.

Method Stratum (v) nv D̂v ĥ0v σ̂v

Inverse 1961–1963 218 4.02 (0.54) 0.0341 (0.0018) 64.7 (4.3)
prediction 1964–1966 177 2.75 (0.39) 0.0306 (0.0019) 76.3 (5.0)

1967–1969 213 2.83 (0.33) 0.0372 (0.0021) 77.8 (4.1)
1970–1972 113 2.49 (0.59) 0.0321 (0.0013) 58.4 (6.6)

Maximum 1961–1963 218 4.19 (0.48) 0.0356 (0.0059) 62.9 (4.5)
likelihood 1964–1966 177 2.89 (0.35) 0.0304 (0.0054) 75.1 (6.2)

1967–1969 213 2.91 (0.30) 0.0374 (0.0052) 77.1 (5.2)
1970–1972 113 2.51 (0.46) 0.0278 (0.0073) 64.4 (7.5)

a single σ parameter (as well as a single shape parameter, b,
which for brevity we do not show explicitly in our notation).

8.2 Comparison with Inverse Prediction Estimates
In their analysis, Efford et al. (2004) aggregated data within
each 3-year stratum and for comparison, we do the same here.
We compare the estimates from a model with capture function
hn(σv , h0v ) applied separately to each aggregated dataset, to
those from the inverse prediction method (Efford et al., 2004)
in Table 2. The inverse prediction estimates in this table differ
slightly from those of Efford et al. (2004) for the same data
as they use model M0 of Otis et al. (1978) instead of the Mth
coverage estimator of Lee and Chao (1994) used by Efford
et al. (2004). The MLEs agree well with those obtained by
inverse prediction—see Table 2.

8.3 Model Selection and Density Estimation
Table 3 summarizes model selection results based on AIC. The
hazard-rate capture function form was consistently found to
be preferable to the half-normal model. While one should be
cautious of drawing inferences about home range from the
capture function (which reflects a combination of home range
and catchability), it is interesting that the hazard-rate form
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Table 3
Summary of maximum likelihood models for Patuxent Research Refuge Red-eyed Vireo capture data. Model

notation is given in the text. ∆AIC is the difference between the AIC of the model in question and the model with
lowest AIC.

Model Density Capture Number of
index model model parameters log(L) AIC ∆AIC

M1 D· hn(σ·, h0·) 3 −5449.83 10,905.66 161.51
M2 D(y) hn(σ·, h0·) 4 −5437.61 10,883.21 139.06
M3 Dy hn(σ·, h0·) 14 −5423.85 10,875.70 131.55
M4 D· hz(σ·, h0·) 4 −5401.24 10,810.47 66.32
M5 D(y) hz(σ·, h0·) 5 −5389.01 10,788.03 43.88
M6 D(y) hz(σψ2 , h0·) 7 −5385.96 10,785.93 41.78
M7 D(y) hz(σ·, h0ψ2) 7 −5383.89 10,781.78 37.63
M8 D(y) hz(σ·, h0·) 6 −5380.58 10,773.16 29.01
M9 D· hz(σ·, h0y) 15 −5371.55 10,773.10 28.95
M10 D(y) hz(σy , h0·) 16 −5369.58 10,771.17 27.02
M11 D(y) hz(σ·, h0y) 16 −5369.34 10,770.67 26.52
M12 D(y) hz(σ·, h0b) 6 −5376.06 10,764.12 19.97
M13 Dy hz(σ·, h0b) 16 −5362.31 10,756.62 12.47
M14 D(y) hz(σy , h0yb) 28 −5346.65 10,749.31 5.16
M15 D(y) hz(σy , h0b) 17 −5355.08 10,744.15 0.00

allows a “shoulder” in the capture function form (i.e, near-
constant capture probability out to some distance from the
home-range center), similar to the platykurtic home range
forms considered by Horne and Garton (2006), while the less
flexible half-normal form does not.

