
Methods Ecol Evol. 2023;00:1–8.    | 1wileyonlinelibrary.com/journal/mee3

Received: 27 September 2022  | Accepted: 14 February 2023

DOI: 10.1111/2041-210X.14088  

A P P L I C A T I O N

ipsecr: An R package for awkward spatial capture– recapture 
data

Murray G. Efford

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Author. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Department of Mathematics and 
Statistics, University of Otago, Dunedin, 
New Zealand

Correspondence
Murray G. Efford
Email: murray.efford@otago.ac.nz

Handling Editor: Edward Codling

Abstract
1. Some capture– recapture models for population estimation cannot easily be fitted 

by the usual methods (maximum likelihood and Markov- chain Monte Carlo). For 
example, there is no straightforward probability model for the capture of animals 
in traps that hold a maximum of one individual (‘single- catch traps’), yet such data 
are commonly collected. It is usual to ignore the limit on individuals per trap and 
analyse with a competing- risk ‘multi- catch’ model that gives unbiased estimates 
of average density. However, that approach breaks down for models with varying 
density.

2. Simulation and inverse prediction was suggested by Efford (2004) for estimating 
population density with data from single- catch traps, but the method has been 
little used, in part because the existing software allows only a narrow range of 
models. I describe a new R package that refines the method and extends it to 
include models with varying density, trap interference and other sources of non- 
independence among detection histories.

3. The method depends on (i) a function of the data that generates a proxy for each 
parameter of interest and (ii) functions to simulate new datasets given values of 
the parameters. By simulating many datasets, it is possible to infer the relation-
ship between proxies and parameters and, by inverting that relationship, to esti-
mate the parameters from the observed data.

4. The method is applied to data from a trapping study of brushtail possums 
Trichosurus vulpecula in New Zealand. A feature of these data is the high fre-
quency of non- capture events that disabled traps (interference). Allowing for a 
time- varying interference process in a model fitted by simulation and inverse 
prediction increased the steepness of inferred year- on- year population decline. 
Drawbacks and possible extensions of the method are discussed.

K E Y W O R D S
density estimation, interference, non- independence, non- target captures, secr, single- catch 
traps, spatial capture– recapture, trap saturation
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1  |  INTRODUC TION

Analysis of spatial capture– recapture data to estimate animal pop-
ulation density requires a model for the probabilities of interaction 
between individuals and sampling devices at known locations (‘de-
tectors’). Each probability is assumed to decline with the distance 
between a detector and an individual's stationary, but unknown, 
activity centre according to a function such as halfnormal or neg-
ative exponential. Devices such as automatic cameras register the 
presence of an individual without interrupting its movement, and 
detections may plausibly be modelled as independent. However, if 
the device is a physical trap then the animal is detained and cannot 
be caught in nearby traps until released at the end of a trapping 
interval. If additional individuals may be caught in the same trap 
then non- independence among traps is readily addressed with a 
competing risk model (Borchers & Efford, 2008). For traps that can 
catch at most one individual (‘single- catch’ traps), the probability 
depends jointly on competition among individuals and competi-
tion among traps, and is not directly computable.

Maximum likelihood and Bayesian methods for spatial capture– 
recapture have become popular in the last two decades, but neither 
is strictly applicable to discrete- time data from the single- catch traps 
used widely in studies of small mammals (Gerber & Parmenter, 2015; 
Otis et al., 1978; Romairone et al., 2018; Royle & Converse, 2014). A 
common solution has been to use the model for multi- catch traps, 
as estimates of average density from the mis- specified model are 
virtually unbiased (Distiller & Borchers, 2015; Efford et al., 2009). 
This has two drawbacks. Estimates of the detection function inter-
cept from the mis- specified model become increasingly biased as 
trap saturation (the proportion of occupied traps) increases; this is 
a problem if estimates are used in simulations to compare study de-
signs. Further, Distiller and Borchers (2015) showed that high trap 
saturation could result in biased estimates of spatial trend in density 
from mis- specified (multi- catch) models. Their solution requires data 
collected in continuous time and appears to have had little uptake.

I introduce an R (R Core Team, 2022) package ipsecr (Efford, 2023a) 
that implements a closed- population method for data from single- 
catch traps and other awkward capture– recapture data types. The 
software relaxes some limitations of the method as originally proposed 
and implemented (Efford, 2004; Efford et al., 2004). Although moti-
vated by the single- catch- trap problem, the software has application 
to other scenarios that entail hard- to- model dependence among ani-
mals. It readily incorporates a competing process (‘interference’) that 
disables traps and increases trap saturation. Data objects and some 
functions are shared with the R package secr whose documentation 
should be consulted for data input (Efford, 2022).

