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Summary. Sightings of previously marked animals can extend a capture–recapture dataset without the added cost of cap-
turing new animals for marking. Combined marking and resighting methods are therefore an attractive option in animal
population studies, and there exist various likelihood-based non-spatial models, and some spatial versions fitted by Markov
chain Monte Carlo sampling. As implemented to date, the focus has been on modeling sightings only, which requires that
the spatial distribution of pre-marked animals is known. We develop a suite of likelihood-based spatial mark–resight models
that either include the marking phase (“capture–mark–resight” models) or require a known distribution of marked ani-
mals (narrow-sense “mark–resight”). The new models sacrifice some information in the covariance structure of the counts of
unmarked animals; estimation is by maximizing a pseudolikelihood with a simulation-based adjustment for overdispersion in
the sightings of unmarked animals. Simulations suggest that the resulting estimates of population density have low bias and
adequate confidence interval coverage under typical sampling conditions. Further work is needed to specify the conditions
under which ignoring covariance results in unacceptable loss of precision, or to modify the pseudolikelihood to include that
information. The methods are applied to a study of ship rats Rattus rattus using live traps and video cameras in a New
Zealand forest, and to previously published data.
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1. Introduction
Capture–recapture is an extensive set of methods for esti-
mating the abundance and other parameters of animal
populations from incomplete samples. All rely on distin-
guishing individuals by marks that may be either naturally
occurring (such as DNA or pelage differences) or applied
during the study. When an individual is detected for the
first time it joins the pool of known, marked individuals
and any further records contribute to its “capture history.”
However, it is often desirable for reasons of cost, practicality
or animal welfare to collect sighting data without marking
new animals; previously marked animals are individuated,
allowing the development of individual capture histories, but
unmarked animals are only counted. Such data cannot be
analyzed with conventional capture–recapture models. Meth-
ods for non-spatial “mark–resight” data have been extended
and refined in the last decade by McClintock and cowork-
ers (McClintock et al., 2009a,b; McClintock and White, 2009,
2012; McClintock et al., 2014) and are now in widespread
use. Analyses of spatially-referenced mark–resight data have
been proposed recently (Sollmann et al., 2013b; Royle et al.,
2014); these have the advantage of providing rigorous esti-
mates of population density and the number of animals in a
specified region. Application of spatial mark–resight (SMR)
models so far has been limited, perhaps because of the need for
custom model construction and the computational overheads
of Markov chain Monte Carlo sampling (MCMC).

The two dominant strategies for fitting spatially explicit
capture–recapture (SECR) models carry over into SMR.
Borchers and Efford (2008) described a likelihood-based
method for SECR requiring integration over the unknown
locations of individual activity (home-range) centres; centres
were assumed to arise from a known spatial point process,
specifically a (possibly inhomogeneous) 2-D Poisson process.
Royle and coworkers (Royle and Young, 2008; Royle et al.,
2014) fitted essentially the same models in a Bayesian context
by treating the unknown locations of marked individuals as
numerous latent variables, augmented by an arbitrary number
of locations for unmarked and potentially existant individu-
als. The Bayesian approach has been applied to SMR data by
Sollmann et al. (2013a,b), Rich et al. (2014) and others.

The development of SMR methods faces two major chal-
lenges. Firstly, previous mark–resight methods, both spatial
and non-spatial, have generally assumed that the sighting
probabilities of pre-marked individuals do not differ system-
atically from the population as a whole. This holds when the
marked animals are a random sample. However, the mark-
ing process itself often relies on spatial sampling, possibly
using a stationary grid of traps, and the assumption is then
almost certainly false because animals close to the traps are
likely to predominate in the marked sample. The marking pro-
cess thus induces differing spatial structure in the marked and
unmarked populations (Figure 1) that should be accounted for
when modeling sightings. The direct solution is to collect data
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from both the marking and sighting phases, and to jointly
model both processes. This approach was applied to nonspa-
tial data by Matechou et al. (2013) and is developed here for
spatial data. A compromise solution is to specify an assumed
spatial distribution for the marked animals, and implicitly
also for the unmarked animals, while modeling only the sight-
ing data spatially (e.g., Sollmann et al., 2013b). The problem
with this compromise is that the actual distribution of marked
animals is unknown and its mis-specification may lead to
substantial bias in the estimates. We use “spatial capture–
mark–resight” (SCMR) for models that include the marking
phase, and “spatial mark–resight” (SMR) for models that do
not.

The second challenge is specific to estimation by maximum
likelihood. Sightings of unmarked animals are by definition
not attributed to individuals, so modeling this component of
the data requires a different approach to modeling the spa-
tial detection histories of individuals. This is because each
detection history is associated with a unique (if unknown)
activity center, but we cannot parse the aggregate unmarked
counts to know how many centres to model. In the latent-
variable approach of Sollmann et al. (2013b) and Chandler
and Royle (2013) it is straightforward to model (essentially to
simulate) the latent sightings of the (augmented) population
of unmarked individuals.

