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Abstract

A spatial open‐population capture‐recapture model is described that extends

both the non‐spatial open‐population model of Schwarz and Arnason and the

spatially explicit closed‐population model of Borchers and Efford. The super-

population of animals available for detection at some time during a study is

conceived as a two‐dimensional Poisson point process. Individual probabilities

of birth and death follow the conventional open‐population model. Movement

between sampling times may be modeled with a dispersal kernel using a

recursive Markovian algorithm. Observations arise from distance‐dependent
sampling at an array of detectors. As in the closed‐population spatial model, the

observed data likelihood relies on integration over the unknown animal

locations; maximization of this likelihood yields estimates of the birth, death,

movement, and detection parameters. The models were fitted to data from a

live‐trapping study of brushtail possums (Trichosurus vulpecula) in New

Zealand. Simulations confirmed that spatial modeling can greatly reduce the

bias of capture‐recapture survival estimates and that there is a degree of

robustness to misspecification of the dispersal kernel. An R package is available

that includes various extensions.
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1 | INTRODUCTION

Open‐population capture‐recapture models are used
widely in population ecology and wildlife management
to estimate animal abundance and related parameters
(Seber, 1982; Williams et al., 2002). Schwarz and Arnason
(1996) consolidated work by Jolly (1965), Seber (1965),
and Crosbie and Manly (1985) to allow estimation of
time‐specific survival, recruitment, population growth
rate, and population size by maximum likelihood. The
Jolly‐Seber‐Schwarz‐Arnason (JSSA) model is the foun-
dation for later work on the joint estimation of these
parameters (eg, Link and Barker, 2005; Pledger et al.,
2010; Schofield and Barker, 2016). The JSSA model is
non‐spatial in that it is parameterized in terms of

population size N , does not address the spatial distribu-
tion of animals, and does not model capture as a spatial
process. Spatially explicit capture‐recapture (SECR)
methods have developed separately; these were designed
to estimate the density of a spatially distributed but
demographically closed population, sampled with an
array of passive detectors such as traps (Efford, 2004;
Borchers and Efford, 2008; Royle et al., 2014; Borchers
and Fewster, 2016).

The potential benefits of generalizing SECR to
demographically open populations are widely recognized.
These include relaxing the assumption of closure when
sampling is protracted, allowing for temporal variation in
the spatial extent of sampling, distinguishing mortality
from emigration, and reducing bias due to spatially
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induced individual heterogeneity in capture probability.
Several studies have addressed aspects of the problem
(Gardner et al., 2010; Ergon and Gardner, 2014; Schaub
and Royle, 2014; Raabe et al., 2014; Chandler and Clark,
2014; Whittington and Sawaya, 2015; Gardner et al.,
2018). Most have relied on a Bayesian formulation and
model fitting by MCMC with either conditioning on the
first detection, as in the Cormack‐Jolly‐Seber model
(Lebreton et al., 1992), or data augmentation. Glennie
et al. (2019) recently provided a hidden‐Markov formula-
tion that could be fit by maximizing the likelihood.

This paper describes a spatial open‐population model
extending both the non‐spatial open‐population model of
Schwarz and Arnason (1996) and the spatially explicit
closed‐population model of Borchers and Efford (2008).
The model accommodates, but does not require, the
“robust” sampling design of Pollock (1982) in which
multiple secondary samples are nested within each
primary sample. Section 2 introduces the data structure
and notation and separately describes the spatial and
non‐spatial precursor models. Section 3 describes the
open‐population spatial model, initially for static home‐
range centers and then with between‐session movement
according to a dispersal kernel. Section 4 deals with
model fitting and Section 5 presents an example.
Simulations are used in Section 6 to evaluate spatial
and non‐spatial models with respect to bias in survival
estimates and to assess the effect of misspecifying the
movement kernel in spatial models. Section 7 has some
concluding remarks.

2 | DATA AND EXISTING
MODELS

The major notation is shown in Table 1 and explained in
the following sections.

2.1 | Data

We consider data sets resulting from spatial sampling of
an animal population with passive detectors (typically
traps, DNA hair snags or cameras) placed at multiple
known locations across a study area. Detectors are
operated for J primary sessions between which there
may be partial turnover of the population. Within each
primary session, there may be one or more secondary
sessions, sampling intervals closely spaced in time
between which there is no turnover. In each secondary
session, newly detected animals are marked individually
(if not distinguishable by natural marks) and released;
redetections are recorded. The spacing of detectors is not
critical, but it should allow some animals to be redetected

at more than one detector; placement of detectors may
vary over time.