For a closed population (one with no gains or losses during 
sampling), the goal of spatially explicit capture– recapture is to es-
timate population density D or a related parameter such as spatial 
trend or population size. The state model is a spatial point pro-
cess whose points represent the fixed activity centres of individ-
uals. Observations are made on S occasions at K detectors. The 
observation model is a spatial detection function that in the typical 

half- normal case has two parameters— intercept �0 and spatial scale 
�. Detection distances are not observed, but the function may be fit-
ted by integrating over possible activity centres (maximum likelihood, 
MLE) or by treating centres as latent variables (Markov chain Monte 
Carlo, MCMC). Further details are given by Efford (2004), Borchers 
and Efford (2008), Efford et al. (2009) and Royle et al. (2014) and 
more recent sources. In the basic model, each of the core param-
eters is constant (expressed as D ∼ 1, �0 ∼ 1, � ∼ 1). This may be 
extended by treating each parameter as a function of known covari-
ates that is linear on a user- selected ‘link’ scale. Thus, D ∼ x may rep-
resent an east– west trend in density with coefficients intercept and 
slope. Coefficients of the linear submodels are then the parameters 
to be estimated.

2  |  METHOD

The application uses simulation and inverse prediction to fit spatial 
capture– recapture models. Datasets are simulated for known levels 
of the parameters in the model and a vector of proxy statistics is 
computed from each dataset (a proxy is a measure closely correlated 
with the parameter of interest). A multivariate multiple linear regres-
sion (Johnson & Wichern, 2007) is fitted with parameter vectors as 
the predictor variable and proxy vectors as the response variable. 
From the inverted linear model we can infer parameter values from 
a single proxy vector; specifically, we infer the parameters corre-
sponding to a target vector of proxies from the observed data. The 
method is mathematically equivalent to controlled multivariate cali-
bration (Brown, 1982; Osborne, 1991). It has been used in capture– 
recapture to infer the degree of capture heterogeneity in non- spatial 
open- population data (Carothers, 1979; Pledger & Efford, 1998). A 
concise mathematical description follows.

Consider a vector of m unknown parameter values xp and an ob-
served vector yp of proxies of length q ≥ m computed from the data. 
By simulation, we cheaply generate many vectors y corresponding 
to known parameter vectors x, chosen to bracket a plausible value of 
xp. The simulated data may be described by the multivariate multiple 
regression:

where � is a q × 1 vector of intercepts, B is a q × m matrix of coefficients 
and E is a q × 1 vector of errors with MVN(0,V) distribution. The inter-
cepts � and coefficients B are estimated by fitting the regression with 
standard software such as R function ‘lm’ (R Core Team, 2022). Point 
estimates of the parameters are obtained from the vector of observed 
proxies with

Additional simulations at x̂p provide a direct estimate of the final 
proxy variance– covariance matrix Vp, and the variance– covariance 
matrix of the parameter estimates is derived as Γ = B̂

−1
VpB̂

−1T
.

(1)y = � + Bx + E,

(2)x̂p = B̂
−1
(

yp − �̂

)

.
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    |  3Methods in Ecology and EvoluonEFFORD

The assumption of approximate multivariate linearity may be 
met in practice by choosing suitable link scales for the predictor 
and response variables and by considering a small region in param-
eter space that brackets the estimates. The region is defined by a 
hyperbox that is centred initially on arbitrary starting values and 
iterated until it includes the vector of inferred parameter values. 
The process is depicted in Figure 1. The function ipsecr.fit allows 
the user to customise most aspects of model fitting, including the 
computation of proxies, the simulation code and various tuning pa-
rameters such as box size, but flexible defaults are provided as I 
describe further.

2.1  |  Proxies

The choice of proxy is arbitrary and something of an art. Each param-
eter requires a distinct proxy, and the pairwise relationships should 
be monotonic and ideally linear after transformation of the param-
eter. A proxy should depend closely on the corresponding parameter 
when other parameters are held constant. These constraints are not 
absolute— there may be more than one proxy per parameter, and 
marginal monotonicity is not essential (Brown, 1982)— but they give 
clarity in proxy selection.