This automatically induces the spatial structure in the
counts that results from the clustering of detections around
the randomly located center of each individual. In the MLE

Figure 1. Spatial variation in probability an animal is
marked (black line) or remains unmarked (gray line) along
a notional transect (dashed) across a capture–recapture grid.
Computed for a single marking occasion with h0 = 0.15 and
σ = detector spacing (half-normal detection function). The
spatial distribution of marked animals is central to spatial
mark–resight models.

framework, each observed aggregated count may be mod-
eled as a Poisson variate whose expected value depends on
the location of the detector. However, the detector-specific
Poisson processes are correlated (together they follow a multi-
variate Poisson process) and ignoring the multivariate nature
of the counts has consequences for the parameter estimates.
Chandler and Royle (2013) showed that there can be enough
information in the spatial correlation structure of counts
to obtain crude estimates of density and spatial detection
parameters by data augmentation and MCMC. Discarding
this information from the likelihood potentially leads both to
bias and loss of real precision, and to a spurious increase in
apparent precision due to overdispersion. We suggest using
a pseudolikelihood that is a weighted combination of the
likelihood components for marked and unmarked animals.
The performance of the maximum pseudolikelihood estimator
(MPLE) is superior to the naive MLE and approaches that of
the full model fitted by data augmentation and MCMC.

Our goal in this article is to develop a suite of SCMR and
SMR models that may be fitted by maximizing the likelihood,
following the approach to SECR of Borchers and Efford (2008)
and Efford, Borchers, and Byrom (2009). Section 2 introduces
notation and outlines the foundation provided by likelihood-
based SECR. Section 3 presents the likelihood for the SCMR
model and Section 4 does the same for the SMR model. Var-
ious extensions and special cases are considered along with
implementation issues in Section 5. Section 6 applies the
method to a novel rat dataset. Simulations to assess the per-
formance of the proposed methods are presented in Section 7
and the Supplementary Materials, which also reanalyze pub-
lished data on grassland sparrows Ammodramus savannarum
and A. henslowii in Pennsylvania and puma Puma concolor in
Central and South America. Some issues arising are discussed
in Section 8.

2. SECR Framework and Notation

Much of the structure of our models is shared with the
SECR models of Borchers and Efford (2008), Efford, Borchers,
Byrom (2009), and Borchers and Fewster (2016), and we start
by outlining their common features.

2.1. Detector Locations

Data are assumed to be collected at pre-determined points
or by searching disjoint polygonal areas. Detectors are of two
general types (marking and sighting); it is assumed that detec-
tors are positioned so that some individuals are exposed to
both types, except in SMR (sighting-only) analyses that we
consider later.

2.2. Detection Histories

The data comprise the n detection histories of marked ani-
mals, including any resightings, and counts of the sightings
of unmarked animals at each detector in each sampling inter-
val (occasion) j (1 ≤ j ≤ J). A detection history ωi codes the
status of marked individual i on each occasion with respect
to each detector k (1 ≤ k ≤ K). We use ωi in the inclusive
sense of Efford, Dawson, and Borchers (2009): an observa-
tion on a particular individual i may be binary (ωijk ∈ {0, 1})
or a count of detections (ωijk ∈ {0, 1, 2, . . .}) depending on the
detector type, and may include auxiliary data, such as the
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coordinates of each detection within searched polygons (Royle
and Young, 2008; Efford, 2011). For model development, we
focus on count data from point detectors; ω is the set of
observed detection histories.

2.3. Density Model

The animal population is represented by a 2-dimensional
inhomogenous Poisson spatial point process. Each point cor-
responds to the home-range center of an individual animal.
Centres are assumed fixed for the duration of sampling (mark-
ing and resighting), and the population is closed (no animals
join or leave). The point process is represented by λ(s;β)
where s is the vector of coordinates (x, y) for a point in the
plane and β is a vector of parameters used to model spa-
tial trend in intensity or dependence on spatial covariates.
The homogeneous Poisson is a special case in which λ is
a constant—the uniform intensity of the process—and β is
a scalar.

2.4. Detection Functions

We assume that the cumulative hazard of detection at detec-
tor k on occasion j declines with the distance dik = ||si − lk||
between the detector location lk and an animal’s home-range
center si. Formally, Hijk = h(dik; θ), where θ is a vector of
parameters for the detection function h. We also express this
as Hjk(si). The most commonly used function is the half-
normal Hijk = h0 exp{−d2

ik/(2σ2)} with parameters h0 and σ

that may vary with detector or occasion, particularly between
marking and resighting occasions. Individuals are assumed
not to differ with respect to θ although extensions to include
a random effect are feasible as discussed in Section 8.

3. Spatial Capture-Mark-Resight Likelihood

M represents the subset of occasions on which any new indi-
viduals are marked, and R represents sighting occasions. We
focus initially on detectors that yield count data and extend
later to binary detection histories. We consider a joint likeli-
hood of the form

L(β, θ|ω,T) = LM(β, θ|ω) × LT (β, θ|T), (1)

where T is the J × K matrix of unmarked sightings. This for-
mulation presumes that the marked and unmarked animals on
any sampling occasion comprise distinct spatial populations
whose detections can be modeled independently. We later also
consider the possibility that some sightings were of marked
animals that were not individually identified and therefore
could be recorded only as aggregated counts (T′). For clarity,
we omit the dependence of expressions on parameters after
the first reference.

3.1. Marking and Sightings of Marked Animals

The likelihood associated with marked animals has the form

LM(β, θ|ω) = Pr(n;β, θ) × Pr(ω|n;β, θ). (2)

Animals appear in the marked sample with location-
dependent probability p(si; θ) = 1 − exp{−H(si; θ)}, where
H(si) = ∑

j∈M

∑
k
Hjk(si). This follows Borchers and Efford

(2008) and Borchers and Fewster (2016) except for the

restriction to a subset of occasions on which new individuals
are marked. The number of animals detected n is univariate
Poisson with parameter �(β, θ) = ∫

R2
λ(s)p(s) ds. Alterna-

tively, a fixed number of centres N may be distributed within
a defined region A; n is then a binomial sample from N with
inclusion probability

∫
A

λ(s)p(s) ds /
∫

A
λ(s) ds.

