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Abstract
1. Understanding rates of survival and recruitment is critical to population man-

agement, and capture– recapture methods of estimation are widely used. Spatial 
models allow for a spatial detection process and can include the movement of 
activity centres between sampling times. Movement is often treated as a ran-
dom walk with the step length governed by a probability kernel. However, the 
movement component of open population spatially explicit capture– recapture 
models (open SECR) has evolved haphazardly and comparison among studies is 
difficult.

2. We review published studies, document suitable probability kernels and address 
the issues of scale and buffer dependence in open SECR by a combination of 
simulation and case studies on ovenbirds Seiurus aurocapilla and tigers Panthera 
tigris.

3. Flexible 2- parameter kernels, such as the bivariate t- distribution, fit better than 
the popular bivariate normal and resulted in higher estimates of survival. We 
reconcile different parameterizations of the bivariate t- distribution and identify 
a problem when the kernel is defined in terms of its margins.

4. Movement models failed to separate mortality and emigration in simulated data 
when the data were a random mixture of long and short movements. Our es-
timates of ovenbird survival were buffer- dependent, and we interpret this as a 
sign that the data are inadequate for joint modelling of survival and movement. 
Estimates of tiger survival were more nearly asymptotic on buffer width.

5. We repeat the warning of earlier authors that movement models are effective 
for separating mortality and emigration only when the data span the range of 
movement. We appeal for more complete and consistent reporting of move-
ment models and identify topics for future research.
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1  |  INTRODUC TION

Understanding rates of survival and recruitment is critical to pop-
ulation management. Survival and recruitment are increasingly es-
timated with models that fall under the heading ‘open population 
spatially explicit capture– recapture’ (open SECR). These combine 
conventional capture– recapture methods for survival and recruit-
ment with a spatial model of the detection process: the detection of 
each individual is most likely when the detector (e.g., trap, hair snag 
or camera) is near its ‘activity centre’. Activity centres are usually not 
observed directly, but appear in the model as latent variables. When 
fitting with maximum likelihood, these variables are marginalized 
(integrated out). When fitting the model within a Bayesian approach 
using Markov chain Monte Carlo (MCMC), it is common to include 
the latent variables in the model.

Activity centres are stationary in closed population SECR 
(Borchers & Efford, 2008; Royle et al., 2014). In reality, individu-
als may shift their home range over time, leading to dispersal from 
the natal site, incomplete fidelity to breeding sites, and many other 
phenomena (e.g., Clobert et al., 2001). Movement between discrete 
habitat patches may be described by multistate capture– recapture 
models (Lebreton et al., 2009), and temporary absence from a sin-
gle patch is considered in non- spatial robust- design models (Kendall 
et al., 1997). Open SECR enables the modelling of movement pro-
cesses in continuous space. Capture– recapture datasets are limited 
in their power to resolve such processes because the observations 
of each individual are temporally incomplete, but even a simple 
movement model can be informative and relieve other lack of fit. 
Open SECR models therefore generally include a simple sub- model 
for net displacement between sampling times that is the subject of 
our review.

Capture– recapture estimates of survival may be depressed by 
unmodelled movement of activity centres between sampling times 
(we focus here on survival, but per capita recruitment is subject to 
equivalent and complementary effects). Open SECR has the poten-
tial to solve this problem: data simulated with random- walk move-
ment have been found to yield unbiased estimates of survival when 
the fitted model also includes movement (Efford & Schofield, 2020; 
Ergon & Gardner, 2014; Gardner et al., 2018; Glennie et al., 2019; 
Schaub & Royle, 2014). It is therefore tempting to see movement 
modelling in open SECR as an answer to the longstanding challenge 
of separating mortality from emigration, or ‘true’ survival from ‘ap-
parent’ survival (e.g., Lebreton et al., 1992). A good model for move-
ment will account for survivors that emigrate and thereby eliminate 
confounding (Ergon & Gardner, 2014; Gardner et al., 2018; Gilroy 
et al., 2012; Paquet et al., 2020; Schaub & Royle, 2014). This pre-
sumes that the data are sufficient to choose a good model and to 
estimate its parameters.

There are several approaches for including the movement of ac-
tivity centres in open SECR models, and some notable difficulties. 
The seminal papers of Ergon and Gardner (2014) and Schaub and 
Royle (2014) considered a variety of shapes for the movement ker-
nel as we discuss later, but most others have relied on a bivariate 

normal model (BVN). Random walk movement was modified in sev-
eral Scandinavian studies by allowing local habitat variables to affect 
settlement (e.g., Bischof et al., 2020; Milleret et al., 2021). The effect 
of this modification on modelled patterns of movement has not been 
explored and we do not consider it here, except to note that restrict-
ing settlement to mapped habitat patches is a limiting case (e.g., 
Reidy et al., 2018). Schaub and Royle (2014) addressed a scenario 
in which activity centres (nests or territories) were located without 
error, and hence, there was no need for a spatial detection model 
(see Reidy et al. (2018) and Paquet et al. (2020) for applications). 
We include these studies because their movement sub- models are 
shared with open SECR.

Alternatives to BVN, including bivariate t and exponential distri-
butions of distance moved, have been preferred by some authors for 
the a priori reason that their heavier tails allow an increased prob-
ability of long- distance movement, and this reasoning has received 
quantitative support. Movements by golden- cheeked warblers were 
modelled more closely by a marginal t distribution than either BVN 
or exponential kernels (Reidy et al., 2018). A bivariate exponential 
(Laplace) kernel (BVE) provided substantially better model fit (lower 
AIC) to brushtail possum trapping data than a BVN kernel, although 
estimates of survival were similar (Efford & Schofield, 2020).

Several authors have noted problems in fitting movement 
models to open SECR data or pre- empted problems by applying 
constraints. Gardner et al. (2018) could not estimate the scale pa-
rameter of a BVN kernel for the tiger dataset of Karanth et al. (2006). 
Paquet et al. (2020) fixed the shape parameter of the marginal t dis-
tribution of movements ‘for convergence/identifiability reasons’. 
Augustine et al. (2020) used a kernel- free approach for capercaillie 
Tetrao urogallus that we discuss later. Others have fitted open SECR 
models with static activity centres (Chandler et al., 2018; Chandler 
& Clark, 2014; Gardner et al., 2010; Whittington & Sawaya, 2015).