We find that model M15, with log-linear density trend over
years, a behavioral response in capture function intercept pa-
rameter (ho) and a year-specific scale parameter (σ) has lowest
AIC. The results suggest behavioral response (trap shyness),
temporal effects on the range over which animals are catch-
able and declining temporal trend in density. It is clear that
the simpler models in Table 3 are inappropriate. The sim-
plest model (M1, with 3 parameters), for example, has an
AIC which is 162 larger than that of model M15 (which has
17 parameters).

Estimates obtained from the best model (M15) are shown
in Table 4. The model involves a trend in density estimates.
For comparison with estimates in Table 2, the density esti-
mates for the first and last years of the study are: 2.2 ha−1

in 1962 and 1.4 ha−1 in 1971. These densities are substan-
tially less than those in Table 2 because model M15 includes
a behavioral response.

9. Discussion
Our models introduce into likelihood-based capture–recapture
models a spatial component that has been absent to date.
While there are contexts in which the spatial component will
not be useful, in many capture–recapture studies the spatial
nature of the sampling process is a key determinant of cap-
ture probability. Modeling this is important for two reasons.
Firstly, an intrinsic problem for capture–recapture methods is
that to avoid substantial bias in estimating abundance, they
must model the capture probabilities of the least catchable
members of the population well. When capture probability
depends on location, as it does in many situations, it is there-
fore important to model this dependence. Our models do this.

Secondly, and perhaps more importantly, our models al-
low one to use the capture–recapture data to provide well-
defined estimates of animal density. Without a spatially
referenced capture function, the spatial extent of capture–
recapture sampling is unknown. This in turn means that the

Table 4
Maximum likelihood model M15 parameter estimates for the

Patuxent Research Refuge Red-eyed Vireo capture data.
Parameters are as follows: β0 and β1 are estimates of the

log-linear density parameters (D(y) = exp(β0 + β1y)); σy is
the hazard-rate model capture function scale parameter for

year y, b is the hazard-rate model shape parameter; and h0 is
the capture function intercept parameter for as yet uncaptured
animals; previously captured animals have capture functions

with intercept rh0.

95% confidence
Parameter Estimate SE interval

β0 0.889 0.135 (0.626; 1.154)
β1 −0.050 0.021 (−0.090; −0.009)
σ1 36.27 6.46 (25.64; 51.30)
σ2 30.77 5.54 (21.68; 43.65)
σ3 37.39 6.14 (27.16; 51.48)
σ4 37.76 6.15 (27.49; 51.87)
σ5 34.25 6.12 (24.20; 48.48)
σ6 33.15 6.19 (23.06; 47.65)
σ7 50.18 8.47 (36.12; 69.71)
σ8 42.33 7.23 (30.35; 59.03)
σ9 41.80 7.49 (29.50; 59.22)
σ10 31.69 6.26 (21.59; 46.50)
σ11 27.44 6.30 (17.59; 42.79)
σ12 30.15 5.99 (20.51; 44.33)
b 2.782 0.247 (2.344; 3.315)
h0 0.186 0.044 (0.114; 0.287)
r 0.436 0.064 (0.327; 0.581)



Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies 385

“population” whose abundance is estimated is not well de-
fined, and estimates of population size cannot be converted
to estimates of density.

The models are general and flexible, spanning the full
range of closed-population capture–recapture models, includ-
ing models with behavioral response, observable heterogene-
ity, and unobservable heterogeneity.

They do of course have limitations. They are not cur-
rently able to accommodate traps that fill up, or whose ef-
ficacy changes when they contain animals. While this is also
true of nearly all closed-population models currently available,
accommodating changing trap efficacy due to traps containing
animals is a feature that it would be useful to have in a model.
Nor are the models presented here able to deal with captures
in continuous time, although the hazard-rate formulation of
the detection function provides a framework for extension to
this case.

We have only implemented a homogeneous Poisson process
for animal home-range locations, but the methods accommo-
date more general processes, including clustered point pro-
cesses, although implementation with such processes is likely
to be more challenging. There may be merit in considering
more flexible capture function forms than we have used as
one can think of situations in which capture probability does
not decline monotonically with distance—if animals patrolled
a circle about some notional home-range center, for example.
However, we think such situations are rare.
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