The vector of proxies is computed by a function that takes a 
‘secr’ capthist data object as its first argument. The default in ipsecr.
fit is to use the exported function proxy.ms that can provide prox-
ies for different models as specified in the second argument of the 
function. The suffix ‘ms’ indicates that the data may span multiple 

independent sessions, as understood in ‘secr’. For a constant model, 
proxy.ms returns a vector with one proxy for each of the core param-
eters (D, �0, �). The corresponding default proxies use

• n the number of distinct individuals detected,
• p∗ a naive non- spatial estimate of detection probability, and
• �∗ a naive estimate of the scale of movement.

The naive detection probability is p∗ =
∑

cis ∕(nS), where cis is an 
indicator for capture of animal i  on occasion s, and S is the number 
of capture occasions. The naive scale of detection for a circular bi-
variate normal model is calculated using the formula of Calhoun & 
Casby (1958, Equation 8a):

where 
(

xi,j , yi,j
)

 is the vector of coordinates for the j- th capture of the i- 
th animal, with animal- specific centroid 

(

xi , yi
)

 and number of captures 
di. The estimator is naive because animals can be observed only at the 
detector locations and home ranges are truncated at the boundary of 
the study area. In ‘secr’, �∗ is denoted RPSV, named for the root pooled 
spatial variance of capture locations (Efford, 2022).

The statistics are transformed in the default function to stabi-
lise the variance and improve linearity. Thus, the actual proxies are 
log(n) , cloglog(p∗) and log(�∗), where ‘cloglog’ is the complementary 
log– log transformation y = log( − log(1 − x)).

(3)
�
∗ =

�

�

�

�

�

∑n

i=1

∑di
j=1

�

�

xi,j−xi
�2

+
�

yi,j−yi
�2
�

2
∑n

i=1

�

di − 1
� ,

F I G U R E  1  Steps for fitting secr model 
by simulation and inverse prediction. 
Simulations are conducted at the vertices 
of a box in parameter space (top left; link 
scale) centred on an initial guess (blue 
diamond). The results in proxy space 
(top right; frame connects design point 
means, centre omitted for clarity) support 
a linear model for proxies as a function 
of parameters. The model is inverted and 
applied to the observed proxy vector 
(yellow square) giving the centre of a new, 
smaller box in parameter space (bottom 
left). The model is refined by further 
simulations (bottom right) from which the 
final parameter estimates are inferred 
(white square, bottom left). Function 
ipsecr.fit performs all steps.
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4  |   Methods in Ecology and Evoluon EFFORD

2.2  |  Parameter submodels

Earlier implementations were limited to the constant model. proxy.ms 
expands the scope of the method by providing proxies for the coef-
ficients of linear submodels for each of D, �0 and �. In each case, we 
require a quantity for which a proxy submodel provides a close anal-
ogy to the submodel for the secr parameter, as described next. The 
approach is to fit a generalised linear model (R function ‘glm’; R Core 
Team, 2022) to observed counts or to a statistic summarising the spatial 
spread of individual detections. The specifics are parameter- dependent 
(Table 1). Coefficients of the glm become proxies for the coefficients 
of the corresponding parameter in the fitted model. Multi- session data 
are accepted, and any of the following submodels may include ‘session’ 
as a factor- level covariate, or use session- specific covariates as in ‘secr’.

2.2.1  |  Varying density D

Density in secr models is defined across a region that includes the de-
tectors, but extends beyond them. Information on variation in density 
across the wider region is provided by the distribution of observations 
across the detector array. In proxy.ms, the spatial model for density 
across the region is replaced by a spatial model for the number of 
individuals nk observed at each detector k. Habitat covariates in the 
density model must also be defined as detector covariates.

2.2.2  |  Varying λ0

The glm used as a proxy for �0 predicts the number of detections of 
each animal i  on each occasion s (dis) as a function of spatial or indi-
vidual covariates. The model is binomial when there is a maximum of 
one detection per animal per occasion (i.e. at physical traps); other-
wise a Poisson model is used. Individual covariates are provided in 
the ‘covariates’ attribute of the spatial capture histories. Spatial co-
variates are inferred from the centroid of the locations where each 
individual is detected.

2.2.3  |  Varying σ

Variation in the scale of detection is related to the spatial distribu-
tion of the detections of each individual, pooled across occasions. 

