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This document provides an overview of secr 2.6, an R package for spatially

explicit capture–recapture analysis (SECR). It includes some background on

SECR, an outline of the package, and a more detailed description of how models

are implemented. See Appendix 1 for a glimpse of secr in action. For details

of how to use secr see the help pages and vignettes.
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Introduction to SECR

Spatially explicit capture–recapture (SECR) is a set of methods for modelling

animal capture–recapture data collected with an array of ‘detectors’. The meth-

ods are used primarily to estimate population density, but they also have advan-

tages over non-spatial methods when the goal is to estimate population size (Ef-

ford and Fewster 2012). SECR methods overcome edge effects that are problem-

atic in conventional capture–recapture estimation of animal populations (Otis et

al. 1978). Detectors may be live-capture traps, with animals uniquely tagged,

sticky traps or snags that passively sample hair, from which individuals are

distinguished by their microsatellite DNA, or cameras that take photographs

from which individuals are recognized by their natural marks. The concept of a

detector extends to polygons or transects that are searched for animals or their

sign.

The primary data for SECR are (i) the locations of the detectors, and (ii)

detections of known individuals on one or more sampling occasions (i.e. their

detection histories). The generic terms ‘detector’ and ‘detections’ cover several

possibilities (see ‘Detector types’ below); we use them interchangeably with the

more specific and familiar terms ‘traps’ and ‘captures’. Table 1 gives a concrete

example of trapping data (the structure differs for detectors that are not traps).

In SECR, a spatial model of the population and a spatial model of the

detection process are fitted to the spatial detection histories. The resulting

estimates of population density are unbiased by edge effects and incomplete

detection (other sources of bias may remain). Inverse prediction (IP SECR)

and maximum likelihood (ML SECR) are alternative methods for fitting the
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Table 1: Example of spatially explicit detection data. Each entry (e.g. A9)

records the detector at which a known animal (ID) was observed at each sam-

ple time (occasion). ‘.’ indicates no detection. Each detector has known x-y

coordinates. Formats for data input are described in ‘secr-datainput.pdf’

Occasions

ID 1 2 3 4 5

1 A9 . . . .

2 A12 A12 . . .

3 . . C6 B5 .

4 . . G3 . F3

etc.

spatial detection model (Efford 2004, Borchers and Efford 2008). Of these, ML

SECR is the more flexible, with a caveat for data from single-catch traps. Data

augmentation and Markov chain Monte Carlo (MCMC) methods have also been

used for SECR (Royle and Young 2008, Royle et al. 2009, Singh et al. 2010),

but this approach is orders of magnitude slower than ML SECR and easy to

misuse; it is not considered here.

State and observation models

Like other statistical methods for estimating animal abundance (Borchers et

al. 2002), SECR combines a state model and an observation model. The state

model describes the distribution of animal home ranges in the landscape, and

the observation model (a spatial detection model) relates the probability of

detecting an individual at a particular detector to the distance of the detector

from a central point in each animal’s home range. The distances are not observed

directly (usually we don’t know the range centres), so conventional distance

sampling methods do not apply.

Distribution of home-range centres

The distribution of range centres in the population (Borchers and Efford 2008)

will usually be treated as a homogeneous Poisson point process (Fig. 1). Density

is the sole parameter of a Poisson process. An inhomogeneous distribution may

also be fitted; this provides a means to evaluate the effects of habitat variables

on density.
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Figure 1: Hypothetical Poisson distribution of range centres near an array of

detectors. We estimate the intensity (density) of this distribution.

Detection functions

A detection model uses one of several possible parametric forms for the decline

in detection probability with distance (d) from the home-range centre (Table

2, Fig. 2). The probability g(d) is for the ‘ideal’ case of just one animal and

one detector; the actual probability may differ (see discussion of ‘traps’ under

Detector Types).

Table 2: Two functions relating the probability of detection to distance (d). See

?detectfn for more.

Halfnormal g(d) = g0 exp
(

−d
2

2σ2

)

Exponential g(d) = g0 exp
(

−
d

σ

)

Detector types

The properties of detectors are an important part of the SECR observation

model. Inside secr, data are tagged with a detector type to ensure they are

printed, plotted and analysed appropriately.
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Figure 2: Alternative shapes for a function relating the probability of detection

to distance from range centre.

Some common detectors (camera ‘traps’ and hair snags for DNA) do not

capture animals, but merely record that an animal has visited a site. These

‘proximity’ detectors can be considered to act independently of each other. With

proximity detectors, each animal × occasion ‘cell’ of a detection history poten-

tially contains several positive records. In the simplest case each cell contains a

binary vector coding presence or absence at each detector. A ‘count’ detector is

a generalised proximity detector in which the data are vectors of counts, one per

detector. Models for ‘count’ data will specify a distribution for the counts (the

‘binomN’ argument of secr.fit, where binomN=0 indicates Poisson, binomN=1

Bernoulli etc.).