Table 1 lists published applications of open SECR that have 
included a model for the movement of activity centres in two di-
mensions. Further details on the scale of sampling and estimates of 
movement are given in Appendix S2. Movement has also been in-
cluded in capture– recapture models for species in one- dimensional 
habitats such as streams (Fujiwara et al., 2006; Honeycutt et al., 2019; 
Raabe et al., 2014), but the issues are somewhat different and for 
simplicity, we do not consider these studies further.

The usual closed SECR model places an array of detectors within 
a region of habitat (the ‘habitat mask’ or ‘state space’) that extends 
an arbitrary buffer distance from the outermost detectors (natural 
boundaries are used if convenient). The buffer is chosen to be wide 
enough that individuals outside the buffer have negligible probabil-
ity of detection: neither the maximized log likelihood nor the esti-
mates of density change if the buffer is further enlarged, and these 
quantities become ‘buffer independent’.

Movement expands the region from which individuals may be 
detected over the course of an open SECR study, so a larger buffer is 
required. Gardner et al. (2018) addressed buffer width in open SECR 
for the particular case that the population occupies an unknown 
region near the detectors. However, there has been no general 
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consideration of buffer dependence in unbounded habitat and the 
effect of kernel choice.

Our goal in this paper is to review the state of the art and to clarify 
some limitations of open SECR models. We focus on three aspects: 
(a) the choice of movement kernel, (b) the effect that the scale of 
sampling has on the estimation of movement and survival and (c) the 
impact of buffer width on estimation of movement and survival. 
These issues are explored by simulation and through the application 
of open SECR to two field datasets. The first is a small dataset from 
mistnetting of ovenbirds Seiurus aurocapilla over 5 breeding seasons 

in Maryland, USA, and the second is a larger dataset from a 10- year 
camera study of tigers Panthera tigris in India (Karanth et al., 2006).

2  |  MOVEMENT KERNEL S

In this section, we detail the available movement kernels and their 
properties, while attempting to clarify some technical and termi-
nological issues. The movement kernel can be defined in either 
Cartesian or polar space. A kernel defined in Cartesian space is a 

TA B L E  1  Published open SECR models fitted by MCMC (‘Bayes’) or by maximizing the likelihood (‘ML’) with various movement models. 
Parameters of interest: � survival, f  per capita recruitment, and D population density. Spatial detection was modelled with a half- normal 
(‘HN’) or variable- power (‘HVP’) function of distance or omitted from model (‘None’). Movement kernels: BVN bivariate normal; BVE 
bivariate Laplace; 2exp marginal exponential; 2t marginal t; RDE radial distance exponential. * indicates settlement modified by habitat 
covariate. Boundary of the state space was either undefined (‘None’), fixed by natural boundaries (‘Habitat’) or buffered around detectors by 
a multiple of the half- normal detection scale � († indicates natural boundary in part). See Appendix S1 for scientific names

Species Method Parameter Detection

Movement

NoteKernel Boundary

Red- backed shrike Bayes � None BVN, 2t None nest search; 2t df ≥ 2 [1]

Field vole Bayes � HVP Various None Ugglan traps [2]

Red- backed 
salamander

Bayes � HN RDE 5 m, 3– 8� artificial cover objects [3]

Bottle- nosed 
dolphin

Bayes � HVP RDE Habitat photo- identification [4]

Tiger Bayes �,D HN BVN 10– 18 km, 5– 9� automatic cameras [5]

Golden- cheeked 
warbler

Bayes � None BVN, 2exp, 2t None territory search, disjunct habitat [6]

Ocelot Bayes �, f , � HN BVN 3� automatic cameras [7]

Jaguar ML �,D HN BVN 17 km, 6� automatic cameras [8]

Brushtail possum ML �,D HN BVN, BVE 200 m, 6� † cage traps; kernel truncated [9]

Northern wheatear Bayes � None 2t* None territory search; 2t df = 5 [10]

Brown bear Bayes �,D HN BVN* 40 km, 4.5– 7� † DNA multiple sources [11,12]

Wolf Bayes �,D HN BVN* 40 km, 5� † DNA multiple sources [12]

Wolverine Bayes �,D HN BVN* 60 km, 6– 8� † DNA multiple sources [12, 13, 14]

Notes: [1] Schaub & Royle, 2014, [2] Ergon & Gardner, 2014, [3] Muñoz et al., 2016, [4] McDonald et al., 2017, [5] Gardner et al., 2018, [6] Reidy  
et al., 2018, [7] Satter et al., 2019, [8] Glennie et al., 2019, [9] Efford & Schofield, 2020, [10] Paquet et al., 2020, [11] Bischof et al., 2016, [12] Bischof 
et al., 2020, [13] Milleret et al., 2020, [14] Milleret et al., 2021.

F I G U R E  1  Schematic (a) 2- dimensional 
movement kernel g(r) centred on 
initial location, and (b) corresponding 
distribution of distance moved f(r), where 
r is distance from initial location. Possible 
functions f(r) are listed in Table 2.
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2- dimensional probability density for the final x and y coordinates of 
an individual initially at the origin. A kernel defined in polar space is 
the joint probability density of direction and radial distance; we gen-
erally assume that these are independent and that the distribution 
of direction is uniform.

The probability density in Cartesian space is denoted g(x, y) . 
If this density can be defined completely by the radial distance 
r =

√

x2 + y2, we refer to it as g(r), notation consistent with that used 
in plant dispersal modelling (e.g., Cousens et al., 2008). It is straight-
forward to move from the 2- dimensional density g(r) to the univar-
iate density of radial distance that we denote as f(r) = 2�rg(r). The 
intuitive explanation for the relationship is that we must account for 
increasing circumference with increasing radius. The distinction be-
tween g(r) and f(r) is important: the density g(r) is a bivariate density 
defined in Cartesian space, while f(r) is a univariate density defined 
in polar space. For example, a bivariate normal kernel g(r) has a mode 
at r = 0, while the corresponding univariate density f(r) is positive 
and skewed, with mode > 0 (Figure 1). In Appendix S3, we provide 
more formal notation that makes explicit the use of Cartesian or 
polar space and allows a density transformation between these 
spaces in the general case.