This sampling design results in a set of “detection
histories” ω for the animals detected at least once. The
history ωi of a detected individual i comprises a matrix of
observations on particular secondary sessions (rows s) at
particular detectors (columns k). The observation ωisk in
each cell of the matrix ωi may be binary (detected or not)
or a count of the number of detections. A trap is a
particular type of detector which allows an animal to be
detected no more than once per secondary session. The
term “capture” is natural when traps are used for
sampling, but “detection” is more general.

2.2 | Closed‐population SECR model

Data as described may be analyzed in the closed‐population
SECR paradigm of Borchers and Efford (2008) and Efford
et al. (2009a) by maximizing an observed data likelihood
formed as the product of components, one for each primary

TABLE 1 Major notation

General
n Number of individuals observed in the course of

study
J Number of primary sampling sessions
S Number of secondary sampling sessions

Spatial
K Number of detectors
ω Spatial detection histories of all observed animals
ωi Spatial detection history of observed animal i
θ Vector of parameters for the spatial detection

process
ν Vector of parameters for spatial density process
x Location in‐plane (vector of x‐y coordinates)
D x( ) Density at x of animals available for detection in at

least one session
p x( )sk Probability animal centered at x is detected at

detector k in secondary session s
p x( )⋅ Probability animal centered at x is detected at at

least once during study

Non‐spatial
ω′ Collapsed (non‐spatial) detection histories of

observed animals
ω ′i Non‐spatial detection history of observed animal i
θ′ Vector of parameters for non‐spatial detection

process
N Number of animals available for detection in at

least one session

Population turnover
ϕj Probability animal available for detection at time j

is also available at time j + 1
βj Probability member of the superpopulation first

available for detection at time j + 1
b d, Indices of times that an animal is first and last

available for detection
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session j. In this section, we focus on a single session j
with Sj secondary sessions andnj non‐null historiesω j⋅ . Each
session‐specific component has two parts, one for the
probability of observing nj individuals in that session,
and the other for the probability conditional on nj of
observing the particular set of detection histories, that is,

ω ωL θ ν n θ ν n θ( , | ) = Pr( | , ) Pr( | , )j j j j⋅ ⋅ , where θ is a
vector of detection parameters and the vector ν parame-
terizes the intensity of an inhomogeneous Poisson
process D. The probability of observing exactly nj animals
may be treated as either binomial or Poisson (Borchers and
Efford, 2008).

Individuals are assumed to be detected independently
of each other, so the probability of ω j⋅ may be modeled as

ω

ω ω ω

n θ

f dx x x
Pr( | , )

Pr( | > 0, ) ( | > 0) ,
ω ω

j j

ij ij ij
ij j

∫∏∝
⋅

∈ ⋅
(1)

using ω > 0ij to indicate a non‐null detection history and
f for the spatial distribution of individual home‐range
centers x (we omit a multinomial constant that does not
depend on the parameters). The integration marginalizes
over the unknown locations of individuals. In this paper,
integration is over the real plane 2 , unless otherwise
indicated. The appropriate form for ω ω xPr( | > 0, )ij ij
depends on the properties of the detectors (Borchers and
Efford, 2008; Efford et al., 2009b). For concreteness, we
focus on binary proximity detectors, for which

ω ω

p p p

x

x x x

Pr( | > 0, )

= ( ) ( ) {1 − ( )} ,

ij ij

s
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k
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sk
ω

sk
ω−1

=1 =1

1−
j

isk isk∏∏⋅ (2)

with p px x( ) = 1 − {1 − ( )}s
S

k
K

sk=1 =1
j∏ ∏⋅ . The depen-

dence of detection on the distance of x from each
detector k is captured by the function psk that may
take various forms. For example, the cumulative
hazard of detection may be modeled as a half‐normal
function of distance h d h d σ( ) = exp{− (2 )}0

2 2∕ ; then
p hx x k( ) = 1 − exp{− (‖ − ‖)}sk where k is the location
of detector k. The distribution of detected animals is
given by ωf D p D p dx x x x x x( | > 0) = ( ) ( )/ ( ) ( )ij ∫⋅ ⋅ .

A multi‐session closed‐population approach discards
information from the recaptures of individuals between
primary sessions. When some animals persist between
primary sessions, the assumption of independence is
violated, potentially leading to underestimation of
sampling variance. This is a further reason for using an
open population model, even when population turnover
(loss and recruitment between primary sessions) is not of
interest in itself.

2.3 | Open‐population non‐spatial
model (JSSA)

The same data may be analyzed with the JSSA model if we
discard location information and reduce each detection
history to a binary vector for each individual. The
frequencies of the reduced capture histories ω′ are modeled
as arising from a multinomial distribution with one cell for
each secondary session. Cell probabilities combine a
demographic process (determining the primary sessions in
which each animal is alive and available for capture) and a
detection process (probability of capture given alive).