Detectors that are true traps do not act independently because capture of an

animal in one trap prevents it being caught in another trap until it is released.

Traps expose animals to competing risks of capture. The per-trap probability

of capture may be adjusted for the competing risk from other traps by using an

additive hazard model (Borchers and Efford 2008). However, if the detectors

are traps that catch only one animal at a time then there is a further level of

competition – between animals for traps. Multi-catch and single-catch traps

therefore represent distinct detector types. No general adjustment has been

found for the per-trap probability of capture in the single-catch case (it’s an open

research question), and there is strictly no known maximum likelihood estimator.

However, density estimates using the multi-catch likelihood for single-catch data

appear only slightly biased (Efford, Borchers and Byrom 2009).

Polygon and transect detectors are for binary or count detection data (e.g.,
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number of detections per animal per polygon per occasion) supplemented with

the x-y coordinates of each detection (in the case of a transect it is enough to

record the distance along the line). When a study uses multiple search areas

or multiple transects, detections may be either independent or dependent (e.g.,

maximum one per animal per polygon per occasion) as with traps. The depen-

dent or ‘exclusive’ type is indicated by the suffix ‘X’; in this case the counts are

necessarily binary. Using the ‘polygonX’ or ‘transectX’ detector type ensures

that a competing-risk model is fitted.

Acoustic ‘signal strength’ detectors produce a binary detection vector sup-

plemented by measurements of signal strength, as from an array of microphones.

There is limited support for ‘unmarked’, ‘presence’ and ‘telemetry’ detector

types, but these are not yet fully documented. The ‘telemetry’ detector type

is like a ‘polygon’ detector (detections have x-y coordinates); perimeter coordi-

nates are required, but they are not at present used in analyses. Telemetry data

are used to augment capture–recapture data (see addTelemetry).

Table 3: Detector types

single traps that catch one animal at a time

multi traps that may catch more than one animal at a time

proximity records presence at a point without restricting movement

count proximity detector allowing >1 detection per animal per time

polygon counts from searching one or more areas

transect counts from searching one or more transects

polygonX binary data from mutually exclusive areas

transectX binary data from mutually exclusive transects

signal detections and signal strengths at multiple microphones

telemetry locations from radiotelemetry

Origins and outline of the package ‘secr’

The program DENSITY (Efford et al. 2004, Efford 2012) provides a graphical

interface to SECR methods that has been accepted by many biologists. How-

ever, DENSITY has significant drawbacks: it requires the Windows operating

system, its algorithms are not always transparent or well-documented, it fits

only homogeneous Poisson models, and it omits some recent advances in SECR.

The R package secr was written to address these weaknesses and allow

for further development. It implements almost all the methods described by

Borchers and Efford (2008), Efford et al. (2009), and Efford (2011). secr uses
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external C code for computationally intensive operations. Appendix 2 compares

the features of DENSITY and secr. The important functions of secr are listed

in Appendix 3.

How secr works

secr defines a set of R classes1 and methods for data from detector arrays. The

essential classes are:

traps locations of detectors; detector type (‘proximity’, ‘multi’, etc.)

capthist spatial detection histories, including a traps object

mask points on habitat mask

secr fitted SECR model.

To perform an SECR analysis you explicitly or implicitly construct each

of these objects in turn, using the functions provided (e.g., read.capthist2,

secr.fit). Fig. 3 summarizes the relationships among the core object classes.

The classes traps (not shown), capthist and mask may optionally store co-

variates specific to detectors, animals and habitat points respectively. Each set

of covariates is saved in a dataframe that is an attribute of the corresponding

object; the covariates method is used to extract or replace covariates.

Input

Data input is covered in the separate document ‘secr-datainput.pdf’. One option

is to use text files in the formats used by DENSITY; these accommodate most

types of data. Two files are required, one of detector (trap) locations and

one of the detections (captures) themselves; the function read.capthist reads

both files and constructs a capthist object. It is also possible to construct

the capthist object in two stages, first making a traps object (with read.traps)

and a captures dataframe, and then combining these with make.capthist. This

more general route may be needed for unusual datasets.

1Technically, these are S3 classes. A ‘class’ specifies a particular type of data object and

the functions (methods) by which it is manipulated (computed, printed, plotted etc). See the

R documentation for further explanation
2Text in teletype font refers to R objects that are documented in online help for the secr

package, or in base R. A good place to start is the page for secr.fit
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derived
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confint
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Figure 3: Essentials of the secr package. Each object class (shaded box) comes

with methods to display and manipulate the data it contains (e.g. print, sum-

mary, plot, rbind, subset). The function read.capthist forms a traps object

from the trap layout data and saves it as an attribute along with the capture

data in a capthist object. If a habitat mask is not provided, one will be gen-

erated automatically by secr.fit. Any of the objects input to secr.fit may

include a dataframe of covariates whose names may be used in a model formula.