2.1  |  Survey of kernel functions

We consider kernels in two groups. Kernels in the first group are 
defined in polar space, through f(r) (Ergon & Gardner, 2014). We 
distinguish these with the prefix RD (radial distance). Kernels in the 
second group are defined in Cartesian space in terms of the bivari-
ate distribution g(r), from which f(r) is derived secondarily (Efford & 
Schofield, 2020). For these, we use the prefix BV (bivariate).

Kernels are listed in Table 2, each with its mean, median and cu-
mulative distribution function F(r). Each has a scale parameter and 
three (RDG, RDL and BVT) have an additional parameter that varies 
the shape of the distribution. We use � for the scale and � for the 
shape parameter across all distributions. The lognormal distribution 

is usually parameterized in terms of the mean � and SD � of the log 
values; we suggest using the median exp(�) as the scale parameter 
� , and � = 1∕CV2

(r) = 1∕
(

e�
2

− 1
)

 as a convenient shape parameter 
that is independent of scale. Some kernels arise as special cases of 
others; for example, exponential distance moved RDE corresponds 
to gamma distance moved RDG with shape parameter � = 1. We 
next comment specifically on the bivariate kernels not considered 
by Ergon and Gardner (2014).

2.2  |  Bivariate normal kernel, BVN

The circular bivariate normal (BVN or Gaussian) kernel was the 
first to be suggested for open SECR (Gardner et al., 2010) and 
has been used widely (Table 1). The BVN kernel has some useful 
properties not shared by other kernels, particularly that cumula-
tive movement over k sessions is equivalent to single- step move-
ment with an inflated kernel whose scale parameter is k�2 (Glennie 
et al., 2019). This enables a simple adjustment for varying sampling 
interval when � is constant in time. However, the BVN kernel has 
a major shortcoming as a description of biological dispersal: the 
corresponding distribution of dispersal distances has a light tail 
(f(r) approaches zero rapidly for large r ), whereas dispersal pro-
cesses in general have heavy tails (e.g., Nathan et al., 2012). One 
consequence of the light tail is that occasional long movements 
will have a disproportionate effect on the fitted scale parameter. 
The probability density of distance moved has a Weibull distribu-
tion with shape parameter 2 and scale 

√

2�, otherwise known as a 
Rayleigh distribution.

2.3  |  Bivariate laplace kernel, BVE

A circular bivariate negative exponential (BVE or Laplace) kernel was 
used by Efford and Schofield (2020) and has a single parameter that 
determines the scale of movement, but its tail is markedly heavier 

TA B L E  2  Continuous bivariate kernel models expressed as function of radial distance r . Distribution of distance moved is given by 
the probability density function f(r) and cumulative probability F(r). BVN, BVE, BVT and BVC are ‘native’ circular bivariate distributions 
(g(r) = f(r)∕ (2�r)), whereas RDE, RDG and RDL combine a univariate distribution f(r) with a circular- uniform direction � (i.e. using polar 
coordinates)

Kernel Alias f(r) Mean Median F(r)

Exponential RDE 1

�
exp

(

− r

�

)

� �ln(2) 1 − exp
(

− r

�

)

Gamma RDG 1

Γ(�)��
r�−1exp

(

− r

�

)

�� no simple form 1

Γ(�)
�

(

� ,
r

�

)

Lognormal RDL 1

r�
√

2�
exp

�

− (ln(r)−�)
2

2�2

�

exp
(

� +
�2

2

)

� = exp(�) Φ

(

ln(r) − �

�

)

Bivariate normal BVN r

�2
exp

(

− r2

2�2

) √

�

2
�

√

2ln(2)�2 1 − exp
(

− r2

2�2

)

Bivariate Laplace BVE r

�2
exp

(

− r

�

)

2� no simple form 1 −

(

r

�
+ 1

)

exp
(

− r

�

)

Bivariate t BVT 2�r

�2

(

1+
r2

�2

)−(�+1)
�

√

�

2

Γ(� − 0.5)

Γ(�)
, 𝛽 > 0.5 �

√

2
1

� − 1 1 −

(

�2

�2+r2

)�

Bivariate Cauchy BVC r�

(�2+r2)
3
2

undefined �
√

3 1 −
�

√

�2 + r2

Note: � is the lower incomplete gamma function and Φ is the standard normal distribution function.
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than BVN. The negative exponential form used here and elsewhere 
in ecology to define the BVE (e.g., Clark et al. (1999, Eq 5a), Cousens 
et al. (2008, Table 5.2), Nathan et al. (2012, Table 15.1)) is not 
the bivariate symmetric Laplace distribution considered by Kotz 
et al. (2001, p. 231), defined in terms of Bessel functions and with 
infinite density at r = 0. The bivariate Laplace kernel corresponds to 
RDG with � = 2.

2.4  |  Bivariate t distribution kernel, BVT

The univariate t- distribution has a heavier tail than the exponential 
for small degrees of freedom �, and is an obvious choice for dispersal 
modelling. A bivariate t distribution (BVT) was described for seed 
dispersal by Clark et al. (1999). The shape of the BVT kernel var-
ies with the degrees of freedom. For large degrees of freedom the 
shape approaches BVN, and for � = 1 (� = 0.5) the distribution is bi-
variate Cauchy (BVC). The mean of the distribution is undefined for 
� ≤ 1 (� ≤ 0.5). Parameterizations of the BVT differ in notation and 
scaling of the shape parameter (Appendix S4).

Van Houtan et al. (2007) and others have modelled bird disper-
sal with a 2- parameter log- hyperbolic secant (log- sech) kernel that 
closely matches BVT in shape (unpublished results) and also has 
the bivariate Cauchy as a special case. Other properties of the log- 
sech distribution are not well documented and we do not consider 
it further.

