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Variation in detection probability among individuals (‘individual heterogene-

ity’) is a persistent problem in capture–recapture studies. Ideally, such variation

is modelled by grouping individuals into homogeneous classes (males and fe-

males) or including continuous predictors such as body weight. Finite mixture

models are an option when unmodelled heterogeneity remains (Pledger 2000;

Borchers and Efford 2008). The population is assumed to comprise 2 or more

latent classes differing in detection parameters, with an unknown proportion in

each class. The likelihood is a weighted sum over the classes.

Mixture models are prone to fitting problems caused by a multimodal like-

lihood. Some comments are offered below, but a fuller investigation is needed.

The distinction between a finite mixture model and one in which the classes

of individuals are known is removed in a hybrid model added in secr 2.6.0 and

outlined here.

Implementation in secr

secr allows 2- or 3-class finite mixture models for any ‘real’ detection param-

eter (e.g., g0 or sigma of a halfnormal detection function). Consider a simple

example, using conditional likelihood and trace = FALSE for brevity:

> library(secr)

> model.0 <- secr.fit(captdata, model = g0~1, CL = TRUE, trace = FALSE)

Specify a 2-class mixture by adding the predictor h2 to the model formula:

> model.h2 <- secr.fit(captdata, model = g0~h2, CL = TRUE, trace = FALSE)

> model.h2

secr.fit(capthist = captdata, model = g0 ~ h2, CL = TRUE, trace = FALSE)

secr 2.6.0, 16:44:02 07 Jun 2013
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Detector type single

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

N animals : 76

N detections : 235

N occasions : 5

Mask area : 21.22711 ha

Model : g0~h2 sigma~1 pmix~h2

Fixed (real) : none

Detection fn : halfnormal

N parameters : 4

Log likelihood : -755.6614

AIC : 1519.323

AICc : 1519.886

Beta parameters (coefficients)

beta SE.beta lcl ucl

g0 -0.8108839 0.53576728 -1.860968 0.2392007

g0.h22 -0.8201234 1.34477436 -3.455833 1.8155859

sigma 3.3807520 0.04491538 3.292720 3.4687846

pmix.h22 -1.2846358 5.10870053 -11.297505 8.7282332

Variance-covariance matrix of beta parameters

g0 g0.h22 sigma pmix.h22

g0 0.287046575 0.538478767 -0.001463082 2.57844357

g0.h22 0.538478767 1.808418091 0.004835138 6.09198098

sigma -0.001463082 0.004835138 0.002017391 0.01908746

pmix.h22 2.578443568 6.091980978 0.019087455 26.09882106

Fitted (real) parameters evaluated at base levels of covariates

session = 1, h2 = 1

link estimate SE.estimate lcl ucl

g0 logit 0.3077022 0.1141300 1.345902e-01 0.5595167

sigma log 29.3928675 1.3208579 2.691596e+01 32.0977061

pmix logit 0.7832379 0.8673363 1.619221e-04 0.9999876

session = 1, h2 = 2
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link estimate SE.estimate lcl ucl

g0 logit 0.1636924 0.2438317 5.928978e-03 0.8652902

sigma log 29.3928675 1.3208579 2.691596e+01 32.0977061

pmix logit 0.2167621 0.8673363 1.240368e-05 0.9998381

From the output you can see that secr.fit has expanded the model to

include an extra ‘real’ parameter, pmix for the proportions in the respective

latent classes. You could specify this yourself as part of the model argument,

but secr.fit knows to add it. The link function for pmix defaults to mlogit

(after the ‘mlogit’ link in MARK), and in fact any attempt to change the link

is ignored.

There are also two extra ‘beta’ parameters: g0.h22 which is the difference

in g0 between the classes on the link (logit) scale, and pmix.h22 which is the

proportion in the second class, also on the logit scale. Fitted (real) parameter

values are reported separately for each mixture class (h2 = 1 and h2 = 2).

We can compare a 2-class finite mixture model to the null (constant) model

using AIC:

> AIC (model.0, model.h2)

model detectfn npar logLik

model.0 g0~1 sigma~1 halfnormal 2 -755.9403

model.h2 g0~h2 sigma~1 pmix~h2 halfnormal 4 -755.6614

AIC AICc dAICc AICwt

model.0 1515.881 1516.045 0.000 0.8722

model.h2 1519.323 1519.886 3.841 0.1278

In this case there is no reason to prefer the mixture model.

More complex models are allowed. For example, one might, somewhat out-

landishly, fit a learned response to capture that differs between two latent classes,

while also allowing sigma to differ between classes:

> model.h2xbh2s <- secr.fit(captdata, model = list(g0~h2*b, sigma~h2),

CL = FALSE)

Number of classes

The theory of finite mixture models in capture–recapture (Pledger 2000) allows

an indefinite number of classes – 2, 3 or perhaps more. Programmatically,

the extension to more classes is obvious (e.g., h3 for a 3-class mixture). The
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appropriate number of latent classes may be determined by comparing AIC for

the fitted models1.