The JSSA observed data likelihood has broadly
the same structure as the SECR likelihood: ωL θ N( , | ′) =

ωn θ N n θPr( | , )Pr( ′ | , ), where N is the superpopulation
size, defined as the number of animals available for
capture in at least one primary session. Breaking this
down, ( )n θ N p pPr( , ) = (1 − )N

n
n N n−∣ for binomial n,

where p is the probability a member of the superpopula-
tion is detected at least once, and ω n θPr( ′ | , ) ω ω′′i

∝ ∏ ∈
ω ωPr( | > 0)′ ′i i .
An individual‐based formulation of the JSSA likelihood

(Schofield and Barker, 2008; Pledger et al., 2010) uses a
summation over the birth and death times consistent with
each detection history. The probability that an animal is
first available for detection at b and last available for
detection at d is ( )b d β ϕ ϕPr( , ) = (1 − )b j b

d
j d−1 =

−1∏ , where

βj is the probability that a member of the notional
superpopulation is first available for detection at session
j + 1, and ϕj is the conditional probability that it is last
available at session j. For individual i first observed in
session fi and last observed in session li,

{ }
ω ω

ω ωb d b d

p b d p p

Pr( | > 0)

= Pr( , )Pr( | , , > 0)

= Pr( , ) (1 − ) ,
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−1

=1 = =

1−′ ′

i

i

i

i

ij ij
⎫⎬⎭⎪

⎪⎧⎨
⎩

∑∑

∑∑ ∏⋅ (3)

where pj is the probability of detection if available

for detection in session j and p = 1 − b
J

d b
J

=1 =∑ ∑⋅
b d p{Pr( , ) (1 − )}j b

d
j=∏ . For clarity, we follow Pledger

et al. (2010) in presenting the model for a single sample
in each primary session; the extension to multiple
secondary sessions is straightforward.

3 | SPATIOTEMPORAL MODEL

Two steps are required to adapt the JSSA model for spatial
data ω. First, we conceptualize the superpopulation as a
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spatial point process, in which animals are distributed
independently in the plane with density D x( ). Second, we
substitute a spatial detection model, such as (2) for the non‐
spatial detection model (3). We start here by specifying the
model for stationary home‐range centers, and then adapt it
for between‐session movement governed by a probabilistic
kernel.

The spatiotemporal likelihood has the same general
form as the SECR model, ωL θ ν n θ ν( , | ) = Pr( | , )
ω n θPr( | , ), but the vector θ includes parameters for

turnover (survival and recruitment), and D x( ) refers to
the superpopulation rather than a time‐specific density.
The conditional likelihood

ω ω ωL n b d b d( | ) Pr( , )Pr( | , , > 0)
ω ωω

b

f

d l

J

i i
=1 =

i

i

i

∏ ∑∑∝ ∈

has the same form as in the non‐spatial JSSA model.

3.1 | Stationary home ranges

We assume initially that each animal is fixed at its
unknown initial location x. We marginalize over x using

ω ω
ω ω ω

b d
b d f b d dx x x

Pr( | , , > 0)
= Pr( | , , > 0, ) ( | , , > 0) .

i i

i i i∫
The probability that an animal centered at x and
available from b to d is detected at least once is given
by p b d px x( | , ) = 1 − {1 − ( )}s S b

S d
k
K

sk= ( )
( )

=1f

l∏ ∏⋅ where s
indexes the secondary sessions that an animal was
available for detection, and S j( )f and S j( )l refer,
respectively, to the first and last secondary sessions in
primary session j. The spatial distribution of detected
animals is given by ωf b d p b d Dx x x( | , , > 0) = ( | , ) ( )i ∕⋅
p b d D dx x x( | , ) ( )∫ ⋅ , and hence

ω ω
ω

b d
b d D d

p b d D d
x x x

x x x
Pr( | , , > 0) =

Pr( | , , ) ( )
( | , ) ( )

.i i
i∫

∫ ⋅
(4)

A Poisson model for the number of detected animals n
has the rate parameter

λ θ ν b d p b d D dx x x( , ) = Pr( , ) ( | , ) ( ) .
b

J

d b

J

=1 =
∫∑∑ ⋅ (5)

3.2 | Movement between primary sessions

Dispersal, defined as a shift in the home‐range center
between primary sessions, is a potentially important
demographic process alongside in situ recruitment and
mortality. Dispersal is conveniently modeled with a

two‐dimensional kernel centered on the origin. If the
kernel is radially symmetrical, then the probability
density of a movement from xj−1 to xj is a function of
distance r . It is tempting to rely on the Gaussian
(bivariate normal) kernel k r πα r α( ) = (1/2 )exp(− /2 )g g