For the second probability in (2), we assume independence
among animals, and hence

Pr(ω|n, β, θ) =
(

n

n1, . . . , nC

) n∏
i=1

Pr(ωi;β, θ)

where n1, . . . , nC are the frequencies of the C unique detection
histories. Adapting Borchers and Efford (2008), we have

Pr(ωi) =
∫
R2

Pr(ωi|s) f (s;β, θ) ds, (3)

where Pr(ωi|s) = p(s)−1
∏

j

∏
k
Pr(ωijk|s), and the probability

density function for the location of a marked animal is f (s) =
λ(s)p(s)

�
. Note that p, �, and f depend only on β and θ for

occasions j ∈ M.
The form of Pr(ωijk) depends on whether j is a mark-

ing or resighting occasion. We introduce a parameter pI

for the probability that a sighting of a marked animal will
be attributable to an individual. Detections of each ani-
mal at each detector arise from a Poisson process with
parameter Hjk(s) for j ∈ M, and parameter pIδ

−
ij Hjk(si) for

j ∈ R, where δ−
ij is 1 if animal i was marked before j and

0 otherwise. Unidentified sightings of marked animals are
counted, but not individuated; they are modeled separately in
Section 3.3.

3.2. Sightings of Unmarked Animals

The observations on unmarked animals are counts of the
number of detections in each interval j at each detector k,
aggregated across individuals (Tjk). If the distribution of activ-
ity centres is an inhomogenous 2-dimensional Poisson process,
then we expect the number of detections at a point to follow a
univariate Poisson distribution (Borchers and Efford, 2008).
The expected number μjk depends on the local intensity of
the population process λ(s;β) and the site-specific detec-
tion rate, discounting animals marked before j (p−(si, j; θ) =
1 − exp{−∑

l∈M,l<j

∑
k
Hjk(si; θ)}) :

μjk =
∫
R2

λ(s) {1 − p−(s, j)} Hjk(s) ds. (4)

This theory describes detections at one detector. For an
array of detectors, it is tempting to assume independence
between sightings on successive occasions and at differ-
ent detectors. The likelihood is then easily formulated as
LT (β, θ|T) = ∏

j∈R

∏
k
Pr(Tjk|μjk) where T is the entire matrix

of sighting data. However, for a particular realization of the
population process, the Tjk are spatially correlated: neigh-
boring detectors within the home range of one or more
animals share a high probability of detecting animals, and the
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configuration of home ranges is assumed constant over occa-
sions. One consequence is that the variance of the sum T =∑

j

∑
k
Tjk across different realizations of the population pro-

cess exceeds its mean, that is, T is overdispersed relative to
a Poisson distribution. Another is that the correlations carry
information about the spatial scale of detection σ, which can
be exploited to provide density estimates even in the absence
of individual marks or external data on the scale of detection
(Chandler and Royle, 2013). Models to “capture” the spatial
correlation in counts of unmarked animals at present require
detailed accounting for the latent locations of individuals, as
in the Bayesian data augmentation approach of Chandler and
Royle (2013).

We bypass this obstacle to ML estimation by discard-
ing the spatial information in the covariance structure.
Estimates of β and θ may be obtained by maximizing
(1) using only a “naive” Poisson model for the unmarked
animals (i.e., LT = μT exp(−μ)/T !, where μ = ∑

j

∑
k
μjk).

Mis-specification causes T to be overdispersed relative to
the Poisson model; we call this “spatial overdispersion” to
distinguish it from overdispersion from other causes (het-
erogeneity among individuals, sightings not independent in
time, etc.). For many scenarios the naive MLE are nearly
unbiased despite the mis-specification, as we show by sim-
ulation in Section 7 and Web Appendix A. However, it
is inescapable that spatial overdispersion in T will bias
estimates of the sampling variance based on the Hessian
evaluated at the naive MLE, and that coverage of confi-
dence intervals will suffer. To address this problem, we define
a pseudolikelihood that includes an adjustment for spatial
overdispersion c:

Lc(β, θ|ω,T) = LM(β, θ|ω) × LT (β, θ|T)1/c. (5)

Spatial overdispersion may be estimated by simulating {Tjk}
for a large number of realizations of the population process,
using estimates of β and θ from an initial model fit, and
computing ĉ = var(T )/mean(T ).

In summary, we propose a 3-step process: (i) obtain the
MLE using a naive likelihood that ignores covariance of the
unmarked counts, (ii) estimate spatial overdispersion (c) at
the naive MLE, and (iii) re-fit the model using ĉ in the pseu-
dolikelihood (5).

3.3. Sightings of Marked Animals not Individually
Identified

The likelihood can be extended to include sightings T′ of
animals that were seen to be marked, but whose identity
was not determined. We initially considered an indepen-
dent likelihood component LT ′(β, θ|T′), where Tjk is Poisson
with expected value μ′

jk = (1 − pI)
∫
R2

λ(s)Hjk(s)p
−(s, j) ds.

However, it is more efficient to condition on the n marked
animals, each available for sighting from the time it was
marked. The new likelihood component for marked animals is
then

L′
M(β, θ|ω,T′) = Pr(n;β, θ) × Pr(ω|n;β, θ) × Pr(T′|ω;β, θ).