2.5  |  Marginal specification

The kernels in Table 2 are all defined as a function of distance r . In 
Cartesian space, their contours of probability are circular; in polar 
space the movement angle � and radial distance r are independent, 
and � has uniform density over 

[

0,2�). Another way to specify a ker-
nel is to treat the Cartesian coordinates x and y as varying indepen-
dently according to some shared univariate marginal distribution. 
When each coordinate follows the same normal (Gaussian) distri-
bution, their joint distribution is BVN, the circular bivariate normal. 
However, combining independent non- Gaussian marginal distribu-
tions, such as Student's t or Laplacian, results in a bivariate distri-
bution with non- circular contours of probability (e.g., Appendix S4, 
Figure S1). In polar space, this leads to a lack of independence be-
tween � and r , and in most cases to non- uniform densities for �. This 
is inelegant as it introduces potential confounding with the orienta-
tion of habitat features or the detector array.

A marginal specification has been used in several studies for 
non- Gaussian distributions, particularly the t distribution (Table 1). 
The bivariate distribution with t- distributed margins is especially 
non- circular for small degrees of freedom. Further analytical eval-
uation is possible for marginal Laplace densities (Appendix S4). For 
example, the density of � is quadrimodal and the expected distance 
E[r] ≈ 1.6232�, compared to E[r] = 2� for the bivariate Laplace dis-
tribution in Table 2.

2.6  |  Zero- inflated kernels

Other kernels may be devised as probabilistic mixtures of distribu-
tions such as those in Table 2. Zero- inflated distributions fz(r) allow 
some individuals to move in a particular interval according to a 
standard kernel while others do not move at all. The possibility that 
dispersal and philopatry are categorically different behaviours lends 
this some appeal. Ergon and Gardner (2014) fitted zero- inflated 
models in which individuals were either immobile with probability 
� or with probability 1 − � moved beyond a threshold distance ac-
cording to a truncated standard distribution. We use a zero- inflated 
model with no threshold:

where �(r) is the Dirac delta function, �z is an additional parameter to 
be estimated, and the expected movement from model f(r) is reduced 
by the factor 1 − �z. Zero- inflated models add flexibility to the other-
wise simple and unimodal distributions of Table 2. For example, Paquet 
et al. (2020) compounded a movement kernel with Bernoulli ‘site fidel-
ity’ that was set to zero for fledglings.

2.7  |  Kernel properties

Each kernel type has a scale parameter, but values of that param-
eter are not directly comparable between types. For comparison, 
it is desirable to compute properties of the distribution of distance 
moved, such as the expected distance or the median (50th percen-
tile) and 90th percentiles (Ergon & Gardner, 2014; Reidy et al., 2018). 
Theoretical values of these percentiles are provided by the distribu-
tion function (Table 2); realized percentiles will differ when settlement 
is limited to habitat patches (e.g., Reidy et al., 2018) or the distribu-
tion is truncated (see below). Quantiles of the distance moved are a 
monotonic function of the scale parameter for the single- parameter 
kernels BVN, BVE, BVC and RDE, so 95% confidence limits may be 
obtained by transforming the 95% limits for the scale parameter. The 
median distance is zero for zero- inflated models with �z ≥ 0.5 and 
hence, it is not useful for comparing such models.

Kernel tail weight (the relative probability of long- distance move-
ment) has been assumed to predict the effect of emigration from a 
detector array on capture– recapture estimates of survival (Ergon & 
Gardner, 2014). We suggest the ratio of the 90th and 50th percen-
tiles of distance moved as an index of tail weight in this context. This 
ratio, here denoted T90, is constant for each of the single- parameter 
kernels RDE (T90 ≈ 3.32), BVN (T90 ≈ 1.82) and BVE (T90 ≈ 2.32). The 
ratio otherwise depends inversely on the shape parameter � of each 
distribution (Figure 2). For BVT, T90 ≈ 5.74 when � = 0.5, corre-
sponding to bivariate Cauchy (BVC), and T90 < 2 when 𝛽 > 4.56. Zero 
inflation increases the tail weight index for 𝜋z < 0.5 and the index is 
not defined for �z ≥ 0.5.

The kernels also differ substantially in their shapes near zero 
(r < median) (Figure 3). Many observations will relate to short- range 

(1)fz(r) = �z�(r) +
(

1 − �z

)

f(r),
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movements, which we expect to drive differences in fit among the 
candidate functions.

2.8  |  Kernel discretization

Many SECR models are implemented in discrete space, including the 
likelihood- based applications of Glennie et al. (2019) and Efford and 

Schofield (2020). Activity centres are located at points on a square 
mesh, conceptually the centroids of grid cells. The movement model 
is then a discrete distribution, the probability of moving from a focal 
point to each other point on the mesh. Discrete kernels differ in their 
behaviour from continuous kernels, but the differences are subtle 
unless the median dispersal distance is only a few cells (Chesson & 
Lee, 2005) and apply primarily to the prediction of long- distance 
movement when kernel probabilites are compounded over multiple 
time steps (Chipperfield et al., 2011).

Pointwise probabilities may be approximated by evaluating the 
continuous 2- dimensional probability density at each mesh point 
and dividing by their sum. A more rigorous method is to compute 
each probability as the integral of the pdf across the enclosing grid 
cell, but this is slower and appears not to have been used in open 
SECR. Continuous distributions that are zero or infinite at the ori-
gin (the exponential, gamma or lognormal distributions of distance 
moved) pose a particular problem. The probability obtained by inte-
grating the probability density over the origin cell is finite and posi-
tive. An approximation to the integrated value for the origin cell may 
be obtained from the cumulative distribution of distance moved (F(r) 
in Table 2; Efford (2021)).

2.9  |  Kernel truncation

Probability computations for maximum likelihood require re-
peated convolution of the kernel and the mesh, which can be time- 
consuming. Efford and Schofield (2020) made the problem more 
tractable by truncating the discretized kernel at a constant radius, 
effectively setting outer probabilities to zero, and renormalizing 
across the included points. This has negligible effect on the model if 
pointwise probabilities have declined to near zero at the chosen ra-
dius. The radius of truncation is an arbitrary component of the fitted 
model. The cumulative distribution of the continuous kernel function 
(Table 2) provides a check on the probability of exceeding the radius.