2 2 2

with scale parameter αg, but dispersal kernels in
biology are commonly fat‐tailed (Nathan et al., 2012).
A simple alternative with fatter tails is the Laplace
(negative exponential) kernel k r πα( ) = (1/2 )expl

2

r α(− / )l with the scale parameter αl. The distribution
of location in session j − 1 is projected forwards to
session j by convolving the initial distribution with the
kernel k

f

f k

k u v f x u y v du dv

x x
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( | )

= ( )*
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∞
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In a model with movement, the numerator of (4)
entails multiple integrations over the unknown location
of animal i at each sampling occasion. Thus

ω

ω

ω

b d D d

D

f d

x x x

x x

x x x x x

Pr( | , , ) ( )

= … Pr( | ) ( )

× Pr( | ) ( | ) … .

i

i b b b

j b

d

i j j j j b d

,

= +1
, −1

∫
∫ ∫
∏ (6)

For the movement model, the denominator of (4) is
the complement of (6) evaluated for a null history.

4 | IMPLEMENTATION

4.1 | Discretization

In the development, we considered animal locations
across the entire plane ( 2 ), but in applications the
integration is replaced by summation over discrete pixels
in a finite area A. This is computationally convenient and
allows the inclusion of biological detail by, for example,
dropping nonhabitat pixels from the summation. In a
continuous habitat, the extent of A is arbitrary, although
using a region that is too small relative to the spatial scale
of detection results in a positive bias in estimated density.
Models with dispersal between primary sessions admit
the possible immigration of more distant animals and
require that a larger region is considered if edge effects
are to be avoided.

A further benefit of discretization is that an
approximation to the multiple integral (6) may be
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evaluated by the forward algorithm commonly used for
hidden Markov models (Zucchini and MacDonald, 2009)

ω

ω

ω

ω

ω

b d D d

f

f

f

D

x x x

x x x

x x x

x x x

x x

Pr( | , , ) ( )
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× ( | )Pr( | ) …
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∫
∑
∑
∑
∑

≈

evaluated from right to left.
To limit computation, we used a discrete movement

kernel with the same pixel size as the habitat and
truncated the kernel at an arbitrary radius. Cell
probabilities were calculated from the continuous model
(eg, bivariate normal) evaluated at the centroid of each
pixel and normalized across the kernel.

4.2 | Parameterization of recruitment

Recruitment in the multinomial JSSA model is naturally
parameterized in terms of the entry probabilities βj
(Schwarz and Arnason, 1996). However, the βj lack a
direct biological interpretation, as they depend on the
superpopulation size N or density D x( ), which increase
with study duration. More useful alternatives are per
capita recruitment f j (Pradel, 1996; Link and Barker,
2005) and the finite rate of population increase
λ f ϕ= +j j j (Pradel, 1996; Schwarz and Arnason, 1996;
Link and Barker, 2005; Pledger et al., 2010), and others
are possible, including time‐specific density Dj (Table 2).
The parameter f j may be computed recursively from the
βj and ϕj using the intermediate quantity d d ϕ β= +j j j j+1

where d β1 0≡ and f β d=j j j∕ (Link and Barker, 2005).
Conversely, the model may be expressed in terms of the
alternative recruitment parameter, with the βj computed
by the inverse recursion for use in b dPr( , ).

Models that relate f j or λj to covariates or apply a
temporal constraint (eg, constancy over time) have a direct
biological interpretation, unlike simple models for βj.
Parameterizations of recruitment for the non‐spatial model
transfer directly to the spatial model except that the state
variable density replaces population size (Table 2). We
encountered fewer numerical problems when using the f j or
βj parameterizations than with λj or Dj.

4.3 | Variable sampling interval

The interval between primary sessions may vary in
duration. It then aids interpretation and modeling to
express demographic rates in relation to a constant unit
of time, or as instantaneous rates (Ergon et al., 2018). The
realized session‐specific rate is usually a nonlinear
function of the underlying standardized rate. For
survival, there is a straightforward power relationship:
ϕ ϕ=′j j

tΔ j where tΔ j is the duration from the start of
session j to the start of session j + 1. The likelihood is
evaluated using ϕ′j in place of ϕj. The corresponding
adjustment for recruitment under the various parameter-
izations in Table 2 is clear only in the case of a finite
population growth rate (λ λ ϕ f= = ( + )′j j

t
j j

tΔ Δj j). For the
per capita growth rate parameterization we suggest
f λ ϕ= −′ ′ ′j j j .

Adjustment of movement parameters for a varying
interval is unproblematic in the case of a continuous
Gaussian kernel because the kernel remains Gaussian
under convolution, with variance proportional to elapsed

time ( )α α t= Δ′g j g j j, ,
2 . However, this is only an approx-

imation when the kernel is discretized (eg, Slone, 2011;
Chipperfield et al., 2013) and may not apply to other
shapes of kernel.