(6)

The expected number of unidentified marked individuals is

μ′
jk = (1 − pI)

n∑
i=1

δ−
ij

∫
R2

f (si|ωi)Hjk(s) ds, (7)

where f (si|ωi) is the probability density for the location of
animal i, given its detection history, and δ−

ij is an indicator for
capture before j. Using t(ωi, s) = Pr(ωi|s)λ(s) and f (si|ωi) =
t(ωi, s)/

∫
R2

t(ωi, s) ds (cf. Borchers and Efford, 2008, p. 380),
we have

μ′
jk = (1 − pI)

n∑
i=1

δ−
ij

∫
R2

t(ωi, s)Hjk(s) ds /

∫
R2

t(ωi, s) ds. (8)

If pI = 1 then all marked animals are identified and this
component drops out of the likelihood. Spatial overdisper-
sion may be allowed for in the pseudolikelihood (5) by raising
Pr(T′|ω) to a suitable power estimated by simulation as for
LT .

4. Spatial Mark–Resight Likelihood
(Sighting-Only)

To this point, we have assumed that information is avail-
able on the distribution of effort and location of detections
on the marking occasions. Conventional non-spatial mark–
resight methods avoid this requirement by conditioning on
the number of pre-marked animals n0, without modeling how
they came to be marked, and make the further assump-
tion that the marked animals are a random sample from
the entire (non-spatial) population (McClintock and White,
2012; McClintock et al., 2014). The assumption is carried over
explicitly in the spatial model of Sollmann et al. (2013b) for
data that do not include the marking phase, and discussed
further by Royle et al. (2014). Sighting-only models may be
appropriate when the marking process is unknown, but likely
to be spatially uniform. This could apply when a fraction
of individuals are born with distinguishing marks or acquire
them naturally (e.g., Rich et al., 2014).

In this section, we develop a version of the spatially explicit
mark–resight likelihood that conditions on previous marking.
The data comprise observed sighting histories ω of n marked
individuals, as well as the sighting matrices T and possibly T′

(pI < 1). Marking is assumed to have been completed prior
to sampling, so all occasions are sighting occasions. We con-
sider two scenarios: the number of marked individuals present
in the population at the time of sampling may be known, in
which case n = n0 and the data may include all-zero detection
histories, or n0 may be unknown and the data include detec-
tion histories only for re-sighted animals (n ≤ n0). The key
requirement for both scenarios is that the spatial distribution
of the n0 marked individuals is known at the time of sampling.

4.1. Mark–Resight with Known Number of Marked
Individuals

Assume the n0 marked individuals have a known spatial dis-
tribution with probability density π(s). Using only sightings
of marked animals, we can estimate the vector of detection
parameters θ by maximizing the likelihood conditional on n0
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and π:

LS(θ|n0, ω, π) = Pr(ω|n0, π; θ)

=
(

n0

n1, . . . , nC

) n0∏
i=1

∫
R2

π(s)Pr(ωi|s) ds. (9)

with ωi and n1,. . . , nC defined as before. However, in order
to estimate the population parameter β, we must include
sightings of unmarked animals T in the joint likelihood:

L(β, θ|n0, ω,T, π) = Pr(ω|n0, π; θ) × Pr(T|n0, π;β, θ). (10)

The expected number of sightings of unmarked animals at
detector k on occasion j is

μjk =
∫
R2

{λ(s) − n0π(s)}Hjk(s) ds, λ(s) ≥ n0π(s), (11)

where Hjk(s) is the occasion- and detector-specific expected
number of sightings of an individual at s, as before.

Sightings of marked animals that were not individually
identified (T′) relate to n individuals for which we have some
observed locations (allowing us to apply (8)) and n0 − n other
individuals that were marked andnever sighted.Thus, overall

μ′
jk = (1 − pI)

n0∑
i=1

∫
R2

Pr(ωi|s)π(s)Hjk(s) ds /

∫
R2

Pr(ωi|s)π(s) ds.

(12)

For all n0 − n unsighted individuals Pr(ωi|s) = exp{−H(s)},
allowing these to be aggregated in the term (n0 −
n)

∫
R2

exp{−H(s)}π(s)Hjk(s) ds/
∫
R2

exp{−H(s)}π(s) ds, with
summation only over the n sighted individuals. In the spe-
cial case that the centres of marked animals are distributed
uniformly over a known region A0 with area [A0], π(s) takes
the value 1/[A0] inside that region and 0 outside. The inte-
grals in equations (9) and (12) then need only be evaluated
over A0, and (11) is seen to have two components, one for all
animals outside A0 and one for the animals inside A0 that
escaped marking.

4.2. Mark–Resight with Unknown Number of Marked
Individuals

The number of marked individuals that remain in the study
population at the time of sighting surveys will be unknown if
enough time has passed to allow significant mortality or emi-
gration. The total number of marks may also be unknown if
the study relies on natural marks and some animals are not
identifiable because they lack distinctive marks (Rich et al.,
2014). When the number of marked individuals is unknown, n

refers to the number of observed (not all-zero) sighting histo-
ries, and the likelihood component associated with sightings
of marked animals follows (2) more closely than (9), owing
to the need to allow for the unobserved (all-zero) histories of
some marked animals. This is directly analogous to the use
of a zero-truncated Poisson distribution by McClintock et al.
(2009a) in the corresponding non-spatial case.

We assume that the marked animals present at the time
of sampling remain distributed as π(s). Previously marked
animals appear in the sighting sample with site-dependent
probability p(s) as before. We define an effective sam-
pling area for the population of marked animals as a0(θ) =∫
R2

π(s)p(s)ds. Then

LS(θ|n, ω) =
(

n

n1, . . . , nC

)
a0(θ)

−n

n∏
i=1

∫
R2

π(s) Pr(ωi|s) ds.

(13)

For the expected numbers of sightings, we substitute n/a0

for n0 in (11) and (12). No adjustment is required for animals
not yet marked at time j because marking is completed before
j = 1.