Fitted secr models may be further manipulated with the methods shown on the

right. Additional functions (not shown) construct a regular detector array (e.g.

make.grid, make.circle), form a mask from a traps object (make.mask), or

simulate detection of a known population (sim.capthist).

Output

The output from the function secr.fit is an object of class secr. This is an R

list with many components. Assigning the output to a named object (such as

secr0 or secrb in the example of Appendix 1) saves both the fit and the data for

further manipulation. Typing the name at the R prompt invokes print.secr

which formats the key results. These include the dataframe of estimates from the

predict method for secr objects. Functions are provided for further compu-

tations on secr objects (e.g., profile-likelihood confidence intervals, AIC model

selection, model averaging, likelihood-ratio and score tests). Many of these are

listed in Appendix 3.

One system of units is used throughout secr. Distances are in metres and

areas are in hectares (ha). The unit of density is animals per hectare. 1 ha =

10000 m2 = 0.01 km2. To convert density to animals / km2, multiply by 100.
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Documentation

The primary documentation for secr is in the help pages that accompany the

package. Help for a function is obtained in the usual way by typing a question

mark at the R prompt, followed by the function name. Note the ‘Index’ link at

the bottom of each help page – you will probably need to scroll down to find it.

The consolidated help pages are also distributed as the file secr-manual.pdf.

Searching this text is a powerful way to locate a function for a particular task.

It may be accessed from within R using

> RShowDoc("secr-manual", package = "secr")

Other documentation in the form of pdf files based on Sweave vignettes will

be added from time to time. The ‘directory’ link in the package help index lists

available files. Each pdf file may be accessed by clicking on the link or with

RShowDoc() as above. These vignettes are included in secr 2.63:

secr-overview.pdf this document

secr-datainput.pdf data formats and input functions

secr-densitysurfaces.pdf modelling density surfaces

secr-finitemixtures.pdf mixture models for individual heterogeneity

secr-sound.pdf analysing data from microphone arrays

secr-polygondetectors.pdf using polygon and transect detector types

secr-varyingeffort.pdf variable effort (usage) in SECR models

The web page http://www.otago.ac.nz/density/ should be checked for

news of bug fixes and new releases. New versions will be posted on CRAN

http://cran.r-project.org/, but there may be a delay of a few days. Help

may be sought at http://www.phidot.org/forum; see also the FAQ there for

DENSITY and secr. For information on changes in each version type

> news(package = "secr")

Models in secr

Here ’models’ relates to variation in the core SECR parameters that may be

explained by known factors and covariates. Read Appendix 4 to make sense of

this statement. If you just want to know how to use models, read on.

Models are defined symbolically in secr using R formula notation. A sepa-

rate linear predictor is used for each core parameter. Core parameters are ‘real’

3The Sweave Rnw files are available on request
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parameters in the terminology of MARK, and secr uses that term because it

will be familiar to biologists. Four real parameters are commonly modelled in

secr 2.6; these are denoted D (for density), g0, sigma and z. Only the last

three real parameters, which jointly define the model for detection probability

as a function of location, can be estimated directly when the model is fitted by

maximizing the conditional likelihood (CL = TRUE in secr.fit). D is then a

derived parameter that is computed from an secr object with the function de-

rived or one of its siblings (derived.cluster etc.). ‘z’ is a shape parameter

that is used only when the detection function has three parameters (annular

halfnormal, cumulative gamma, hazard-rate etc. – see ?detectfn). A further

‘real’ parameter is the mixing proportion pmix, used in finite mixture models.

Detection parameters and density parameters are modelled separately, as we

now describe.

Specifying effects on detection parameters

Effects on parameters of detection probability are specified with R formulae.

The variable names used in formulae are either names for standard effects (Table

4) or the names of user-supplied covariates. Effects ‘b’, ‘B’, ‘bk’, and ‘Bk’ refer

to individuals whereas ‘k’ and ‘K’ refer only to sites. Groups (‘g’) are used only

in models fitted by maximizing the full likelihood; for conditional likelihood

models use a factor covariate to achieve the same effect.

Any name in a formula that is not a variable in Table 4 is assumed to refer

to a user-supplied covariate. secr.fit looks for user-supplied covariates in data

frames embedded in the capthist argument, or supplied in the timecov and

sessioncov arguments, or named with the timevaryingcov attribute of a traps

object, using the first match (Table 5).

The formula for any detection parameter (g0, sigma, z) may be constant

(∼1, the default) or some combination of terms in standard R formula notation

(see ?formula). For example, g0 ∼ b + T specifies a model with a learned

response and a linear time trend in g0; the effects are additive on the link scale.

See Table 6 for other examples.

For other effects, the design matrix for detection parameters may also be pro-

vided manually in the argument dframe of secr.fit. This feature is untested.