Looking on the bright side, it is unlikely that you will ever have enough data

to support more than 2 classes. For the data in the example above, the 2-class

and 3-class models have identical log likelihood to 4 decimal places, while the

latter requires 2 extra parameters to be estimated (this is to be expected as the

data were simulated from a null model with no heterogeneity).

Multimodality

The likelihood of a finite mixture model may have multiple modes (e.g. Brooks

et al. 1997, Pledger 2000). The risk is ever-present that the numerical maxi-

mization algorithm will get stuck on a local peak, and in this case the estimates

are simply wrong. Slight differences in starting values or numerical method may

result in wildly different answers.

The problem has not been explored fully for SECR models, and care is

needed. Pledger (2000) recommended fitting a model with more classes as a

check in the non-spatial case, but this is not proven to work with SECR models.

It is desirable to try different starting values. This can be done simply using

another model fit. For example:

> model.h2.2 <- secr.fit(captdata, model = g0~h2, start = model.0,

CL = TRUE, trace = FALSE)

A more time consuming, but illuminating, check on a 2-class model is to

plot the profile log likelihood for a range of mixture proportions (Brooks et al.

1997). For this we use the ‘fixedbeta’ feature of secr.fit:

> ## fit CL model with range of fixed beta values for mixing proportion

> pmixProfileLL <- function (CH, mask, pmvals = seq(0.01, 0.99, 0.01)) {

npm <- length(pmvals)

outCL <- vector('list', npm)

for (pm in 1:npm) {

outCL[[pm]] <- secr.fit(CH, CL = TRUE, model = list(g0~h2, sigma~h2),

details = list(fixedbeta = c(rep(NA,4), logit(pmvals[pm]))),

mask = mask, trace = FALSE)

}

outCL

}

1score tests (e.g. McCrea, R. S. and Morgan, B. J. T. (2011) Multistate mark-recapture

model selection using score tests Biometrics 67, 234–241) are not appropriate because the

models are not nested, at least that’s how it seems to me
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> ## run function for one year of ovenbird data and plot results

> pmvals <- seq(0.01,0.99,0.01)

> mask <- make.mask(traps(ovenCH[[1]]), nx = 32, buffer = 100)

> outCL <- pmixProfileLL(ovenCH[[1]], mask, pmvals) ## slow!

> plot(pmvals, sapply(outCL, logLik), xlim = c(0,1),

xlab = 'Fixed pmix', ylab = 'Profile log-likelihood')

Figure 1: Profile log-likelihood for mixing proportion between 0.01 and 0.99 in

a 2-class finite mixture model (ovenbird data 2005).

Multimodality is likely to show up as multiple rounded peaks in the profile like-

lihood. Label switching (e.g., Stephens 2000) may cause some ghost reflections

about pmix = 0.5 that can be ignored. If multimodality is found one should

accept only estimates for which the maximized likelihood matches that from

the highest peak. In the ovenbird example, the maximized log likelihood of the

fitted h2 model was -163.6 and the estimated mixing proportion was 0.67, so

the correct maximum was found.

Maximization algorithms (argument ‘method’ of secr.fit) differ in their ten-

dency to settle on local maxima; ‘Nelder-Mead’ is probably better than the

default ‘Newton-Raphson’. Simulated annealing is sometimes advocated, but it

is slow and has not been tried with SECR models.
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Hybrid ‘hcov’ model

The hybrid mixture model accepts a categorical (factor) individual covariate for

class membership that may be missing (NA) for any fraction of animals. The

covariate is specified as argument ‘hcov’ in secr.fit. If the covariate is missing for

all individuals then a full finite mixture model will be fitted (i.e. mixture as a

random effect). Otherwise, the random effect applies only to animals of unknown

class, and others are modelled with detection parameter values appropriate to

their known class. If class is known for all individuals the model is equivalent to

a covariate (CL = TRUE) or grouped (CL = FALSE) model. When many or all

animals are of known class the mixing parameter may be treated as an estimate

of population proportions (probability a randomly selected individual belongs

to class m). This is obviously useful for estimating sex ratio free of detection

bias.

Notes

It’s worth mentioning a perennial issue of interpretation: Do the latent classes

in a finite mixture model have biological reality? The answer is ‘Probably not’

(although the hybrid model blurs this issue). Fitting a finite mixture model

does not require or imply that there is a matching structure in the population

(discrete types of animal). A mixture model is merely a convenient way to

capture heterogeneity.

When more than one real parameter is modelled as a mixture, there is an

ambiguity: is the population split once into latent classes common to all real

parameters, or is the population split separately for each real parameter? The

second option would require a distinct level of the mixing parameter for each

real parameter. secr implements only the ‘common classes’ option, which saves

one parameter.
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