5. Extensions, Special Cases and Implementation

5.1. Binary Data

We have focussed on count data for both the marking and
sighting phases. Data types may vary among occasions. In
particular, the detector type may differ between marking
occasions (j ∈ M) and sighting occasions (j ∈ R). Binary data
(ωijk ∈ {0, 1}) arise when animals are trapped and must be
released before they can be caught again, or when repeated
visits by an individual to a detector cannot be distinguished.
It is difficult, for example, to distinguish multiple visits to
a passive sampling device such as a DNA hair snare from
a single visit on which multiple samples were left. So long
as detections of different animals remain independent, each
binary data type may be modeled by replacing the Poisson
model for ωijk with a Bernoulli model whose sole parameter is
q. For binary proximity detectors qijk = 1 − exp{−Hjk(si)}. For
binary data from multi-catch traps the corresponding param-
eter is qijk = [1 − exp{−Hj(si)}]Hjk(si)/Hj(si), where Hj(si) =∑

k
Hjk(si).

A distinction is drawn between binary data on individu-
als (ωijk) and data that are binary at the level of a detector.
For marked animals there is no reason to aggregate at the
detector level, but for unmarked animals this is inevitable.
Binary data on unmarked individuals record only whether
at least one such individual visited a detector on a partic-
ular occasion (Tjk ∈ {0, 1}). The probability of this event is
r = 1 − exp(−μjk), and the corresponding likelihood compo-
nent is LT = ∏

j∈R

∏
k
rTjk (1 − r)1−Tjk .

5.2. Marked Animals not Distinguished on Sighting
Occasions

If the sighting method does not allow marked animals to
be distinguished from unmarked animals then the observa-
tions are summed “unresolved” counts, and sighting occasions
do not contribute to the detection histories of marked ani-
mals. Unresolved counts are simply modeled by dropping
the prior marking factor from equation (4), leading to μjk =∫
R2

λ(s)Hjk(s)ds. The MPLE model is identifiable if at least
one of the parameters h0 and σ (most likely σ) is constant
between marking and sighting occasions. The lack of infor-
mation on detection parameters from sighting occasions is a
serious impediment to the use of unresolved counts, but they
may contribute to the estimation of spatial trend in density.
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5.3. Uniform-Density Population

For a homogeneous 2-D Poisson distribution of centres λ(s),
(3) may be simplified because p(s) terms cancel (Borchers
and Efford, 2008, p. 379). Then

Pr(ω|s) =
(

n

n1, . . . , nC

) n∏
i=1

∫
R2

Pr(ωi|s)ds
a(θ)

where a(θ) = ∫
R2

p(s)ds and Pr(ωi|s) = ∏
j

∏
k
Pr(ωijk|s) as in

Section 3.1.
If density can be assumed uniform then an alternative esti-

mation strategy is to condition on the number of detected
individuals. The likelihood from only the rightmost factor
in equation (2) (the probability of observing ω conditional
on n) is maximized to estimate the detection parameter vec-
tor θ. A Horvitz–Thompson-like estimate of density is λ̂ =
n/a(θ̂) (Borchers and Efford, 2008). However, the inclusion of
unmarked sightings T is problematic as their expected num-
ber (μjk) depends on density, which is not a parameter in the
model (cf (4)).

5.4. Implementation

Estimates are obtained by maximizing the pseudolikelihood
numerically. It is convenient to approximate the integrals as
sums over small spatial pixels, and to restrict the summation
to habitat in the vicinity of the detectors (i.e., to exclude non-
habitat and places so distant that there is near-zero chance an
animal centred there would have been detected). Maximiza-
tion is over the logarithms of the parameters (or the logit in
the case of pI), and sampling variances and covariances of the
transformed parameters are obtained from the Hessian matrix
evaluated at the MPLE, or by a parametric bootstrap. Con-
fidence limits are back-transformed from symmetrical (Wald)
limits on the transformed scale; reported standard errors are
delta-method approximations. An implementation is included
in the R package “secr” (R Core Team, 2016; Efford, 2017).
This also allows the user to model each parameter in more
detail, for example, to express log(λ) as a linear function of
pixel-specific habitat variables, or log(h0) as varying among
occasions.

6. Example: Population Density of Ship Rats in
Southern Beech Forest

We analyzed unpublished data from a study of ship rats
Rattus rattus living in a New Zealand forest. Rats were

live-trapped and marked with individual tail tattoos over
four days on a 10 × 10 grid of traps spaced 25 m apart,
and then monitored over seven days with a matching grid
of motion-activated video cameras, offset by about 5 m. On
average only 73% of traps and 89% of cameras were operated
each day. Of the 80 rats trapped and tattooed, only 13 were
recaptured. However, 47 tattooed rats were identified a total
of 497 times in the video recordings. Further sightings were
assigned to the categories “Unmarked” (1374), “Marked, iden-
tity unknown” (878), and “Uncertain” (721). We discarded
“Uncertain” sightings. Details and extended results are in
Web Appendix C.

SCMR estimators (naive MLE and MPLE) were computed
for the trapping and sighting data, both using full counts of
unmarked sightings and with the sightings reduced to binary
data (per detector per night). Estimates of c were obtained by
simulating 10,000 sighting datasets from the naive fit. We also
computed the MLE of density from the trapping data alone
(Borchers and Efford, 2008), and by maximizing (2) that uses
the trapping data and sightings only of marked animals.

