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Appendix S1: Relationship between RSE for Poisson and binomial n

Given a value for RSEP ≡
√

varP (D̂)/D̂ and an arbitrary area A, what is the value of RSEB?

To answer this we draw on the literature for density estimates based on the conditional

likelihood. Maximising the likelihood conditional on n provides estimates of the detection

parameters (e.g., λ0 and σ). These lead to the effective sampling area a (see below) and

hence to Horvitz-Thompson-like estimates of density (D̂ = n/â) (Borchers and Efford 2008).

The estimates are identical to estimates from maximising the full likelihood (including D)

when n is Poisson (Barker et al. 2014; Schofield and Barker 2016), and very similar when n

is binomial.

Detection histories are observed only for those animals detected at least once

during a study. The overall probability of detection for an individual centred at point x is

an aggregate of its occasion- and detector-specific detection hazards p·(x) = 1−exp{−Λ(x)}

(see main text). The effective sampling area a =
∫
R2 1 − exp{−Λ(x)} dx is a useful scalar

summary of the detection model when density is uniform.

A variance formulation for conditional likelihood estimates follows the partitioning

used by Huggins (1989):

var(D̂) = s2 + ĜT
θ I

−1ĜT
θ ,

where I is the information matrix, Ĝ a gradient vector for D̂ with respect to the detection

parameters θ, and s2 relates to variation in n. The term in I and Ĝ is common to both
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models for n. Huggins considered the non-spatial binomial analogue, from which the spatial

binomial case follows. For binomial n, s2B = (1−a/A)na−2, where a is the effective sampling

area and A is the nominal extent of the study area. For Poisson n we have a/A → 0, and

hence s2P = na−2. Some algebraic manipulation shows that the difference in RSE2 depends

only on E(N) = DA:

RSEB =

√
RSE2

P − 1/(DA).

The relationship is exact for uniform density, when E(N) =
∫
D(x) dx = DA. We expect it

to be an adequate approximation for most other studies.
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Appendix S2: Expected number of movements

A movement or ‘spatial recapture’ (Royle et al. 2014) is a recapture (redetection) at a

site other than the previous one. Movements are a subset of recaptures. We calculate the

expected number of movementsm by considering each recapture event in turn and calculating

the conditional probability that it is at the same site as before. This is a sum of squared

detector-wise conditional probabilities.

Conditional on detection somewhere, the probability of detection in detector k is

qk(x) = λ(dk(x))/
∑

k λ(dk(x)). For clarity in the following detector-specific expressions we

use u(x) = 1− exp{−Λ(x)}) and v(x) = 1−
∑

k qk(x)2.

Count proximity detector (‘count’)

E(m) =

∫
{Λ(x)− u(x)} × v(x)×D(x) dx.

Multi-catch trap (‘multi’)

E(m) =

∫
{
∑
s

ps(x)− u(x)} × v(x)×D(x) dx.

Binary proximity detector (‘proximity’)

E(m) =

∫
{
∑
s

∑
k

pks(x)− u(x)} × v(x)×D(x) dx.
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Appendix S3: Power calculation for comparison of two density estimates

We want to predict the power of a comparison between two independent surveys as a function

of the effect size defined as the ratio of the final density to the initial density (D2/D1) and

the predicted precision of the estimates, expressed as relative standard error RSE. The power

calculation assumes log-normal errors in both the initial and final surveys. Log-normal errors

are natural for estimates of density (we use a log link function for maximising the likelihood,

and rely on symmetrical Wald intervals on the log scale).

For a log normal distribution the variance on the log scale is σ2 = log(1 + CV2)

where CV is the coefficient of variation on the arithmetic scale (equivalent here to RSE). The

mean µ on the log scale is related to the mean m on the arithmetic scale by µ = log m√
1+CV2

.

We conduct a z-test on the log scale. The effect size on the log scale is µ2 − µ1.

In general we must allow for differing RSE in the two surveys, which affects both the effect

size and its variance, as follows.

µ2 − µ1 = log
m2√

1 + CV2
2

− log
m1√

1 + CV2
1

.

This reduces to

µ2 − µ1 = log
m2

m1

+ log

√
1 + CV2

1√
1 + CV2

2

.

For equal CV the second term drops out.

The variance of the effect on the log scale is approximated by the sum of the
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respective variances:

σ2
21 = log(1 + CV2

1) + log(1 + CV2
2).

The standardised difference on the log scale µ2−µ1
σ21

is compared to a standard normal variate

at the desired alpha level.