The expected movement for a kernel truncated at radius R is 
given by E(r) = ∫

R

0
rf(r)dr ∕ ∫

R

0
f(r)dr that may be computed by nu-

merical integration of f(r) in Table 2. The specific effect of kernel 
truncation is limited if all movement is truncated at the boundary 
of the habitat mask (see later section). There is no need in Bayesian 
model fitting to truncate the kernel as a Markov chain Monte Carlo 
(MCMC) update requires a single draw from the kernel distribu-
tion for each individual, relocating it anywhere in the habitat. The 
method of Glennie et al. (2019) also avoids truncation by applying a 
BVN kernel efficiently across the entire habitat, but it is not easily 
generalized to arbitrary kernels (R. Glennie, pers. comm.).

A discretized kernel can span many points, even if truncated. 
A ‘sparse’ kernel comprising points on eight ‘spokes’ at increments 
of � ∕4 radians can capture the essence of dispersal in open SECR 
(Efford, 2022b). The number of points in this configuration increases 
linearly with the truncation radius, rather than with its square, so 
quite large kernels become computationally feasible. Pointwise 
probabilities for r > 0 are weighted to restore the radial distribution 

F I G U R E  2  Relative tail weight of movement kernels (Table 2). 
An index of tail weight (T90 = ratio of 90th and 50th percentiles 
of distance moved) is plotted against the logarithm of the shape 
parameters � of the 2- parameter kernels BVT, RDL and RDG, and 
when constant (1- parameter kernels) as horizontal dashed lines.
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F I G U R E  3  Cross- sections through the origin of 2- dimensional 
movement kernels g(r). Kernels have the same median dispersal 
distance (1.0 units). One- parameter kernels (Table 2) are shown by a 
dashed line. Truncated function RDE is infinite at r = 0. RDG is zero 
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of probability, replacing g(r) by f(r) = 2�rg(r). The oblique axes have 
fewer cells, and these are upweighted by 

√

2 to restore uniformity.

2.10  |  Kernel- free methods

Movement may be modelled without specifying a probability kernel 
if each individual is relocated at random within a pre- defined region 
(the habitat mask or state space). This ‘independent’ or ‘uncorrelated’ 
model for successive locations has no estimated parameter and move-
ments are truncated only at the outer boundary rather than at the 
edge of the discretized kernel. Independence is equivalent to specify-
ing a uniform kernel of radius larger than the greatest dimension of 
the habitat mask, and truncating and renormalizing at the boundary 
(see below). Here, it is the 2- dimensional kernel g(r) that is uniform, not 
the distribution of distances f(r) (cf Ergon & Gardner, 2014). Average 
movement distances are directly buffer- dependent: for a circular area 
with diameter d the average distance is approximately 0.453d, and for 
a square of side d the average is approximately 0.522d (e.g., Burgstaller 
& Pillichshammer, 2009). Average and median distances are easily ob-
tained for discretized irregular areas (Appendix S4).

The ‘independent’ model may result in very biased estimates of 
survival (Ergon & Gardner, 2014; Gardner et al., 2018) and has not 
been shown to be a good fit to field data. In the simulations of Gardner 
et al. (2018) estimates of survival were unbiased only if the modelled 
region fortuitously matched the region used for data generation. The 
model is not neutral, but rather an extreme movement model with 
respect to what can be represented with a 2- dimensional kernel that 
declines monotonically from the point of origin (i.e., all models con-
sidered here except for gamma and log- normal distributions of radial 
distance; Figure 3). Independent relocation was applied by Augustine 
et al. (2020) to a capercaillie Tetrao urogallus dataset, with random re-
location restricted to the current habitat patch. Using natural bound-
aries avoided some arbitrariness, and their survival estimates were 
likely unbiased by movement because the entire habitat was searched, 
but the movement model itself remains arbitrary (actual dispersal may 
have been on a scale smaller or larger than the patch).

A zero- inflated form of the ‘independent’ model has interesting 
properties. At each step an individual may remain where it is with 
probability �z, or move to a uniform random location on the habitat 
mask. The probability �z is an estimated parameter that varies move-
ment between the extremes of independence with complete mixing 
(�z = 0) and complete site attachment (�z = 1). Any value of 𝜋z < 1 
leads to buffer dependence. The zero- inflation parameter provides 
some control over the average distance moved (1 − �z) E(r), where 
E(r) is the expected value under independence. We consider the 
zero- inflated model in the case studies.

3  |  SC ALE OF SAMPLING

Movement modelling in open SECR can only be effective at sepa-
rating emigration and mortality if sampling spans the full range of 

movements, or the distribution of movements beyond the surveyed 
region can be reliably inferred from shorter- range movements. 
Extrapolation from shorter range movements is inherently risky, 
as we demonstrate with a set of simulations. We considered move-
ments arising from a mixture of two distributions, one compatible 
with the scale of sampling and one with larger scale, and evaluated 
fitted models in terms of their ability to recover the true survival 
probability.

The population was sampled with an 8 × 8 square array of detec-
tors at spacing s on five sampling occasions. Initial locations were 
simulated uniformly in an arena 70s × 70s, and centres were allowed 
to move with no boundary. Movement was simulated via a two- 
part bivariate normal (BVN) mixture with equal weighting. The first 
mixture component had a scale comparable to that of the detector 
array (E

(

d1
)

= 3.5s). We varied the scale of the second mixture com-
ponent in multiples of the base scale (E

(

d2
)

= k E
(

d1
)

, k = 1, … , 5 , 
Figure 4a). Open SECR models were fitted using a buffer of width 
7s and other standard assumptions (sparse discretized kernel ra-
dius 21s; boundary rule ‘truncate and renormalize’— see below). See 
Appendix S6 for details.