The MLE of density from trapping data was high and
also imprecise, as expected from the sparsity of recaptures
(Table 1). Naive MLE including sighting data were much
lower; their apparently high precision is an artifact of spa-
tial overdispersion. MPLE estimates using simulation-based
ĉ were higher than naive MLE, and their confidence inter-
vals were more credible (Table 1). Modeling the sightings
as binary data rather than counts had little effect on the
MPLE. The alternative strategy of modeling only ω, the
detection histories of the n = 80 marked rats across the
marking and sighting phases, does not suffer from spatial
overdispersion (Section 3.1). However, discarding counts of
unmarked rats and unidentified marked rats sacrifices poten-
tially valuable information. Estimates of rat density from the
reduced dataset were intermediate in precision and magni-
tude between trapping-only estimates and MPLE using all
sightings (Table 1).

7. Simulation Experiments

Some simulations are presented to illustrate the performance
of MPLE. Limited simulations are also presented to evaluate
the effect of mis-specifying the spatial distribution of marked
animals and to compare MPLE (ignoring covariation among
counts of unmarked sightings) with Bayesian analysis of the
full model. The population N is assumed fixed (binomial n)

Table 1
Estimates of rat population density λ (95% CI) from spatial capture–recapture and capture–mark–resight models.

Simulation-based estimates of overdispersion ĉ used in maximum pseudolikelihood estimates (MPLE) are shown for sightings
of unmarked rats (T ) and marked but unidentified rats (T ′). RSE = relative standard error.

Data Estimator λ̂ ha−1 R̂SE(λ̂) ĉ(T ) ĉ(T ′)

Trapping only MLE 33.9 (22.3, 51.6) 0.217 – –
Trapping + marked sightings MLE 22.6 (16.2, 31.6) 0.172 – –
All data (count) naive MLE 17.7 (16.1, 19.6) 0.050 – –

MPLE 20.9 (17.3, 25.3) 0.097 22.8 19.0
All data (binary) naive MLE 14.2 (12.3, 16.4) 0.074 – –

MPLE 20.3 (16.6, 24.8) 0.104 10.0 8.4
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to allow comparison with published results (e.g., Royle et al.,
2014).

7.1. Validation of Models

Two detector configurations were considered: a 6 × 6 square
array of binary proximity detectors, and a 10 × 10 array of the
same detectors. The scale parameter σ was set equal to the
array spacing. A fixed population of N = 200 animals was dis-
tributed uniformly within a square extending 4σ beyond the
detectors. The intercept parameter of the half-normal detec-
tion function was h0 = 0.2. Two types of sampling were sim-
ulated: marking of a random sample of animals detected on a
single occasion, followed by five resighting occasions, and pre-
marking of exactly n0 = 50 individuals distributed uniformly
over the arena, also followed by five resighting occasions.

The relevant model from Section 3 or Section 4 was fitted to
each of 500 replicate datasets. Sighting-only models were fit-
ted to the pre-marked samples assuming n0 was either known
(allowing some detection histories to be all-zero) or unknown.
Integrals were approximated by the sum over a 32 × 32 grid
of pixels extending 4σ beyond the detectors. Estimators were
evaluated with respect to relative bias (RB), relative stan-
dard error (RSE), relative root-mean-square error (rRMSE),
and coverage of 95% confidence intervals (COV).

The average bias of the naive MLE estimates was small
(< 3%), but coverage of nominal 95% log-normal confidence
intervals was poor (0.75–0.91) for the naive estimator, espe-
cially for models that included the marking phase (Table 2).
Unmarked sightings were substantially overdispersed (3.65 ≤
ĉ ≤ 4.29). The coverage of 95% MPLE confidence intervals
was close to the nominal level (0.93–0.97; Table 2).

7.2. Effect of Mis-Specifying the Distribution of Marked
Animals

For sighting-only models, it is necessary to specify the dis-
tribution of marked animals π(s). If the marked sample is
obtained by passive sampling at fixed detectors then the

distribution depends on the unknown values of the detec-
tion parameters (Figure 1). Simulations were conducted to
determine the effect of mis-specifying π(s) as uniform over
various subsets of the area of integration. Simulation con-
ditions were as for the 6 × 6 and 10 × 10 arrays of the
preceding section; data from the marking occasion were either
used in a full analysis (capture–mark–resight) or discarded
(mark–resight). For mark–resight analyses, the distribution
of marked animals was specified either as uniform over a
square area A0 extending a multiple of σ beyond the detec-
tor array (width w). 500 simulations were performed for each
scenario.

Mark–resight estimates with an incorrectly specified dis-
tribution of marks showed large bias and poor confidence
interval coverage (Web Table 4). The bias varied from pos-
itive to negative with increasing A0. In these scenarios, bias
was low for A0 ≈ (w + 2σ)2, but the zero-bias boundary is
likely to change with sampling intensity.

7.3. Consequences of Ignoring Covariation of Unmarked
Counts

The spatial model of Chandler and Royle (2013) for sightings
of a partially marked population was fitted to sighting data
from 6 × 6 and 10 × 10 arrays allowing for a known number
of marked individuals (n0 = 50), generated as in the second
group of simulations in Table 2, but using Poisson-distributed
counts rather than binary data. The data augmentation
parameter M was set to 500 individuals, allowing signifi-
cant “headroom” over the fixed population (N = 200). Other
simulation conditions followed their Section 4.1 (specifically,
uninformative priors and 32,000 posterior samples, discarding
the first 2000). Computation used a slightly modified version
of the Chandler and Royle algorithm (Web Appendix F).