In our application we replace m2/m1 by D2/D1 and CV1 by RSE. To adjust for

density-dependent RSE we assume that the change in RSE between surveys is inversely

proportional to the square root of D2/D1 (this follows the logic of the approximation rseP

in which both E(n) and E(r) scale with density). Thus CV2 = RSE× 1√
D2/D1

.
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Fig. S1. Power of a 2-sided test (α = 0.05) for change between two surveys given different

levels of the initial RSE(D̂1); RSE(D̂2) for the final survey is scaled by
√
D1/D2

6



Efford, M. G. & Boulanger, J. Fast evaluation of study designs for spatially

explicit capture–recapture. Methods in Ecology and Evolution.

Appendix S4. Simulations to evaluate RSE approximation

Simulations reported in main text Fig. 2.

The precision of SECR density estimates was evaluated using binary proximity data sim-

ulated for square grids of three sizes (6 × 6, 8 × 8, and 10 × 10) with detector spacings

0.25σ, 0.5σ, ..., 3.25σ sampled on 5 occasions. Density was held constant at 0.4σ−2. De-

tection hazard followed a half-normal curve with intercept parameter λ0 = 0.2 or λ0 ∈

{0.05, 0.1, 0.2} (constant grid size 10 × 10). Density was estimated by maximising the log

likelihood with the function ‘openCR.fit’ in Efford (2019a); integrals were approximated

by summation over a grid of 0.5σ pixels extending 4σ beyond the detectors. 200 repli-

cate simulations were performed for each scenario. Results for grids are shown in the main

text Fig. ??. R code and output are provided in the supplementary material at Zenodo

https://doi.org/10.5281/zenodo.3239532. .

Additional simulations

Further sets of simulations were conducted with variations on the preceding scenarios (con-

stant intercept parameter λ0 = 0.2).

1. Alternative detector types (multi-catch traps and Poisson count proximity detectors)

2. Lines of 10 or 40 detectors with density 2σ−2 (emulating 5 independent lines at 0.4σ−2).
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3. Overdispersed activity centres generated from Neyman-Scott distribution with mean

10 centres per cluster and within-cluster spread parameter σh equal to halfnormal de-

tection σ. Activity centres falling outside the arena were wrapped to the opposite

edge. Sampling with 10× 10 grid of binary proximity detectors over 5 occasions with

λ0 = 0.2, as in main simulations.

R code and output are provided in the supplementary material. Results for multi-

catch traps and count proximity detectors are shown in Fig. S3. Results for lines are shown

in Fig. S4.
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Fig. S3. Approximate and simulated RSE of density estimates as a function of detector

spacing for square grids of (a) multi-catch traps and (b) count proximity detectors. The

approximate RSE rseP is shown as a solid line and simulated RSE as points. Simulated

scenarios with relative bias of density estimate > 5% marked with white ×.
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Fig. S4. Approximate and simulated RSE of density estimates as a function of detector

spacing for linear arrays. The approximate RSE rseP is shown as a solid line and simulated

RSE as points. The dashed lines show the approximation increased by a factor of 1.3.

The single overdispersed scenario resulted in underestimation of the sampling vari-

ance and more than doubled the empirical RSE(D̂) relative to both the naive (uniform-

model) R̂SE(D̂) and the approximation (Fig. S5).
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Fig. S5. Effect of strong overdispersion on the precision of density estimates from Poisson

model. (a) Example of overdispersed activity centres generated from a wrapped Neyman-

Scott distribution with µ = 10 expected animals per cluster and within-cluster spread σh = σ;

(b) Empirical estimate of R̂SE(D̂) based on the variance from 200 replicate simulations

(isolated points) compared to RSEP (D̂) estimated from naive Poisson model (connected

points) and approximation (solid line). Simulations for spacings 0.25σ and 0.5σ omitted

because some failed.

Timing

Timings were compared on a desktop machine with Intel Core i7 CPU (2.93 GHz). For

many purposes an adequate prediction of RSE(D̂) may be obtained without maximising

the likelihood merely by numerically evaluating the information matrix at know parameter

values (‘non-MLE’). Also, for predicting RSE(D̂) alone, 200 replicates is excessive, especially

for the non-MLE method. For timing purposes we therefore conducted further simulations

with the grids of proximity detectors using the same 5 scenarios for each of 13 detector

spacings as in main text Fig. 2, but with only 20 replicates. This yielded median SE of the

mean RSE(D̂) across replicates of about 0.1%.
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Estimates of RSE(D̂) from the short-cut simulation procedure (non-MLE) are

plotted against estimates from a larger number of full simulations in Fig. S6. There is no

evidence for systematic bias, and the agreement is very good for RSE(D̂) < 25%.
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Fig. S6. Comparison of simulated non-MLE and MLE RSE of density estimates. 20

replicates for non-MLE and 200 replicates for MLE.

