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Previously...

Efford et al. (2005)

Brushtail possums in New Zealand

“Data [from multiple arrays] may be combined to

estimate average density at landscape scales.

...

The optimal distribution of trapping effort is a

subject for further investigation.”
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Recently...

Algorithmic solution (Dupont et al. 2021, Durbach et al. 2021):

• Seek optimal subset X of potential locations

• Genetic algorithm in R package kofnGA (Wolters 2015)

• Maximise an objective function e.g., f (X) = min(E(n),E(r))

using pilot values of λ0, σ etc.

n = number of individuals detected

r = number of recaptures
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Algorithmic optimisation - three examples
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varying random seed, similar objective value



Evaluate algorithmic optimisation by simulation

Methods –

• parameter values based loosely on possum study

• uniform random (Poisson) activity centres

• report

– accuracy: relative RMSE(D̂)

– coverage of 95% confidence intervals for D̂
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RMSE 10.8%
COV 93.2%

Original

RMSE 7.7%
COV 94.4%

GA optimized

RMSE 7.9%
COV 95.6%

SRS

2-D Poisson activity centres. 500 replicates



Algorithmic optimisation, in summary

• Objective, hands-off (for a given objective function)

• Some gain in precision

• ‘GAoptim’ in R package secrdesign ≥ 2.7.0 (Dec 2022)

but...

Murray Efford April 2023 9 / 16



Algorithmic optimisation, in summary

• Objective, hands-off (for a given objective function)

• Some gain in precision

• ‘GAoptim’ in R package secrdesign ≥ 2.7.0 (Dec 2022)

Sampling is representative by accident, if at all
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What if distribution unknown, and not uniform?
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e.g., 50% random habitat



Unmodelled heterogeneity x unrepresentative sampling

2−D Poisson, 50% habitat
RMSE 22.8%

COV 65%

RMSE 17%

COV 65.2%

RMSE 10.9%

COV 86.6%

RMSE 11.5%

COV 86.4%

RMSE 11.2%

COV 85.6%
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Representative sampling by design

Many options. I compare –

1 Simple random sample of detector locations

2 Clusters at centroids of compact spatial strata

• ‘spatial coverage sample’ Walvoort et al. (2010)

3 Lacework

• R package ‘secr’
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Comparing representative designs

2−D Poisson, 50% habitat
RMSE 22.8%

COV 65%

RMSE 17%

COV 65.2%

RMSE 10.9%

COV 86.6%

RMSE 11.5%

COV 86.4%

RMSE 11.2%

COV 85.6%
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CI coverage adjusted for overdispersion, Fletcher’s ĉ

2−D Poisson, 50% habitat
RMSE 22.8%

adj. COV 77%

RMSE 17%

adj. COV 79.6%

RMSE 10.9%

adj. COV 95.2%

RMSE 11.5%

adj. COV 94.8%

RMSE 11.2%

adj. COV 96%
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Conclude

• Current ‘optimisation’ algorithms fail to deliver for

large and potentially heterogeneous areas

• Spatially representative designs are robust to

non-uniform distribution

• Spatial overdispersion should be taken seriously
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