4.4 | Conditioning on n
The detection and turnover parameters of non‐spatial
JSSA models may be estimated by maximizing the
likelihood conditional on n (Schwarz and Arnason,
1996), and the parameterizations of Pradel (1996) and
Link and Barker (2005) use only the conditional like-
lihood. Schofield and Barker (2016) showed that the
conditional estimates of survival and recruitment are
identical to the full estimates when n is Poisson because n
is then ancillary. There is no name in general use for the
survival‐and‐recruitment model conditional on n. We
suggest Pradel‐Link‐Barker or “PLB” for the non‐spatial
model, recognizing the contributions of Pradel (1996) and

TABLE 2 Parameterizations of recruitment in JSSA models,
assuming no losses on capture

βj Entry probability

d d ϕ β= +j j j j+1 ; d β1 0≡ Used in following recursions

f β d=j j j∕ Per capita recruitment

λ ϕ f= +j j j Finite population growth rate

γ ϕ λ=j j j∕ Seniority (Pradel, 1996)

κj Link and Barker (2005, p. 48)

D d D=j j Time‐specific density

B D D ϕ= −j j j j+1 Density of births

Note: ϕj is the per capita survival from time j to time j + 1. Dj and Bj are
specific to homogeneous spatial models (superpopulation density D).
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Link and Barker (2005), and “spatial PLB” for its spatial
analog.

Many properties of the spatial analogs of the PLB and
JSSA models derive directly from their non‐spatial
equivalents (eg, alternative parameterizations of recruit-
ment). The spatial PLB formulation may be sufficient if
the research question concerns only demographic rates.
In our experience, spatial PLB models are easier to fit
than spatial JSSA models, and estimates from a spatial
PLB fit are good starting values for maximizing the full
likelihood. Density may be estimated from a spatial PLB
fit as a derived parameter using the Horvitz‐Thompson
estimator (Borchers and Efford, 2008).

4.5 | Software

The R (R Core Team, 2018) package openCR (Efford, 2019)
implements PLB and JSSA models in various parameteriza-
tions with the spatial extensions described here.

5 | EXAMPLE

Brushtail possums Trichosurus vulpecula are 2–4 kg
arboreal marsupials introduced to New Zealand, where
their consumption of native biota is a significant conserva-
tion problem. A long‐term study of possum dynamics was
undertaken in native forest of the Orongorongo Valley near
Wellington. Females bear a single young about May and
carry it in their pouch until late in the calendar year. Traps
were set across about 14 ha of forest at 30‐m spacing for
five consecutive nights three times each year at significant
points in the annual cycle (February, when young of the
previous year are first caught independently of their
mothers, June, after the birth pulse, and September, before
any young leave the pouch). Independent animals were ear
marked and released.

We analyzed a 2‐year subset of these data from
1996–1997. Details of the data and analysis are in Web
Appendix A. The spatial model fitted better when allowance
was made for home‐range shifts between primary sessions;
the reduction in deviance was greater for the Laplace kernel
(Δdeviance = 229) than the Gaussian kernel (Δdeviance =
117). Models that allowed for between‐session movement
gave higher estimates of the survival rate than the static
model, although the effect was strong only in early sessions
(Table 3). The estimated scale of between‐session movement
was small in this example (bivariate normal α 20g ≤ m) and
allowing for such movement had only a small effect on the
estimated scale of detection, reducing σ from 31–40m to
27–38m. Despite the strong difference in fit between the
Gaussian and Laplace movement kernels, estimates of
shared parameters (ϕ D λ, , 0, and σ) were almost identical.

6 | SIMULATIONS

6.1 | Assessment of bias in survival
estimates from spatial sampling

Spatial sampling with an array of fixed detectors in a
more extensive population inevitably exposes some
individuals to greater risk of detection than others. This
source of individual heterogeneity causes bias in ϕ from
non‐spatial models; we expect the effect to be absent in
spatial models. Simulations were conducted to compare
survival estimates from constant‐parameter spatial and
non‐spatial PLB models.

The simulation scenario comprised a square grid of
100 traps at spacing σ ; 200 activity centers were placed at
random in a square region extending distance w beyond
the traps in each cardinal direction, where w was varied
from 0 to σ5 in increments of σ0.5 . True ϕ = 0.8
and λ = 1.0; centers were stationary. Trapping was
simulated for five primary sessions, each comprising five
secondary sessions; 100 replicate simulations were
performed for each level of w. Detection on each
secondary occasion was governed by a half‐normal
hazard function h r r σ( ) = 0.5 exp{− (2 )}2 2∕ .