Table S1. Timings for two simulation-based methods for predicting RSE(D̂) (MLE, non-

MLE; both 20 replicates) compared to an approximation using the expected sample size.

Aggregate execution time for 5 scenarios at each of 13 detector spacings (cf Fig. 2 of the

main text). The precision of the simulation-based methods is indicated by SE(RSE); this is

the median across scenarios and detector spacings of the standard error of the mean RSE(D̂)

(RSE expressed as percentage).

Method SE(RSE) Time (s) Relative time

MLE 0.41 21928.2 1227.1

non-MLE 0.14 3839.7 214.9

Approximation — 17.9 1.0
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Appendix S5: Comparison with published simulations

Extensive simulations to evaluate SECR sampling designs were recently undertaken by Kris-

tensen and Kovach (2018) and Clark (2019). The simulation results archived by these au-

thors are compared here to the fast approximation described in the main paper (rseP (D̂) =

1/
√

min{E(n),E(r)}).

Kristensen and Kovach (2018) estimated the density of New England cottontail

rabbits (Sylvilagus transitionalis) using DNA from fecal pellets collected at intervals along

transects after fresh snowfall. They used simulation to evaluate 105 sampling designs varying

the number of sampling occasions (1, 2, 3), spacing along transects (20, 30, 40, 50, 60 m)

and spacing between transects (30, 40, 50, 60, 70, 80, 90 m), at 4 different densities (0.5, 1,

2, 3 rabbits per hectare). Detection parameters were constant (g0 = 0.1, σ = 50 m).

Clark (2019) considered designs using clusters of DNA hair snags for female Amer-

ican black bears (Ursus americanus). Most of his simulations assumed independence among

clusters (no recaptures between clusters) and these are the results considered here. The simu-

lations represent 203 different scenarios for combinations of density (D = 0.05, 0.15, 0.30km−2),

detection parameters (g0 = 0.05, 0.1, 0.2, σ = 1, 2, 3km), cluster size (2×2, 3×3, 4×4, 5×5),

number of sampling occasions (4, 6, 8), spacing of detectors within clusters (0.5, 1.0, 1.5, 2,

2.5, 3, 3.5, 4 km), spacing of clusters (10, 12, 14, 16, 18, 20, 25, 30 km) and total size of

study area (2500, 10000, 20000, 40000 km2) (Clark 2019, Tables S1–S9).
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In both sets of simulations detectors were modelled as binary proximity detectors,

a half-normal detection function was used, the variance calculation assumed Poisson rather

than fixed N , and results for each scenario were sumarised as relative bias (RB) and relative

standard error (RSE) averaged over 100 replicates.

We computed E(n) and E(r) for each scenario using the default spatial discretisa-

tion in secrdesign (Efford 2019) (square grid of 32×32 = 1024 points). The algorithm used a

half-normal function for detection hazard, rather than for detection probability; parameters

λ0 and σ for each hazard function were adjusted to give a probability curve closely matching

that specified by g0 and σ (coded in the secrdesign function ‘scenarioSummary’).

Scenarios were identified as ‘extreme’ by criteria appropriate to each study. For

Kristensen and Kovach (2018), the criterion was that likelihood maximisation failed in at

least three replicates, usually due to very few spatial recaptures. For Clark (2019) the

criterion was that the diagonal of a cluster was less than the diameter of a 95% activity

contour (4.9σ; this assumes the hazard of detection is directly proportional to intensity of

space use).

Execution of ‘scenarioSummary’ to compute E(n), E(r) and related variables took

35 seconds for the cottontail scenarios and 6 seconds for the black bear scenarios (Intel Core

i7 CPU 2.93 GHz).
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Fig. S7. Simulated RSE of density estimates for New England cottontails (Kristensen and

Kovach 2018) summarised and related to expected counts for the same scenarios. Scenarios

in pink were identified as extreme because estimation failed in at least 3 of 100 replicates.

(a) RSE(D̂) vs E(n), (b) RSE(D̂) vs E(r), (c) RB(D̂) vs RSE(D̂), (d) 1/
√

min{E(n),E(r)}
vs RSE(D̂).
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Fig. S8. Simulated RSE of density estimates for black bears (Clark 2019) summarised and

related to expected counts for the same scenarios. Scenarios in pale blue were identified as

extreme because the cluster diagonal was less than 4.9σ. (a) RSE(D̂) vs E(n), (b) RSE(D̂)

vs E(r), (c) RB(D̂) vs RSE(D̂), (d) 1/
√

min{E(n),E(r)} vs RSE(D̂).
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