The effect of movement on survival estimates was largely elimi-
nated when the scale of sampling roughly matched the scale of move-
ment, and movements were homogeneous, i.e. E

(

d2
)

∕E
(

d1
)

= 1 
(Figure 4b). However, the method failed in the biologically realis-
tic scenario that a fraction of individuals disperse to much greater 
distances, that is E

(

d2
)

∕E
(

d1
)

≫ 1 (Figure 4b). Failure was uniform 
across light- tailed (BVN) and flexible (BVT) fitted distributions, and 
occurred even when the 2- class BVN model was fitted, the model 
from which data were generated.

4  |  BOUNDARY EFFEC TS

The activity centres of individuals detected in an open SECR study 
are initially within or near the detector array. If each individual fol-
lows a simple random walk then the centres of marked individuals 
tend over time to drift away from the array, and the area they occupy 
constantly expands.

Early open SECR models allowed the activity centres of marked 
individuals to drift indefinitely (Ergon & Gardner, 2014, Appendix S3; 
Schaub & Royle, 2014). These are described by their authors as spa-
tial analogues of the non- spatial Cormack– Jolly– Seber method. The 
comparison is apt to the extent that they condition on first detec-
tion— a model of the spatial population is used only to model initial 
locations (Ergon & Gardner, 2014) or not at all if locations are ob-
served without error (Schaub & Royle, 2014). We call these open 
SECR models ‘unbounded’ (Figure 5a). Unbounded models lack a 
state space in the sense of Royle et al. (2014). (The reference to a 
state space by Schaub and Royle (2014) appears to be an error).

The application of unbounded models is limited to the estima-
tion of survival and movement parameters. For other parameters 
(recruitment, density or population rate of growth) a bounded region 
must be specified, at least with the current fitting methods that use 
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either data augmentation and MCMC or numerical integration. This 
raises the question of how to model movements so that modelled 
individuals remain within the model space; we call this the ‘boundary 
rule’ (Appendix S4).

A feasible and effective rule is to truncate each probability ker-
nel at the boundary, and to renormalize the probabilities (‘truncate 
and renormalize’). This is equivalent to repeatedly drawing locations 
from the kernel until one is found that lies within the boundary (i.e. 
rejection sampling), and is the rule stated or implied in the bounded 
Bayesian models in Table 1. Truncation introduces centripetal bias 
in the direction of movement that is greatest close to the bound-
ary, and constrains the average realized movement (Appendix S4). 
In the limit, as the spatial scale of movement increases, realized dis-
tances match the independent, kernel- free model and are entirely 
buffer- dependent.

The Brownian motion algorithm of Glennie et al. (2019) gen-
erates long- range movements from multiple cell– cell steps. Its 
behaviour at the boundary is subtly different from ‘truncate and 
renormalize’ because animals encountering the boundary reorient 
their movement and continue (Pedersen et al., 2011, p. 1282). This is 
a plausible model for animal behaviour at a hard boundary, and such 

behaviour is amenable to field investigation that ultimately may lead 
to realistic open SECR models (McClintock et al., 2021). However, 
the outer boundary in open SECR is generally ‘soft’ (i.e., it does not 
correspond to any habitat feature), so there is no a priori reason to 
prefer this model over ‘truncate and renormalize’.

5  |  C A SE STUDIES

We explored the issues of model selection and buffer depend-
ence by analysing two datasets that we outline here and describe 
at greater length in Appendix S5. The ovenbird data are from a 
multi- species banding study over the 2005– 2009 breeding sea-
sons in eastern deciduous forest on the Patuxent Research Refuge, 
Maryland, USA (Dawson & Efford, 2009). Ovenbirds were mistnet-
ted at 44 points spaced 30 m apart on a rectangular loop yielding 
215 detections of 70 individuals. Tigers were monitored with auto-
matic cameras over 10 years in the 644- km2 Nagarahole reserve in 
the state of Karnataka, southern India (Karanth et al., 2006). We use 
the data analysed by Gardner et al. (2018) and published by Gardner 
et al. (2021). These comprise 343 detections of 75 tigers.

F I G U R E  4  Effect of movement in 
relation to sampling scale on estimates of 
survival; simulated data with movements 
50:50 mixture of bivariate normal 
distributions. (a) Distribution of distance 
moved (heavy red line) when second 
component had 5 times base distribution 
(thin lines; E

(

d1
)

 = half grid width), and 
(b) survival estimates as function of 
relative scale of second component (bars 
show 95% CI). Fitted models: ‘static’ no 
movement, ‘BVN’ bivariate normal, ‘BVN2’ 
2- class BVN mixture, ‘BVT’ bivariate t
- distribution. Dashed line shows true 
survival probability.
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F I G U R E  5  Movement paths of 
hypothetical individuals initially detected 
within a detector array, given (a) 
movement unbounded, or (b) movement 
kernel truncated at square boundary. 
Contours indicate declining detection 
probability on a central detector array. 
Enclosure increases the probability that 
emigrants later return to the zone of 
high detection probability, that is that 
emigration is temporary.
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5.1  |  Model selection

The choice of movement model in open SECR has tended to rest on 
a priori arguments (the desirability of a heavy tail) or ad hoc criteria 
such as convenience. Information theoretic criteria such as Akaike's 
information criterion (AIC) provide a straightforward basis for evalu-
ating capture– recapture models and weighting them for model aver-
aging. In this section, we demonstrate AIC model selection across a 
wide range of models for the ovenbird and tiger case studies. Buffer 
width was fixed initially at 800 m in the ovenbird models and 15 km 
in the tiger models.

Comparisons of movement models revealed both strong sim-
ilarities and differences between the two studies (Table 3). The 
static and independent models carried negligible weight in either 
study. The bivariate normal BVN was also disfavoured in both stud-
ies. Two- parameter models were favoured and showed a strong 
peak at zero distance (Appendix S5). The fitted zero- inflated BVN 
and BVE kernels for ovenbirds were indistinguishable from the 
zero- inflated independent (uniform) model for the same reason. 
All ovenbird models with two movement parameters were rank- 
deficient, indicating that the movement scale parameter could not 
be estimated reliably. All tiger models were of full rank except for 
RDL, but the relative standard error (RSE) of movement parameters 
exceeded 1.0 or was not estimable for RDG and BVT (other RSE in 
range 0.07– 0.66).