The non‐spatial PLB estimator of ϕ was strongly
biased for realistic levels of heterogeneity that arise when
the target population extends well beyond the detectors
(w σ> 2 ) (Figure 1). Spatial PLB estimates of ϕ were
largely immune to this source of bias.

6.2 | Misspecification of the movement
model

Simulations were also performed to evaluate the robustness
of estimates to misspecification of the movement kernel. We
generated data using a continuous Laplace kernel with scale
α σ=l , and fitted static, Gaussian and Laplace movement
models. Fitted kernels were discretized and truncated at α3 l
or α6 l (see Web Appendix D for details). Results are
summarized in Figure 2. Fitting a static model led to strong
bias in all directly estimated parameters (ϕ f σ λ, , , 0), echoing
a result of Glennie et al. (2019). However, estimates of the
derived parameter λ appeared essentially unbiased (negative
bias in ϕ was balanced by positive bias in f).

Modeling movement between primary sessions almost
eliminated biases in ϕ and f, even when the movement
model was misspecified or used a small, truncated kernel.
Misspecification of the movement kernel (Gaussian vs
Laplace) had little effect on estimates of the detection
parameters σ and λ0, but estimates of these parameters
were biased when the kernel was heavily truncated
(radius α3 l). Estimates of the movement parameter from
the generating model were nearly unbiased when the

6 | EFFORD AND SCHOFIELD
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fitted kernel was large enough and of the correct shape
(discretized Laplace kernel radius α6 l).

7 | DISCUSSION

The spatial open‐population model relaxes some assump-
tions of non‐spatial open‐population and spatial closed‐
population models (Table 4). This enables parameters of
interest (population growth rate λ, survival rate ϕ and
density D) to be estimated with less bias and better
confidence interval coverage (Table 4). Web Appendix C
illustrates the benefits from open‐population spatial
modeling when there is population turnover (nonclosure)

or variation in the area sampled. Varying proximity to
detectors is a major reason for the violation of the fourth
assumption in Table 4 (homogeneity of detection prob-
ability) and this component of heterogeneity is included
in spatial models, greatly reducing bias in PLB survival
estimates (Figure 1). Against these benefits must be
weighed the extra complexity of spatial open population
models, which can lead to numerical difficulties, and
some limitations in the present models that are discussed
below (see also Gardner et al., 2018).

The present model is in most respects the same as that
developed independently by Glennie et al. (2019). This
fact is masked by their use of a hidden Markov
formulation, whereas we emphasize continuity with

TABLE 3 Non‐spatial and spatial Jolly‐Seber‐Schwarz‐Arnason analyses of robust‐design brushtail possum data set

j Non‐spatial Static Normal Exponential

(a) Apparent survival ϕ
1996 Feb 1 0.61 (0.50, 0.71) 0.62 (0.50, 0.72) 0.68 (0.58, 0.77) 0.67 (0.57, 0.76)

Jun 2 0.31 (0.22, 0.42) 0.32 (0.23, 0.43) 0.37 (0.27, 0.48) 0.37 (0.27, 0.48)
Sep 3 0.73 (0.62, 0.83) 0.77 (0.65, 0.86) 0.79 (0.68, 0.87) 0.79 (0.68, 0.87)

1997 Feb 4 0.65 (0.52, 0.77) 0.82 (0.67, 0.91) 0.82 (0.69, 0.91) 0.82 (0.69, 0.91)
Jun 5 0.46 (0.32, 0.60) 0.65 (0.46, 0.80) 0.65 (0.46, 0.80) 0.65 (0.46, 0.81)
Sep 6 … … … …

(b) Density D (ha )−1
1996 Feb 1 … 13.4 (11.7, 15.2) 12.1 (10.6, 13.7) 12.2 (10.7, 13.9)

Jun 2 … 12.2 (10.8, 13.9) 11.4 (10.1, 13.0) 11.5 (10.2, 13.0)
Sep 3 … 9.4 (8.2, 10.8) 9.1 (7.9, 10.4) 9.2 (8.0, 10.5)

1997 Feb 4 … 9.1 (7.9, 10.5) 8.9 (7.8, 10.2) 9.0 (7.9, 10.3)
Jun 5 … 8.7 (7.5, 10.0) 8.5 (7.4, 9.7) 8.6 (7.4, 9.8)
Sep 6 … 7.9 (6.7, 9.3) 7.7 (6.6, 9.0) 7.8 (6.7, 9.1)

(c) Baseline detection hazard λ0
1996 Feb 1 … 0.07 (0.06, 0.08) 0.10 (0.09, 0.12) 0.10 (0.09, 0.12)

Jun 2 … 0.10 (0.08, 0.11) 0.11 (0.09, 0.12) 0.11 (0.10, 0.13)
Sep 3 … 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.07 (0.06, 0.09)