Data are usually sparse at the individual level, and individuals caught 
only once provide almost no information for a proxy submodel of � . 
Applying Equation 3 separately to each animal i  that was detected 
at least twice yields data �∗

i
 that may be used in a submodel for indi-

vidual variation in �. �∗
i
 takes non- negative values. proxy.ms fits a glm 

to the non- missing log
(

�∗
i
+ 1

)

 using the number of detections per 
animal as weights. Spatial or individual covariates may be applied as 
for varying �0.

2.3  |  Simulation model

Simulation has two stages— generating a population of activity 
centres from the state model, and generating a spatial capture– 
recapture sample (‘secr’ capthist object) from that using the obser-
vation model. Each stage by default uses a built- in function (simpop, 
simCH) designed for the range of models for which proxies were de-
scribed above. The user may substitute other functions.

Observation models that entail competing risk of capture are 
readily simulated by generating a random latent time- to- event for 
each possible event (e.g. animal i  in trap k). Events are selected one- 
by- one from the ordered list of times until the sampling interval 
ends, while eliminating pre- empted events from further consider-
ation (e.g. animal i  cannot be caught elsewhere until released from 
trap k, and if trap k is ‘single- catch’, it cannot catch another animal; 
Efford, 2004). This is the approach in ‘secr’ and ‘ipsecr’. Latent time- 
to- event simulation is not appropriate when the hazards are depen-
dent or time- varying (e.g. Beyersmann et al., 2009), but modelling 
of capture– recapture data rarely involves such complexity. Royle 
et al. (2014, p. 267) described an approximate algorithm for simulat-
ing from single- catch traps, but approximation is unnecessary.

2.4  |  Proxy validation

Proxies may be validated by plotting simulated values. The package 
includes function plotProxy for this purpose. The code below is an 
example using the detector array for the dataset ‘captdata’ from the 
secr package, with the result in Figure 2.

library(ipsecr)  
trps <- traps(captdata)  
msk <- make.mask(trps, buffer = 100)  

Parameter Proxy response variable Detector type Family Link

D Individuals at detector k (nk) All poisson log

�0 Detections of individual i  on single, multi binomial cloglog

Occasion s (dis) proximity, count poisson log

� Individual �∗
(

log
(

�∗
i
+ 1

))

All gaussian identity

�NT State of detector k, occasion 
s (qsk)

single, multi binomial cloglog

TA B L E  1  Generalised linear models 
used in function proxy.ms for proxies 
of spatially explicit capture– recapture 
parameters. The interference parameter 
�NT is introduced in a later section.
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    |  5Methods in Ecology and EvoluonEFFORD

base <- list(D = 5, lambda0 = 0.2, sigma = 25)  
plotProxy (parameter = "D", proxyfn = proxy.ms, traps = trps,  
mask = msk, basepar = base, boxplotargs = list(col = "orange"), nrepl = 100)

3  |  PACK AGE STRUC TURE AND 
VALIDATION

The interface for model fitting follows the parent package secr 
(Efford, 2022). The fitting function ipsecr.fit returns an R object of 
class ‘ipsecr’ for which there are the usual S3 methods (predict, print, 
summary, coef, vcov, plot). Some functions of ‘secr’ also work with 
‘ipsecr’ objects (e.g. collate for tabulating estimates from several 
models). C++ code is used via the R package Rcpp (Eddelbuettel & 
Francois, 2011) for fast simulation in the default functions simpop 
and simCH. Simulations are distributed among multiple cores, as 
specified with setNumThreads, for a considerable reduction in the 
total execution time.

Simulations were performed to check the performance of 
the software. Some of these essentially confirmed results from 
Efford (2004) and Efford et al. (2009) and are reported only in the 
Supplements (Appendix 1). Others are described below.

4  |  TUNING THE ALGORITHM

The simulation- based method is inevitably slower than likelihood 
maximisation— in the preceding example by a factor of 12. This 
directs attention to software settings that might reduce fitting 

time without intolerable loss of accuracy. Tuning parameters are 
specified in the ‘details’ argument of ipsecr.fit (Table 2). The user 
specifies the minimum and maximum number of simulations at 
each design point (hyperbox vertex or centre) and the desired 
precision of proxy means. Simulations are added in blocks of the 
minimum number until the target precision is achieved for all 
proxies or the maximum number is reached. The default settings 
have been found to work well with some datasets, such as those 
used in the examples, but no claim has been made for their ef-
ficiency in general.