The Bayesian estimator including covariation of unmarked
counts was slightly less biased than the MPLE for the
particular sightings-only scenarios tested here (Table 3).
More extensive simulations (Web Appendix A) support the

Table 2
Simulation results for maximum likelihood estimator of density from capture–mark–resight and mark–resight spatial data.
The fitted model matched that used to generate the data except that covariation of the multivariate Poisson process for

unmarked animals was either ignored (“Naive MLE”) or considered only via weighting for overdispersion in the
pseudolikelihood (“MPLE”). RB = relative bias, RSE = relative standard error, COV = coverage of 95% log-normal

confidence intervals. 500 replicates. n number of animals marked,
∑

ω number of detections of marked individuals, including
first, T number of sightings of unmarked animals.

Naive MLE MPLE

Model and detector(s) n
∑

ω T RB RSE COV RB RSE COV

Capture–mark–resight
6 × 6 array 36.7 187 86 −0.017 0.103 0.842 −0.006 0.132 0.954
10 × 10 array 55.9 335 137 −0.024 0.072 0.748 −0.020 0.100 0.972

Mark–resight, known n0

6 × 6 array – 64 118 −0.001 0.150 0.912 0.017 0.176 0.942
10 × 10 array – 102 231 −0.015 0.102 0.874 −0.019 0.123 0.944

Mark–resight, unknown n0

6 × 6 array – 64 119 0.000 0.176 0.904 0.026 0.199 0.934
10 × 10 array – 103 231 −0.027 0.109 0.896 −0.016 0.129 0.928

n,
∑

ω, T are averages over replicates, SE 0.3–2.0. Average overdispersion ĉ 3.6–4.3.
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Table 3
Comparison of spatial population size estimators for simulated mark–resight data (true N = 200). Covariation of the

multivariate Poisson process for unmarked animals was modeled directly (“Bayesian”) or considered only as an adjustment
for overdispersion in a pseudolikelihood (“MPLE,” from Table 2). COV is the coverage of 95% log-normal confidence

intervals for the MPLE, and 95% credible intervals for the Bayesian estimates. In the Bayesian case RB and rRMSE refer
to the relative bias and relative root-mean-square error of the mode of the posterior distribution (200 replicates).

MPLE Bayesian

Detectors RB rRMSE COV RB rRMSE COV

6 × 6 array 0.017 0.182 0.942 0.028 0.185 0.935
10 × 10 array −0.019 0.124 0.944 0.005 0.121 0.940

conclusion of Chandler and Royle (2013) that allowing for the
covariance structure significantly improves estimation when
few animals are marked and σ ≈ 0.5s, where s is the detector
spacing. However, estimation by MPLE was at least 20 times
faster (Web Table 3).

8. Discussion

The spatial capture–mark–resight (SCMR) models in this
article extend current MLE methods for spatially explicit
capture–recapture. The foremost issue in modeling spatial
mark–resight data is the (usually unknown) spatial distri-
bution of marked animals. This is resolved in SCMR by
including a spatial submodel for the initial capture and mark-
ing; SMR models that rely instead on an assumed distribution
for the marked animals can be justified only in special cases.
SCMR and SMR methods that maximize a proposed pseu-
dolikelihood with weighting for spatial overdispersion have
been packaged in software alongside likelihood-based SECR
methods (Efford, 2017). For the SMR puma dataset of Kelly
et al. (2008), we show in Web Appendix E that the pseu-
dolikelihood approach gives similar estimates to Bayesian
methods (Sollmann et al., 2013b; Royle et al., 2014). Recent
work by Whittington et al. (in press) has extended the
Bayesian approach to include spatial capture–mark–resight
models in our terminology, with promising results. We con-
sider the methodologies to be complementary and mutually
illuminating. Further work on SCMR and SMR models is
needed to address other issues that arise in field studies
such as population turnover and the inclusion of telemetry
data.

8.1. Rat Population Estimation Using Trapping and
Motion-Activated Cameras

Our rat data are likely to be typical of many field studies
in which few recaptures are made during the marking phase
and sightings are far more numerous. Under these condi-
tions, the inclusion of sighting data substantially improves
the precision of density estimates. However, we encountered
problems in the rat sighting data that potentially introduced
bias, and that may be common in field studies. Specifically,
(i) the status of many sightings was uncertain, and it may not
be correct to assume that doubtful sightings of marked and
unmarked animals were discarded with equal probability, and
(ii) subtle home-range shifts may occur between the marking
and sighting phases. We do not believe these factors caused
significant bias in our estimates of rat density, but we had

no independent check. Whittington et al. (in press) analyzed
comparable data from a study of grizzly bears (Ursus arctos).
They found it difficult to fit models to count data by MCMC
sampling, a problem they attributed to (non-spatial) overdis-
persion. They avoided this problem by casting the data as
binary. There may well have been non-spatial overdispersion
in the rat data (repeated sightings of an animal in close succes-
sion were unlikely to be independent), but it did not impede
MPLE, and the estimates from binary and count analyses
were very similar.

8.2. Area Search

The sighting models of Sections 3 and 4 may be applied
almost unchanged to sightings gathered by searching a defined
area, treating each searched polygon as a “detector.” In Web
Appendix D, we analyzed data from a study by J. Hill in which
plots were searched for grassland sparrows. Area-search data
may also be analyzed by discretizing the area as a number
of small pixels and treating each pixel as a point detector.
Another interesting possibility for the sightings of unmarked
animals from area searches is to model them as a clustered
spatial point process, substituting the Palm pseudolikelihood
for LT in equation (1) (Tanaka, Ogata, and Stoyan, 2008;
Fewster, Stevenson, and Borchers, 2016).