1997 Feb 4 … 0.07 (0.06, 0.09) 0.08 (0.07, 0.10) 0.09 (0.07, 0.10)
Jun 5 … 0.08 (0.07, 0.09) 0.09 (0.08, 0.11) 0.10 (0.09, 0.12)
Sep 6 … 0.15 (0.13, 0.18) 0.19 (0.16, 0.23) 0.20 (0.17, 0.24)

(d) Detection scale σ (m)
1996 Feb 1 … 34.5 (32.5, 36.7) 27.9 (26.1, 29.9) 27.4 (25.6, 29.3)

Jun 2 … 32.9 (31.1, 34.8) 31.0 (29.2, 32.8) 30.0 (28.3, 31.9)
Sep 3 … 39.4 (36.9, 42.0) 38.1 (35.5, 40.8) 35.1 (32.5, 37.9)

1997 Feb 4 … 40.2 (37.9, 42.7) 37.5 (35.1, 40.1) 36.7 (34.4, 39.2)
Jun 5 … 39.2 (36.9, 41.7) 35.6 (33.1, 38.2) 34.3 (32.1, 36.8)
Sep 6 … 31.1 (29.3, 33.1) 27.1 (25.4, 29.0) 26.5 (24.9, 28.2)

(e) Movement kernel scale (m) αg , αl
1996 Feb 1 … … 19.7 (16.4, 23.7) 10.3 (8.4, 12.8)

Jun 2 … … 4.2 (1.7, 10.0) 8.2 (6.1, 10.8)
Sep 3 … … 19.0 (15.3, 23.6) 10.3 (8.1, 13.0)

1997 Feb 4 … … 10.4 (4.7, 22.8) 8.2 (6.1, 11.0)
Jun 5 … … 15.9 (12.4, 20.5) 7.8 (6.2, 9.9)
Sep 6 … … … …

Note: Annual rates of apparent survival ϕ, density D, baseline detection hazard λ0, and two spatial scale parameters σ and αg (95% confidence interval in
parentheses). In the three spatial models, possums either retain the same activity center between sessions (“static”) or shift randomly according to a Gaussian
(“normal”) or Laplace (“exponential”) kernel.
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previous closed‐spatial and open‐non‐spatial models. If
activity centers are assumed stationary the models yield
the same estimates. The only substantive differences are
in the implementation of the movement submodel; that
of Glennie et al. (2019) relies on a Gaussian movement
kernel, whereas our model allows kernels of arbitrary
shape up to the radius of truncation. Their Gaussian
implementation is elegant and efficient, but other kernel
shapes may fit better, as in our possum example, and may
be required for biological accuracy.

Many extensions to the present model are possible.
Individual heterogeneity may be accommodated with
finite mixtures (Pledger et al., 2010). If temporary
unavailability is suspected, then the model might be
extended to estimate within‐primary‐session transi-
tions between the available and unavailable states
(Kendall and Bjorkland, 2001). We consider inhomo-
geneous recruitment below. We emphasize two
insights from the literature on non‐spatial open‐
population models that apply also to spatial models.
First, various parameterizations of recruitment yield
the same likelihood, the choice being a matter of
modeling convenience. Second, survival, recruitment,
and movement may be estimated from a model that

FIGURE 1 Survival rate ϕ estimated by fitting non‐spatial (○)
and spatial (●) PLB models to simulated data from populations
confined to varying buffered areas about a trap array and therefore
differing in heterogeneity of detection probability. Average of 100
replicates. Horizontal line indicates true ϕ. Dashed curve shows

increase in heterogeneity of detection probability per primary
session ( p xCV( ( ))) with increasing buffer width (weighted by

probability of detection; see Web Appendix B for details).
PLB, Pradel‐Link‐Barker

FIGURE 2 Distribution of estimates from data simulated with a continuous Laplace (negative exponential) movement kernel. Each
panel presents the estimates for one parameter from a static model and four‐movement models using discrete kernels with radius α3 l or α6 l

and either Gaussian (“norm3,” “norm6”) or Laplace (“exp3,” “exp6”) shape. Dashed lines indicate the true value of each parameter. The
static and Gaussian models are misspecified. Parameter α refers to αg or αl as appropriate to model (100 replicates). NA, not estimated
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conditions on the number of individuals observed (the
PLB formulation) without the need to estimate the
density of the superpopulation.

7.1 | Separating mortality and
emigration

A further motivation for spatial capture‐recapture models
has been to distinguish between in situ mortality and
emigration from the study area. A parametric model of
movement between primary sessions, fitted using recap-
tures within the study area, potentially predicts the rate
at which marked animals leave the study area, leading to
an unbiased estimate of in situ survival (Ergon and
Gardner, 2014; Schaub and Royle, 2014). Conversely,
failure to allow for between‐session movement in spatial
capture‐recapture models can result in biased estimation
of all parameters (Glennie et al., 2019).