Density submodels

The SECR log likelihood is evaluated by summing values at points on a ‘habitat

mask’ (the mask argument of secr.fit). Each point in a habitat mask repre-

sents a grid cell of potentially occupied habitat (their combined area may be
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Table 4: Automatically generated predictor variables used in detection models

Variable Description Notes

g group interaction of the capthist individual covari-

ates listed in argument groups of secr.fit

t time factor one level for each occasion

T time trend linear trend over occasions on link scale

b learned response step change after first detection

B transient response depends on detection at preceding occasion

(Markovian response)

bk animal x site response site-specific step change

Bk animal x site response site-specific transient response

k site learned response site effectiveness changes once any animal

caught

K site transient response site effectiveness depends on preceding occa-

sion

session session factor one level for each session

Session session trend linear trend on link scale

h2 2-class mixture finite mixture model with 2 latent classes

almost any shape). The full design matrix for density (D) has one row for each

point in the mask. As for the detection submodels, the design matrix has one

column for the intercept (constant) term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ‘x’ for an east-west

trend), a continuous habitat variable (e.g. vegetation cover) or a categorical

(factor) habitat variable. Predictors must be known for all points in the mask

(non-habitat excluded). The variables ‘x’ and ‘y’ are the coordinates of the

habitat mask and are automatic, as are ‘x2’, ‘y2’, and ‘xy’. Other spatial co-

variates should be named columns in the covariates attribute of the habitat

mask.

See the vignette secr-densitysurfaces.pdf for more on fitting and dis-

playing density surfaces.

Model fitting and estimation

Models are fitted in secr.fit by numerically maximizing the likelihood. The

likelihood involves integration over the unknown locations of the animals’ range

centres. This is achieved in practice by summation over points in the habitat

mask, which has some implications for the user. Computation may be slow,

especially if there are many points in the mask, and estimates may be sensitive
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Table 5: User-provided covariates used in detection models. The names of

columns in the respective dataframes and names of components in the timevary-

ingcov attribute may be used in model formulae

Covariate type Data source Notes

Individual covariates(capthist) conditional likelihood

Time timecov argument

Detector covariates(traps(capthist))

Detector x Time covariates(traps(capthist)) see timevaryingcov

Session sessioncov argument

Table 6: Some examples of the model argument in secr.fit

Model Description

g0 ∼ 1 g0 is constant across animals, occasions and detec-

tors

g0 ∼ b learned response affects g0

list(g0∼b, sigma∼b) learned response affects both g0 and sigma

g0 ∼ h2 2-class finite mixture for heterogeneity in g0

g0 ∼ b + T learned response in g0 combined with trend over oc-

casions

sigma ∼ g detection scale sigma differs between groups

sigma ∼ g*T group-specific trend in sigma

D ∼ cover density varies with ’cover’ given in covari-

ates(mask)

list(D∼g, g0∼g) both density and g0 differ between groups

D ∼ session session-specific density
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to the particular choice of mask (either explicitly in make.mask or implicitly via

the buffer argument).

The default maximization algorithm is Newton-Raphson in the function

stats::nlm. By default, all reported variances, covariances, standard errors

and confidence limits are asymptotic and based on a numerical estimate of the

information matrix. The Newton-Raphson algorithm is fast, but it sometimes

fails to compute the information matrix correctly, causing some standard errors

to be set to ‘NA’; see the ‘method’ argument of secr.fit for alternatives. Use

confint.secr for profile likelihood intervals and simulate.secr for parametric

bootstrap intervals (both are slow).

Habitat masks

We have already introduced the idea of a habitat mask. The SECR likelihood

is evaluated by summing values at points on a mask4; each point represents a

grid cell of potentially occupied habitat. Masks may be constructed by placing

a buffer of arbitrary width around the detectors, possibly excluding known non-

habitat. How wide should the buffer be? The general answer is ‘Wide enough

not to cause bias in estimated densities’. This depends on the scale of move-

ment of your animal, and on the chosen detection function. For specifics, see the

help for mask and the various mask-related functions (make.mask, mask.check,

suggest.buffer, and esa.plot). Heavy-tailed detection functions such as the

hazard-rate and lognormal can be problematic because they require an unrea-

sonably large buffer for stable density estimates.

Varying effort

The probability of observing an individual at a particular detector may depend

directly on a known quantity such as how long the detector was exposed on a

particular occasion. In the extreme, a detector may not have been operated.

The terms ‘effort’ and ‘usage’ are used here interchangeably for variation in

the duration of exposure and similar known effects. Usage is an attribute of

the detectors in a traps object (a traps x occasions matrix); it may be entered

with the detector coordinates in a trap layout file or added later. Models fitted

to data including a usage attribute will adjust automatically for varying usage

across detectors and occasions. From secr 2.5.0 usage may take any non-negative

value (previously binary). This simplifies the modelling of data aggregated over

varying numbers of occasions or nearby sites.

See the separate document ‘secr-varyingeffort.pdf’ and Efford et al. (2013)

4A ‘mask’ in secr is equivalent to a ‘mesh’ in DENSITY
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for more.