The model- averaged estimate of ovenbird survival (0.764, 95% 
CI 0.394– 0.942) was imprecise, reflecting the spread of competitive 
models (Table 3, Appendix S5). The model- averaged estimate of tiger 
survival (0.785, 95% CI 0.691– 0.862) was only slightly greater than 
previous estimates (Gardner et al., 2018; Karanth et al., 2006) and 
reasonably precise.

5.2  |  Buffer dependence

The effect of buffer width on survival estimates was assessed 
empirically for the ovenbird and tiger case studies. The results 
depended upon the chosen movement model (Figure 6). The re-
lationship between estimated survival and buffer width appeared 
to be asymptotic or nearly so in the tiger case: increase in buffer 
width beyond 15 km had negligible effect for most models except 
BVT. Ovenbird models, including BVT, also reached an asymptote 
of estimated survival with increasing buffer width. An exception for 
both studies was the zero- inflated independent model, for which 
estimated survival remained strongly dependent on buffer width 
across the ranges considered. This model was easily dismissed for 
tigers because of its poor fit, but in the ovenbird study it was com-
petitive with other models causing the model- averaged estimate of 
ovenbird survival to depend on buffer width across the entire range 
(Figure 6). We conclude that the ovenbird data are consistent with 
a wide range of possible survival probabilities, and that movement 
and survival are confounded in the open SECR model. The tiger data 
are more promising, but there remains significant variation among 
movement models and a wide buffer is needed to escape buffer 
dependence.

6  |  DISCUSSION

Movement models have appeared in several different forms in 
open- population spatial capture– recapture over its short history. 
Researchers have aimed to model dispersal without directional bias, 
except where settlement may depend on habitat covariates (e.g., 
Bischof et al., 2020). Circular kernels may be specified either as the 

TA B L E  3  Comparison of movement models for case- study datasets. AIC- best model emphasized. ‘npm’ number of parameters for 
movement kernel, ‘logLik’ maximized log likelihood, ‘ΔAIC’ difference in AIC from best model (bold), ‘AICwt’ AIC weight, ‘E(d)’ average 
movement (km) (italicized estimates unreliable)

Model npm

Ovenbird Tiger

logLik �AIC AICwt E(d) logLik �AIC AICwt E(d)

Static 0 −1,448.7 36.02 0.000 0.00 −1,408.8 23.89 0.000 0.00

RDE 1 −1,431.1 2.74 0.074 0.17 −1,400.1 8.45 0.004 0.81

RDG 2 −1,430.1 2.86 0.069 0.07 −1,395.7 1.68 0.119 0.00

RDL 2 −1,430.1 2.87 0.069 0.06 −1,395.9 2.08 0.097 0.00

BVN 1 −1,433.7 8.10 0.005 0.17 −1,400.8 9.83 0.002 1.27

BVE 1 −1,432.1 4.86 0.026 0.17 −1,400.3 8.96 0.003 1.11

BVT 2 −1,430.2 3.02 0.064 0.15 −1,395.9 2.09 0.097 0.95

RDEzi 2 −1,429.6 1.86 0.114 0.18 −1,395.3 1.00 0.167 0.69

BVNzi 2 −1,429.4 1.38 0.145 0.21 −1,394.8 0.00 0.275 0.67

BVEzi 2 −1,429.4 1.38 0.145 0.21 −1,395.1 0.55 0.209 0.73

IND 0 −1,465.2 69.06 0.000 0.91 −1,562.2 330.6 0.000 21.18

INDzi 1 −1,429.7 0.00 0.289 0.55 −1,398.1 4.55 0.028 3.28

Notes: ‘static’ no movement; RDE Exponential radial distance; RDG Gamma radial distance; BVN bivariate normal; BVE bivariate Laplace; BVT 
bivariate t; IND independent location within habitat mask; ‘zi’ suffix indicates zero- inflated.



    |  2115Methods in Ecology and EvoluonEFFORD and SCHOFIELD

joint, bivariate distribution of the displacement in x-  and y- directions, 
or as the combined result of independent univariate distributions 
in polar coordinates (uniform angle, non- negative distance). These 
approaches are interchangeable. A third approach, to specify inde-
pendent univariate distributions for the x-  and y- coordinates, yields 
a circular distribution only in the special case of the normal distribu-
tion. We recommend this approach be avoided.

Open SECR models that included movement fit better than 
static models and gave reduced estimates of the scale of detection 
� in all comparisons to date. Which movement model was chosen 
made virtually no difference to estimates of detection parameters 
(�0, �) in our case studies, but it did affect estimates of survival and 

recruitment (Appendix S5). The popular BVN kernel performed 
poorly and is likely to lead to underestimation of survival.

Our problem is to choose among the more plausible movement 
models. Exhaustive comparison is not an option as the choices are 
many and not limited to those we considered. Instead, we suggest 
users compare 1- parameter models from across the spectrum of 
fixed tail weight (light, BVN; moderate BVE, RDE; heavy, BVC) or 
use the more flexible 2- parameter models (BVT, RDG, RDL, BVNzi, 
BVEzi, RDEzi). There was little to separate the flexible models in 
our case studies: kernels could be superficially different (Figure 3) 
while yielding very similar estimates of non- movement parameters, 
as the fitted shapes converged (Appendix S5). The flexible kernels 

F I G U R E  6  Empirical evaluation of buffer width for ovenbird and tiger datasets: seven movement models (Table 3) refitted with buffers of 
arbitrary width. Wide grey line shows survival estimates model- averaged using AIC weights. ‘np’ number of movement parameters.
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we considered are heavy- tailed only for small values of the shape 
parameter (Figure 2) so this should not be restricted to large values. 
Survival and recruitment estimates may be model- averaged to allow 
for uncertainty regarding the correct model.