The default is to simulate at the vertices of a hyperbox in pa-
rameter space, that is to use a full factorial experimental design 
with two levels of each of the np parameters (plus some central 
points). The required number of simulations increases with the 
number of vertices 2np, and may become prohibitive for large 
np. A fractional factorial design reduces the burden; fractional 
designs may be specified in ipsecr.fit using the framework of 
Groemping (2014).

5  |  INTERFERENCE

Detectors for spatial capture– recapture may become inactive dur-
ing the sampling period due to processes broadly termed ‘interfer-
ence’. For single- catch traps, these include capture of non- target 
individuals, and triggering or removal of bait without capture of the 
target species. Interference may be modelled as a Poisson process 
that competes with the capture process of the target species. We 
assume traps that have yet to catch an animal are subject to hazard 
�NT of entering the ‘disturbed’ state (parameter ‘NT’ for ‘non- target’ 
in package ipsecr). In simulations, a latent random ‘time of distur-
bance’ is drawn for the interference process at each trap, and a trap 

F I G U R E  2  Relationship between the proxy variable log(number 
of individuals detected) (‘logn’) and the density parameter D while 
holding detection parameters constant. Distribution of values for 
100 simulated datasets at each level. Boxes span 25th to 75th 
percentiles. The relationship is nearly linear for a narrow range of 
densities.

D (log scale)

lo
gn

4 4.5 5 5.5 6

3.
6

3.
8

4.
0

4.
2

4.
4 TA B L E  2  Tuning parameters for fitting model with ipsecr.fit.

Parameter Default Description

factorial ‘full’ Full vs fractional factorial design

boxsize1 0.2 Dimension(s) of first hyperbox

boxsize2 0.05 Dimension(s) of second and later 
hyperboxes

boxtype ’absolute’ Absolute vs relative scaling of 
box size

centre 3 Number of centre points

min.nsim 20 Minimum number of simulations 
per vertex

max.nsim 200 Maximum number of simulations 
per vertex

dev.max 0.002 Precision criterion for stopping 
rule

min.nbox 2 Minimum number of hyperboxes

max.nbox 5 Minimum number of hyperboxes

var.nsim 2000 Number of bootstrap simulations 
for variance
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6  |   Methods in Ecology and Evoluon EFFORD

becomes inactive if that precedes potential capture events. The haz-
ard is non- spatial in that it is not attributed to localised individuals 
of non- target species, although it may vary between sampling oc-
casions and among detectors. The default proxy for �NT in ‘ipsecr’ is 
the complementary log– log of the observed proportion of disturbed 
traps, excluding any that capture the target species.

6  |  E X AMPLES

6.1  |  Single- catch traps

I first analyse data from one session of a long- term live- trapping 
study of brushtail possums Trichosurus vulpecula (Efford & 
Cowan, 2004). The data are from 5 nights of sampling with 167 
single- catch traps at 30- m spacing in February, 1996, when 
population density was high and 47%– 61% of traps were occu-
pied nightly. The model considered possums with activity centres 
within 120 m of a trap, excluding an adjoining shingle river bed. 
Full code is in Appendix 2. I start here with data prepared as the 
object ‘Feb96’.

For reference, first fit the mis- specified multi- catch model:

fitML <- secr.fit(Feb96, mask = msk, detectfn = 'HHN')  
predict(fitML)[,-c(1,3)]  
 #                  estimate             lcl               ucl  
 # D               14.3802  12.5447     16.4842  
 # lambda0      0.1015   0.0854        0.1206  
 # sigma         27.3765 25.5349     29.3508

Next, fit the single- catch model by simulation and inverse pre-
diction (Figure 1):

fitIP <- ipsecr.fit(Feb96, mask = msk, detectfn = 'HHN')  
predict(fitIP)[, -c(1,3)]  
 #                 estimate              lcl        ucl  
 # D               14.1773  12.5152 16.060  
 # lambda0      0.1555    0.1279   0.189  
 # sigma         27.4818  25.7748 29.302

As expected, the estimates of density (D, possums per hectare) 
and detection scale (�, m) are very similar, but the estimate of the 
baseline detection parameter (�0) is considerably larger when the 
model is correctly specified. Inverse prediction was also used to fit 
the mis- specified multi- catch model, with results that were very sim-
ilar to the MLE (Appendix 2).