Detector clusters

For surveying large areas it is efficient to use groups of detectors: within a group

the detectors are close enough that animals may be re-detected at multiple

points, while groups of detectors may be distributed across a region according

to a probability design. From version 2.1 secr allows for detector groups with

the ‘cluster’ data structure. This is an attribute of a traps object that records

which detectors belong to which cluster5.

Functions are provided to generate detector arrays with a clustered structure

(trap.builder, make.systematic), to extract or replace the cluster attribute

(clusterID), to compute the geometric centres and numbers of detections per

cluster (cluster.centres, cluster.counts), etc.

Data from a large, clustered design may often be analysed more quickly if the

capthist object is first collapsed into one using the geometry of a single cluster

(the object retains a memory of the number of individuals from each original

cluster in the attribute n.mash). Use the function mash for this. Functions

derived, derived.mash and the method predict.secr use n.mash to adjust

their output densitiy, SE, and confidence limits.

Parallel processing

From version 2.4.0 on it is possible to use multiple cores for certain computa-

tions. The greatest benefit is seen with simulations (sim.secr, ip.secr). See

?Parallel.
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Appendix 1. A simple secr analysis

A simple analysis might look like this. We start by loading the package, setting

the working folder, and constructing an object myCH that contains both the

captures and the trap locations.

> library(secr)

> olddir <- setwd(system.file("extdata", package = "secr"))

> myCH <- read.capthist("capt.txt", "trap.txt", fmt = "XY")

No errors found :-)

> setwd(olddir)

Next we fit two simple models and compare them with AIC. We set trace =

FALSE to reduce the volume of output, but the default trace = TRUE is usually

better.

> secr0 <- secr.fit(myCH, model = g0 ~ 1, trace = FALSE)

> secrb <- secr.fit(myCH, model = g0 ~ b, trace = FALSE)

> AIC(secr0, secrb)

model detectfn npar logLik AIC AICc

secr0 D~1 g0~1 sigma~1 halfnormal 3 -759.0257 1524.051 1524.385

secrb D~1 g0~b sigma~1 halfnormal 4 -759.0164 1526.033 1526.596
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dAICc AICwt

secr0 0.000 0.7513

secrb 2.211 0.2487

A model with learned trap response (g0∼b) showed no improvement in fit

over a null model (g0∼1). In this instance the estimates of density from the

two models were also very close (not shown) and we rely on the null model

for estimation. Before displaying the estimates we check that the likelihood is

stable as we vary the mask buffer width (rows) and spacing (columns)

> mask.check(secr0)

Computing log likelihoods...

spacing

buffer 7.34375 5.5078125 3.671875

98.4879 -759.0276 -759.0281 -759.0271

147.73185 -759.0166 -759.0166 -759.0166

196.9758 -759.0166 -759.0166 -759.0166

It seems we would have been better to use a buffer slightly wider than the

default (100 m), so we repeat the fit and display the results:

> secr.fit(myCH, model = g0 ~ 1, buffer = 150, trace = FALSE)

secr.fit(capthist = myCH, model = g0 ~ 1, buffer = 150, trace = FALSE)

secr 2.6.0, 20:22:09 08 Jun 2013

Detector type multi

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

N animals : 76

N detections : 235

N occasions : 5

Mask area : 30.55456 ha

Model : D~1 g0~1 sigma~1

Fixed (real) : none

Detection fn : halfnormal

Distribution : poisson

N parameters : 3
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Log likelihood : -759.0165

AIC : 1524.033

AICc : 1524.366

Beta parameters (coefficients)

beta SE.beta lcl ucl

D 1.7001487 0.11771577 1.469430 1.930867

g0 -0.9785237 0.13620898 -1.245488 -0.711559

sigma 3.3800084 0.04445172 3.292885 3.467132

Variance-covariance matrix of beta parameters

D g0 sigma

D 0.0138570021 0.0001842752 -0.001013484

g0 0.0001842752 0.0185528866 -0.003342460

sigma -0.0010134837 -0.0033424601 0.001975955

Fitted (real) parameters evaluated at base levels of covariates

link estimate SE.estimate lcl ucl

D log 5.4747617 0.64670482 4.3467571 6.8954889

g0 logit 0.2731848 0.02704496 0.2234821 0.3292544

sigma log 29.3710179 1.30623748 26.9204073 32.0447119

The density estimate is 5.475 ha–1 (95% confidence interval 4.35–6.90 ha–1).

We can compare these estimates to those from the initial fit with a narrower

buffer; estimated density differs only in the third decimal place:

> predict(secr0)

link estimate SE.estimate lcl ucl

D log 5.4798041 0.64674082 4.3516226 6.9004727

g0 logit 0.2731906 0.02705128 0.2234769 0.3292739

sigma log 29.3658314 1.30493803 26.9175707 32.0367712
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Appendix 2. Software feature comparisons

❼ full implementation; ➒ incomplete or inferior implementation.