A reviewer raised the possibility of confounding between the 
open SECR movement model and the detection model. We have 
implicitly assumed that each temporal sample includes spatial re- 
detections sufficient to fit the detection model, as in closed SECR. 
This requires either the robust design of Pollock (1982) or a detec-
tion process that allows multiple events in one sampling interval 
(automatic cameras or passive DNA sampling; Efford et al., 2009). 
Empirical trials lead us to speculate that, given this condition, the 
detection and movement models are not confounded.

Buffer dependence is a weakness in SECR models because buf-
fer width is an arbitrary choice of the analyst. If survival estimates 
from an otherwise competitive model are not asymptotic with re-
spect to buffer width then we infer that the model cannot be reliably 
estimated from the data, and estimates should not be reported. One 
warning sign is that the highly buffer- dependent zero- inflated inde-
pendent model is competitive with respect to AIC, as in our ovenbird 
example. Difficulties in estimation of movement are a function of 
the data, and may reflect inadequate scale of sampling.

In closed SECR, the adequacy of any chosen buffer width for a spe-
cific detection function is readily checked post hoc by plotting its ef-
fect on the effective sampling area or an approximation (e.g., function 
‘esa.plot’ in Efford (2022a)). Evaluating buffer- dependence in bounded 
open SECR models at present requires that each model is re- fitted for 
a range of buffer widths, which is time consuming. Further analysis 
of the relationship between survival estimates and buffer width may 
identify a family of curves that can be relied upon to extrapolate the 
asymptote or infer an adequate buffer width from trial fits.

Kernel- free ‘independent’ models are inherently buffer- 
dependent and can imply unrealistically large expected movement. 
These attributes explain their poor performance in the simulations 
of Gardner et al. (2018) and the low maximized likelihood in our ex-
amples. However, a zero- inflated independent model (INDzi) is use-
ful heuristically and as a limiting case. Other zero- inflated models 
have a tendency to collapse to INDzi as indicated by a large value for 
the estimated scale of movement (Appendix S5). Large variance im-
plies a nearly uniform distribution if movements are truncated at ei-
ther the edge of the habitat mask or the edge of a discretized kernel. 
The inverse of the variance (precision) approaches zero, a boundary 
of the parameter space, which explains rank deficiency in the nu-
merically fitted Hessian (Viallefont et al., 1999).

Ergon and Gardner (2014) stated clearly the potential limitations 
of open SECR for separating mortality and emigration:

The accuracy of the survival estimates… is obviously 
contingent on a realistic model for dispersal away 
from the trapping array. We can only say something 
about the distribution of dispersal distances within 
the area covered by the trapping array, and if we fit 
the wrong weight of the dispersal distribution outside 

the trapping array, significant bias may result. It is ob-
viously most important to account for dispersal when 
the study area is small relative to dispersal distances, 
but when this is the case, we have little information 
about the shape of the dispersal function.

Gilroy et al. (2012, p. 1515) had earlier highlighted the same issues. 
Inadequate scale of sampling is an insidious problem that may be im-
possible to diagnose from the data alone. The estimated scale of move-
ment was quite small in the studies we reviewed (Appendix S2), but 
these estimates cannot be relied upon. Observed movements up to 
the scale of sampling may precisely match one distribution (e.g., BVN) 
and give no clue to the truncation of longer movements, as in our BVN- 
mixture example (Figure 4a). Open SECR cannot separate emigration 
from mortality without external information on the scale of dispersal. 
Prior biological knowledge may be used to ensure the study design is of 
sufficient scale, or the capture– recapture data may be augmented with 
data on dispersal from telemetry or sightings.

Ergon & Gardner (2014, p. 1334) raised the possibility that models 
may fit equally well but have very different tail weight, and hence lead 
to different estimates of survival, even when the scale of sampling is 
appropriate. Further investigation is needed, and it would be helpful to 
reproduce the effect in simulations. The scale of sampling was limited 
in our examples, and the data were somewhat weak and do not offer 
insight into this issue.

Our survey of movement kernels in open SECR has revealed 
many subtleties of parameterization and implementation. We call 
on authors to clearly distinguish among kernel types, including any 
truncation and boundary rules. Parameter constraints, including 
Bayesian priors, should be stated and explained. Comparison of stud-
ies is hindered when authors do not report numerical estimates of 
movement parameters, but merely provide a graph. Analysts should 
identify movement parameters that were estimated at a boundary 
of the parameter space (indicated by reduced rank of the hessian in 
ML). Given the variety of possible kernels it is desirable to report a 
standard description of movements, such as the expected distance 
E(d) or the median and 90th percentiles (Ergon & Gardner, 2014; 
Reidy et al., 2018).

Movement models that apply a parametric distribution for dis-
tance moved are essentially phenomenological and give little insight 
into the movement process. Covariates such as age, sex and season 
may be included to elucidate the biology of dispersal and improve 
model fit. Conditioning settlement (and therefore distance moved) 
on local habitat covariates is another move towards greater biolog-
ical realism.

There is wide scope for innovation in the modelling of movement 
in open SECR. Rather than an ever- expanding random walk, succes-
sive activity centres might be drawn from a stationary distribution 
representing a long- term (possibly multi- year) home range. A pro-
cess such as the bivariate Ornstein- Uhlenbeck (Hooten et al., 2017) 
generates a stationary distribution with serial correlation that would 
be appropriate for samples spaced closely in time. We expect many 
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future SECR studies will have improved data resolution, both in 
space and time, that will allow the fitting of more flexible and realis-
tic movement models (e.g., McClintock et al., 2021). It will be inter-
esting to determine whether more realistic modelling of movement 
results in improved estimation of survival and recruitment. There 
may also be a trade- off in study design between investment in high 
resolution data and coverage of the target population.

The implications of artificially constraining the modelled popula-
tion within a boundary require investigation. Enclosure inflates the 
probability of recapture and potentially distorts the spatial dynamics 
of the modelled population relative to the unbounded reality. The 
unbounded approach of Ergon and Gardner (2014) and Schaub and 
Royle (2014) may be preferable for studies of survival alone, and a 
maximum likelihood implementation would be welcome.
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