Note also that the averages of the proxy values simulated 2000 
times at the final parameter estimates are a close match to the target 
values from proxy.ms(Feb96):

fitIP$variance.bootstrap[,c(1,3)]  
 #                 target simulated  
 # logn         5.4072       5.399  
 # cloglogp -0.6601     -0.657  
 # logRPSV  3.2605       3.260

6.2  |  Single- catch traps with interference

The brushtail possum study experienced a high and variable rate of 
trap interference largely due to ship rats Rattus rattus that removed 
baits and triggered traps, but escaped through the mesh. The analy-
sis in the previous example accounted for traps becoming inactive 
when they caught a possum, but it did not account for the high fre-
quency of inactivation from other causes (Table 3).

I extend the possum example to contrast density in February 
1996 and February 1997, with and without allowance for inter-
ference (see Appendix 2 for details). A model with year- specific 
interference suggested a substantially steeper decline in density be-
tween 1996 and 1997 than models that ignored this effect on trap 
saturation or treated it as constant (Table 4). This is consistent with 
the bias reported by Distiller and Borchers (2015).

6.3  |  Spatial trend in density

This example demonstrates the use of ipsecr to address bias in es-
timates of trend in density, the problem identified by Distiller and 

TA B L E  3  Frequency of trap states over 5 nights of trapping for 
brushtail possums in February of consecutive years. ‘Disturbed’ 
includes traps that were triggered or from which the bait was 
removed.

1996 1997

n % n %

Possum captures 450 53.9 383 45.9

Disturbed 349 41.8 372 32.6

Undisturbed 36 4.3 180 21.6

Total 835 100.0 835 100.0

Model of 
interference

Density (possums/ha) Interference �NT

1996 1997 1996 1997

None 12.9 (11.1,14.9) 10.4 (9.0,11.9) — — 

Constant 13.1 (11.3,15.2) 10.2 (8.9,11.7) 0.96 (0.88,1.04)

Year- specific 15.0 (13.0,17.3) 8.7 (7.8, 9.7) 1.50 (1.31,1.71) 0.71 (0.61,0.83)

TA B L E  4  Population density of 
brushtail possums in February of 
consecutive years estimated from models 
with varying allowance for interference. 
All models assumed single- catch traps 
and constant detection parameters (�0, �) 
between years. (95% CI in parentheses).
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Borchers (2015). Data were from simulated sampling of a population 
with a strong log- linear east– west trend in density. Sampling used an 
8 × 8 grid of single- catch traps over 5 occasions. See Appendix 3 for 
further details.

The average trend fitted by simulation and inverse prediction 
closely matched the true trend (Figure 3).

7 | DISCUSSION

Simulation and inverse prediction is a general method for fitting 
awkward models involving dependence among detection histories. 
Models not currently packaged in ipsecr may be tackled by providing 
custom simulation and proxy functions. The present package extends 
the method to include trap interference and spatial trend in density. 
The interference parameter �NT cannot be interpreted simply when 
there are multiple causes of disturbance, but when causes can be 
isolated, as with the capture of a single non- target species, the pa-
rameter corresponds to the trap- catch index estimated by Linn and 
Downton (1975).

The method has distinct drawbacks that will limit its use. 
Foremost is the lack of a criterion for choosing among competing 
models and for model averaging. This may ultimately be addressed 
by cross- validation. A secondary limitation is that extension to new 
models may require coding of both a proxy function and a simulation 
function. It was straightforward to find suitable proxy variables for 
the models considered here, but that may not be so easy for other 
models. I speculate that if there is no accessible summary of the data 
that correlates to a parameter in the model, then the model itself 
may be unidentifiable, or nearly so.

My motivation and examples relate to non- independence 
of detection histories induced by changing availability of 
detectors. Other mechanisms that lead to detection- level 

non- independence, and that may be addressed with simula-
tion and inverse prediction, include post- collection subsam-
pling of hairs for DNA individuation (e.g. Jiménez et al., 2021) 
and the coordinated behaviour of group- living animals (Bischof 
et al., 2020). Simulations of post- collection subsampling may be 
found in Appendix 4.

Another form of non- independence in spatial capture– recapture 
results when activity centres are clumped or overdispersed, but de-
tection histories are independent when conditioned on each animal's 
activity centre. Reich and Gardner (2014) developed an algorithm for 
the case of territorial animals whose activity centres follow a Strauss 
process. Simulation and inverse prediction might be applied to this 
scenario given a suitable proxy for spacing.
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