Feature DENSITY 5.0 secr 2.0 secr 2.6

General

Graphical interface ❼ ➒ ➒

Inverse prediction (IP SECR) ❼ ❼ ❼

Maximum likelihood estimation (ML SECR) ❼ ❼ ❼

Non-spatial closed-population estimators ❼ ❼ ❼

Simulation of spatial sampling ❼ ➒ ➒

Build detector arrays ❼ ➒ ❼

Control of random number generator ➒ ❼ ❼

Closure tests ➒ ❼ ❼

Import or export DENSITY text files ❼ ❼ ❼

Import or export SPACECAP text files ❼ ❼

Convert BUGS data ➒ ➒

GIS polygons as habitat mask ❼ ❼ ❼

Clustered detector layouts ❼

Mash data from clustered layouts ❼

Upload coordinates to GPS (uses GPSBabel) ❼

Multi-core processing ➒

ML SECR

Profile likelihood confidence intervals ❼ ❼ ❼

Varying effort (detector usage) ➒ ➒ ❼

Fixed parameters ➒ ❼ ❼

Parametric bootstrap ➒ ❼ ❼

Between-session models ❼ ❼ ❼

Mixture models for individual heterogeneity ❼ ❼ ❼

Confidence ellipses ❼ ❼ ❼

Formula-based model notation ❼ ❼

Density models (inhomogeneous 2-D Poisson) ❼ ❼

User-defined density models ❼

Plot density models ❼

Groups (e.g. males & females) ❼ ❼

Score tests for model selection ❼ ❼

Model averaging ❼ ❼

Structural relationships between parameters ❼ ❼
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Plot likelihood surface ❼ ❼

Empirical variance from replicate units ❼ ❼

Mask diagnostics ➒ ❼ ❼

Suggested buffer width ❼ ❼

Contours of detection probability ❼ ❼ ❼

Compute pdf for individual’s range centre ❼ ❼ ❼

Regional population size (region.N) ❼

Time-varying detector covariates ❼

Hybrid finite mixture models (hcov) ❼

Variance-only mode (method = ’none’) ❼

Combined telemetry-detection models ➒

Detector types

Single-catch trap1 ➒ ➒ ➒

Multi-catch trap ❼ ❼ ❼

Proximity ❼ ❼ ❼

Signal strength (acoustic) ❼ ❼

Count ❼ ❼

Polygon ❼ ❼

Transect ❼ ❼

Polygon (exclusive) ❼ ❼

Transect (exclusive) ❼ ❼

Telemetry ❼

Unmarked ➒

Presence/absence ➒

Detection functions

Halfnormal ❼ ❼ ❼

Hazard rate2 ❼ ❼ ❼

Exponential ❼ ❼ ❼

Compound halfnormal ❼ ❼

Uniform1
➒ ➒ ➒

w-exponential ❼ ❼

Annular halfnormal ❼ ❼

Binary signal strength ❼ ❼

Signal strength ❼ ❼

Signal strength spherical ❼ ❼

Cumulative lognormal2 ❼ ❼

Cumulative gamma ❼ ❼

Hazard halfnormal ❼

Hazard hazard rate2 ❼
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Hazard exponential ❼

Hazard annular halfnormal ❼

Hazard cumulative gamma ❼

1Not fitted by ML SECR
2Not recommended because of heavy tail
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Appendix 3. Functions in secr arranged accord-

ing to use

This list groups the main functions of secr 2.6. Many functions for data ma-

nipulation and plotting are omitted. S3 methods are marked with an asterisk

(*).

Manipulate core objects

addCovariates add spatial covariates to traps or mask

head* first rows of capthist, traps or mask

join combine sessions of multi-session capthist object

make.grid construct detector array

make.capthist form capthist from traps and detection data

make.mask construct habitat mask (mesh)

make.systematic construct random systematic design

MS.capthist combine capthist objects into one multisession capthist

plot* plot capthist, traps or mask

rbind.capthist append capthist objects

read.capthist input captures and trap layout from Density format, one

call

read.traps input detector locations from text file

reduce* aggregate detectors or occasions; change detector type

sim.capthist simulate capture histories

subset* filter capthist, traps or mask

snip split transect(s) into equal sections

summary* summarise capthist, traps or mask

tail* last rows of capthist, traps or mask

trap.builder construct various complex designs

verify* check capthist, traps or mask for internal consistency

randomHabitat generates habitat mask with random landscape

Extract or replace attributes of traps object

clusterID cluster identifier

clustertrap detector number within cluster

covariates* detector-level covariates

detector* detector type (‘multi’, ‘proximity’ etc.)

polyID* polygon or transect identifier

timevaryingcov name time-varying covariate(s)

usage* occasion- and detector-specific effort

Extract or replace attributes of capthist object

addTelemetry add telemetry data to a ‘proximity’ or ‘count’ object
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covariates* individual-level covariates, including grouping factors

session* session identifier(s)

session* session identifier(s)

signalmatrix sound x microphone table

traps* embedded traps object(s)