8.3. Capture–Mark–Resight and Mark–Resight Spatial
Data

The need to specify the spatial distribution of marked
animals is a weakness of mark–resight models, and mis-
specification can be damaging (Web Table 4; Royle et al.,
2014; Whittington et al., in press). Under some conditions
the distribution of marked animals may be known or reason-
ably assumed. In the puma analysis of Web Appendix E, for
example, the fraction of naturally pre-marked animals was
assumed constant over space. Joint modeling of the marking
and sighting phases also removes this problem, as the marking
data and model implicitly determine the spatial distribution
of marked animals, given the assumption that animals do not
shift their home ranges.

Joint modeling of marking and sighting has further advan-
tages. It deals naturally with occasion–occasion changes in
the distribution of marked animals when marking and sighting
occasions are interspersed, even if animals are trapped sequen-
tially in different parts of a study area. Interspersion likely
increases robustness to minor home-range shifts, although we
note that, given population closure, the number of resightings
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is maximized by concentrating marking effort at the start
of a study. A joint model fitted to pilot data may be used
to optimize the study design by simulating scenarios for the
allocation of effort between marking and sighting phases, and
across space. This last point regarding study design is crit-
ical, as even numerous sightings of unmarked animals may
sometimes contribute little to overall precision.

8.4. Spatial Information in Sightings of Unmarked
Animals

We have based estimation on a likelihood that discards infor-
mation in the spatial correlations among counts of sightings
of unmarked animals {Tjk}. This is purely a matter of conve-
nience. Pairwise composite likelihood methods (Varin, Reid,
and Firth, 2011) may be developed in future to model the
covariance structure of the counts.

We have shown that the cost of this model mis-specification
may be largely eliminated by maximizing a pseudolikelihood
in which the sighting component is weighted inversely by a
simulation-based estimate of spatial overdispersion. However,
we still expect to sacrifice some precision in the estimate
of density, as the information discarded is what allowed
Chandler and Royle (2013) to obtain crude estimates of
density from datasets with no marked animals at all. The loss-
of-precision handicap will be greater for SMR models than
SCMR models as the former rely entirely on sightings. We
therefore, address the magnitude of the handicap for SMR.

Simulation experiments showed that loss of precision in
SMR models depends strongly on context. Our principal sim-
ulations found the MPLE to be marginally less precise than
the corresponding point estimates from MCMC and data aug-
mentation (Table 3). Chandler and Royle (2013) and Royle
et al. (2014, Tables 19.3, 19.4) showed for particular scenarios
involving small numbers of marked individuals that allowing
for the covariance of the unmarked counts could substantially
increase precision. Further work is needed to map the region in
parameter- and design-space for which the spatial covariance
of {Tjk} contributes significant information for the estimation
of density. We suspect that the covariance structure provides
a useful signal only under quite strict conditions. For example,
Chandler and Royle (2013) noted a rapid loss of precision as σ

increased from 0.5 to 1.0 times detector spacing. The 15 × 15
detector array in their simulations was larger than those in
common use, and the simulated population was sparse relative
to σ, resulting in low overlap between home ranges. Intu-
itively, either condition might enhance the signal from spatial
covariance of unmarked counts. Efford et al. (2016) suggested
k = σ

√
λ as an index of overlap assuming a random distribu-

tion of centres; for the Chandler and Royle simulations with
σ = 0.5, we find k ≈ 0.22, which is less than estimated from
population studies of solitary carnivores, small mammals and
forest birds (Efford et al., 2016; unpublish. results).

8.5. Compatibility of Sightings and Data on Marked
Animals

Joint modeling of marking and sighting data relies on the
constancy of shared parameters and home-range centres, and
on the assumption that no births, deaths, immigration, or
emigration occur between marking and sighting. The spa-
tially overdispersed sightings of unmarked animals carry more

weight in the naive model than is justified by their informa-
tion content, which is overcome by down-weighting these data
in the pseudolikelihood. The joint model may still represent
a poor compromise between disparate data sets, and further
work is needed to evaluate measures of goodness-of-fit (Royle
et al., 2014). If counts of unmarked sightings are unreliable
then it may be desirable to discard them and rely only on
sightings of marked animals (e.g., “Trapping + marked sight-
ings” in Table 1). A particular issue arises when home-range
centres shift between the marking and sighting phases. In a
model that treats centres as fixed, the implied location of the
overall latent center is biased towards the center for whichever
of the marking and sighting phases has the larger number
of observations. A phase-specific model for σ then shows a
spuriously large σ̂ in the other phase.

8.6. Comments on Heterogeneous Detection

McClintock et al. (2009b) developed non-spatial mark–resight
estimators that include a random effect for variation in detec-
tion probability to address concerns about bias driven by
individual heterogeneity. Heterogeneity of the parameters h0

and σ among individuals is also likely to bias estimates of
density from capture–mark–resight and mark–resight spa-
tial data. A continuous random effect might be introduced
for these parameters, or each might be represented by a
finite mixture (Pledger, 2000; Borchers and Efford, 2008;
Efford, 2017). For SECR the critical heterogeneity is in the
individual-level effective sampling area a(θ) (Section 5.3)
which for a given sampling design is a function of both h0 and
σ (Efford and Mowat, 2014). There is not a direct analogue
of a(θ) for mark–resight models owing to their more complex
structure and the lack of a Horvitz–Thompson-like estimator
that includes counts of unmarked animals. The possible inter-
action between heterogeneity and failure to identify marked
individuals (pI) requires investigation in spatial models (cf,
McClintock et al., 2014).

9. Supplementary Materials

Web Appendices and Tables referenced in Sections 3, 6, 7,
and 8 are available with this article at the Biometrics website
on Wiley Online Library. The R code used to perform the
simulations in Section 7 is described in Web Appendix F.
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