Our model, like that of Glennie et al. (2019), provides
the means to separate movement from other demo-
graphic processes in open population capture‐recapture
studies. The operational robustness of the models has yet
to be fully tested. On the positive side, our estimates of
brushtail possum survival and population density were
robust to the choice of dispersal kernel, and simulations
with misspecified kernels (Figure 2, Web Appendix D)
supported this result, even when the scale of movement
was poorly estimated.

However, there are reasons for caution. The results
are potentially sensitive to the dispersal kernel, particu-
larly the weight in the tail (Fujiwara et al., 2006; Schaub
and Royle, 2014), and dispersal distances may greatly
exceed the spatial scale of sampling, leaving the tail
undocumented. Capture‐recapture on local detector
arrays is generally not well‐suited to quantifying dispersal
movements (for counter examples see Zeng and Brown,
1987; Gilroy et al., 2012; Taylor et al., 2015). We may
expect the scale of movement to be estimated less well
than other demographic parameters (survival and re-
cruitment), but it appears that estimates of survival and
recruitment benefit from the inclusion of movement scale
as a nuisance parameter, even when it is poorly estimated
(Figure 2).

7.2 | Spatial CJS model

The widely used survival‐only Cormack‐Jolly‐Seber (CJS)
model results from conditioning on times of first
detection and not modeling first detection (eg, Link and
Barker, 2005). A direct spatial analog of the CJS model is
challenging to define; a model for the latent initial
locations of detected animals is needed to model
detection and nondetection on subsequent occasions,
yet the CJS model discards initial detections. If the
distribution of detected animals is naively assumed to be
uniform, then estimates of ϕ will be biased, as demon-
strated in Web Appendix E. The problem does not arise
when initial locations are observed (Schaub and Royle,
2014). The alternative sometimes adopted in spatial
models nominally derived from CJS is to model initial
detections, but that is outside the CJS formulation (Web
Appendix E). The spatial PLB model conditions on n
rather than times of the first detection, and is both widely
applicable and more informative than spatial CJS because
it also estimates recruitment.

7.3 | Density surfaces and non‐Poisson
recruitment

We have presented a spatial model in which turnover
(survival, recruitment, and movement) is independent of
location. The extensions needed to allow dependence on
location is simple in principle. However, it may be
difficult to articulate these with a spatial density model.
Spatially inhomogeneous birth and death processes can
be expected to result in a spatially inhomogeneous
equilibrium distribution of animals; density‐independent
dispersal tends to flatten the distribution. A plausible
inhomogeneous model could project forward an initial
density surface under spatially inhomogeneous birth,
death, and dispersal processes. The spatial distribution
of the superpopulation under a particular sampling
scheme would then bear only an indirect relation to
the time‐specific or equilibrium distributions, which
would be obtained as derived attributes of the fitted
model. In the context of open‐population modeling,
it may be desirable, both mathematically and

TABLE 4 Consequences of assumption failure when compromise models are applied to spatial data from open populations.

Model class Assumption Consequence if violated

Spatial, closed Demographic closure Positive bias in D
Independence of sessions Poor CI coverage λ

Non‐spatial, open Constant study area Spurious trend N, bias λ
Homogeneous detection probability Negative bias in ϕ and N
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biologically, to see the parameters of demographic
turnover as primary, and the pattern of density as
secondary and derived.

7.4 | Parameter identifiability, model
selection, and overdispersion

Parameter redundancy and non‐identifiability is a
significant headache for the application of classical open
population models (eg, Catchpole and Morgan, 1997).
This applies also with spatial open population models,
with the added caveat that the scale of spatial sampling
should be appropriate (great enough to span some
individual activity distributions, fine enough to allow
recaptures of an animal at multiple points). In the non‐
spatial JSSA model, there is no opportunity for recaptures
within a secondary session, and hence some session‐
specific detection probabilities are unidentifiable or
confounded with survival. This is true also of spatial
models with one secondary session per primary ses-
sion when the detectors are traps. However, session‐
specific detection parameters may be estimated, when
detectors allow multiple detections per secondary ses-
sion, as with binary and count proximity detectors
(Efford et al., 2009b).

The likelihood framework facilitates information‐
theoretic model selection by criteria such as AIC.
Overdispersion is likely to be an issue when animals live
in groups, suggesting a role for quasi‐likelihood adjust-
ment using an empirical estimate of overdispersion.
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SUPPORTING INFORMATION

Web Appendices referenced in Sections 5 to 7 are
available with this paper at the Biometrics website on
Wiley Online Library. The models described here may be
fitted with the R package openCR available at https://
CRAN.R‐project.org/package=openCR.
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