Extract detection-specific data from capthist object

alive TRUE/FALSE

animalID individual ID

clusterID cluster identifier

clustertrap detector number within cluster

noise noise (signal detectors)

occasion occasion

signal signal strength (signal detectors)

signalframe whole signal & noise dataframe (rows = detections)

trap detector

xy detection coordinates (polygon and transect detectors)

Fit SECR model

ip.secr fit simple SECR model by simulation & inverse prediction

secr.fit maximum likelihood fit; result is a fitted secr object

Operate on fitted secr object(s)

AIC* model selection, model weights

coef* ‘beta’ parameters

collate tabulate estimates from several models

confint* profile likelihood confidence intervals

derived density from conditional likelihood models

deviance* model deviance

df.residual* degrees of freedom for deviance

derived.nj variance from replicated sampling units

derived.cluster variance from replicated sampling units

derived.external variance from replicated sampling units

fxi.secr probability density of home-range centre

logLik* log-likelihood of fitted model

LR.test likelihood-ratio test of two models

model.average combine estimates using AICc weights

plot* plot detection functions with confidence bands

predict* ‘real’ parameters for arbitrary levels of predictor variables

predictDsurface* evaluate density surface at each point of a mask

score.test model selection with score statistic using observed informa-

tion
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simulate* generate realisations of fitted model

sim.secr parametric bootstrap

vcov* variance-covariance matrix of ‘beta’ or ‘real’ parameters

Mask diagnostics

suggest.buffer find buffer width to keep bias within bounds

esa.plot cumulative plot esa vs buffer width

mask.check likelihood or estimates vs. buffer width and spacing

Specialised graphics

fxi.contour contour plot of home-range centre pdf(s)

pdot.contour contour plot of detection probability

buffer.contour concave and convex boundary strips

Convert or export data

RMarkInput convert capthist to dataframe for RMark

write.capthist export capthist as text files for DENSITY

write.DA convert capthist for analysis in WinBUGS

write.SPACECAP export capthist as text files for SPACECAP

writeGPS upload coordinates to GPS using GPSBabel

Miscellaneous

ARL asymptotic range length

autoini generate starting values of D, g0 and sigma for secr.fit

closure.test closure tests of Otis et al. (1978) and Stanley & Burnham

(1999)

closedN closed population size by various conventional estimators

counts summary data from capthist object

dbar mean distance between capture locations

distancetotrap from an arbitrary set of points

MMDM mean maximum distance moved

moves distances between capture locations

nearesttrap from an arbitrary set of points

pdot location-specific net probability of detection

RPSV ‘root pooled spatial variance’, a simple measure of home-

range size

Datasets – see ?datasetname for details

deermouse Peromyscus maniculatus live-trapping data of V. H. Reid

published as a CAPTURE example by Otis et al. (1978)

Wildlife Monographs 62
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hornedlizard repeated searches of a quadrat in Arizona for flat-tailed

horned lizards Phrynosoma mcallii (Royle & Young Ecology

89, 2281–2289)

housemouse Mus musculus live-trapping data of H. N. Coulombe pub-

lished as a CAPTURE example by Otis et al. (1978)

Wildlife Monographs 62

ovenbird multi-year mist-netting study of ovenbirds Seiurus auro-

capilla at a site in Maryland, USA.

ovensong acoustic detections of ovenbirds (Dawson & Efford Journal

of Applied Ecology 46, 1201–1209)

possum brushtail possum Trichosurus vulpecula live trapping at

Waitarere, North Island, New Zealand April 2002 (Efford

et al. 2005 Wildlife Society Bulletin 33, 731–738)

secrdemo simulated data captdata and some fitted models

skink multi-session lizard (Oligosoma infrapunctatum and O. li-

neoocellatum) pitfall trapping data from Lake Station, Up-

per Buller Valley, South Island, New Zealand (M. G. Efford,

B. W. Thomas and N. J. Spencer unpublished).

stoatDNA stoat Mustela erminea hair tube DNA data from Matak-

itaki Valley, South Island, New Zealand (Efford, Borchers

and Byrom 2009).
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Appendix 4. Models in secr

A family of capture–recapture models, such as the Cormack-Jolly-Seber models

for survival, may include submodels6 that allow for variation in core (‘real’)

parameters, including the effects of covariates. Annual survival, for example,

may vary with the severity of winter weather, so it often makes sense to include

a measure of winter severity as a covariate. Gary White’s MARK software has

been particularly successful in packaging open-population models for biologists,

and secr aims for similar flexibility.

The language of generalised linear models is convenient for describing sub-

models (e.g. Huggins 1989, Lebreton et al. 1992). Each parameter is treated

as a linear combination of predictor variables on its transformed (‘link’) scale.

This is useful for combining effects because, given a suitable link function, any

combination maps to a feasible value of the parameter. The logit scale has this

property for probabilities in (0, 1), and the natural log scale works for positive

parameters i.e. (0, +∞). These are the link functions used most often in secr,

but there are others, including the identity (null) link.7

Submodels are defined symbolically in secr using R formula notation. A

separate linear predictor is used for each core parameter. Core parameters are

‘real’ parameters in the terminology of MARK, and secr uses that term because

it will be familiar to biologists. Four real parameters are commonly modelled

in secr 2.6; these are denoted D (for density), g0, sigma and z. Only the last

three real parameters, which jointly define the model for detection probability

as a function of location, can be estimated directly when the model is fitted

by maximizing the conditional likelihood (CL = TRUE in secr.fit). D is then

a derived parameter that is computed from an secr object with the function

derived or one of its siblings (derived.cluster etc.). ‘z’ is a shape parameter

that is used only when the detection function has three parameters (annular

halfnormal, cumulative gamma, hazard-rate etc. – see ?detectfn).

For each real parameter there is a linear predictor of the form y = Xβ,

where y is a vector of parameter values on the link scale, X is a design matrix

of predictor values, and β is a vector of coefficients. Each element of y and

corresponding row of X relates to the value of the real parameter in a particular

circumstance (e.g. density at a particular point in space, or detection probabil-

ity of an animal on a particular occasion). The elements of β are coefficients

estimated when we fit the model. In MARK these are called ‘beta parameters’

to distinguish them from the transformed ‘real’ parameter values in y. secr

acknowledges this usage, but also refers to beta parameters as ‘coefficients’ and

real parameters as ‘fitted values’, a usage more in line with other statistical

6This use of ‘submodel’ is non-standard – maybe we’ll find a better term
7Set link functions with the link argument of secr.fit.
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modelling in R. X has one column for each element of β. Design matrices are

described in more detail in the next section.

Design matrices

A design matrix is specific to a ‘real’ parameter. Each design matrix X contains

a column of ‘1’s (for the constant or intercept term) and additional columns as

needed to describe the effects in the submodel for the parameter. Depending on

the model, these may be continuous predictors (e.g. air temperature to predict

occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal i was

caught before occasion s, 0 otherwise), or coded factor levels. Within secr.fit,

each design matrix is constructed automatically from the input data and the

model formula in a 2-stage process.

First, a data frame is built containing ‘design data’ with one column for

each variable in the formula. Second, the R function model.matrix is used to

construct the design matrix. This process is hidden from the user. The design

matrix will have at least one more column than the design data; there may be

more if the formula includes interactions or factors with more than two levels.

For a good description of this general approach see the documentation for RMark

(Laake and Rexstad 2008). The necessary design data are either extracted from

the inputs or generated automatically, as explained in later sections. ‘Real’

parameters fall into two groups: density (D) and detection (g0, sigma and z).

Density and detection parameters are subject to different effects, so they use

different design matrices as described in the next three sections.

Detection submodels

For SECR, we want to model the detection of each individual i on occasion s at

detector k. Given n observed individuals on S occasions at K detectors, there

are therefore nSK detection probabilities of interest. We treat these as elements

in a 3-dimensional array. Strictly, we are also interested in the detection proba-

bilities of unobserved individuals, but these are estimated only by extrapolation

from those observed so we do not include them in the array.

In a null model, all nSK detection probabilities are assumed to be the same.

The conventional sources of variation in capture probability (Otis et al. 1978)

appear as variation either in the n dimension (‘individual heterogeneity’ h), or

in the S dimension (‘time variation’ t), or as a particular interaction in these two

dimensions (‘behavioural response to capture’ b). Combined effects are possible.

SECR introduces additional complexity.

Detection probability in SECR is no longer a scalar (even for a particular
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animal-occasion-detector combination); it is described by a ‘detection function’.

The detection function may have two parameters (e.g. g0, sigma for a half-

normal function), or three parameters (e.g. g0, sigma, z). Any of the parameters

of the detection function may vary with respect to individual (subscript i),

occasion (subscript s) or detector (subscript k).

The full design matrix for each detection submodel has one row for each

combination of i, s and k. Allowing a distinct probability for each animal (the

n dimension) may seem excessive, and truly individual-specific covariates are

feasible only when a model is fitted by maximizing the conditional likelihood (cf

Huggins 1989). However, the full nSK array is convenient for coding both group

membership (Lebreton et al. 1992, Cooch and White 2008) and experience of

capture, even when individual-specific covariates cannot be modelled.

The programming gets even more complex. Analyses may combine data from

several independent samples, dubbed ‘sessions’. This adds a fourth dimension

of length equal to the number of sessions. When finite mixture models are used

for detection parameters there is even a fifth dimension, with the preceding

structure being replicated for each mixture class. Fortunately, secr handles all

this out of view: as a user you only need to know how to specify the detection

model.
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