Welcome to issue 89 of Diabetes and Obesity Research Review.

The final issue for 2014 includes a useful report from the UK NHS (National Health Service) on costs associated with providing footcare to patients with diabetes. Spanish research has identified a possible link between type 1 diabetes and reduced fertility, particularly in women. US researchers’ attempts at improving the diets of schoolchildren by providing a healthy corner store intervention were, unfortunately, unsuccessful. On a brighter note to end the year, encouraging results were seen when pharmacists led an intervention to help manage type 2 diabetes in the community.

I look forward to bringing you our next issue of Diabetes Research Review in 2015.

Best wishes for happy and safe holidays,

Dr Jeremy Krebs
jeremykrebs@researchreview.co.nz

Glycemic control and excess mortality in type 1 diabetes

Authors: Lind M et al.

Summary: This research included 33,915 Swedish registry patients with type 1 diabetes each matched to five controls from the general population. During mean follow-up periods of 8.0 and 8.3 years, respectively, the mortality rate was greater in the diabetes group than the control group (8.0% vs. 2.9%; adjusted HR 3.52 [95% CI 3.06, 4.04]), including a higher cardiovascular-related mortality rate (2.7% vs. 0.9%; 4.60 [3.47, 6.10]). Multivariable analyses revealed increasing respective all-cause and cardiovascular-related mortality risks as HbA1c level increased among diabetics versus controls (adjusted HRs 2.36 and 2.92 for HbA1c level ≤52 mmol/mol [≤6.9%], 2.38 and 3.39 for 53–62 mmol/mol [7.0–7.8%], 3.11 and 4.44 for 63–72 mmol/mol [7.9–8.7%], 3.65 and 5.35 for 73–82 mmol/mol [8.8–9.6%] and 8.51 and 10.46 for ≥83 mmol/mol [≥9.7%]).

Comment: This study is somewhat sobering for December. We have quoted DCCT to our patients with type 1 diabetes as evidence that achieving tight glycaemic control is important for reducing the risk of microvascular complications. Even to say that if the HbA1c level is less than 53 mmol/mol, such risk is minimal. This may be true, but unfortunately this large registry study from Sweden showed that achieving tight control did not protect completely from excess macrovascular disease. It must be noted that poor glycaemic control conferred significantly greater risk, and is therefore still supportive evidence for aiming for tight control.

In this issue:

- Glycemic control and excess mortality in type 1 diabetes
- A cascade of care for diabetes management in the US
- Incidence of type 2 diabetes remission
- Cost of diabetic foot disease for the UK NHS
- Socioeconomic status and incident diabetes
- Impact of age and diabetes duration on complications risks
- Reduced fertility in type 1 diabetes
- Consumers perceptions of the usefulness of added-sugar food labelling
- Healthy corner store initiative aimed at urban, low-income youth
- Pharmacy-led type 2 diabetes management

Abbreviations used in this issue
BP = blood pressure
HbA1c = glycosylated haemoglobin
HR = hazard ratio
RCT = randomised controlled trial

New Venue for 2015
The Viaduct Events Centre
28 - 29 March 2015
Registrations will open soon at
www.goodfellowsymposium.org

Independent commentary by Dr Jeremy Krebs,
Endocrinologist & Clinical Leader at Wellington Hospital. He is also a Senior Clinical Lecturer with the University of Otago, and Director of the Clinical Research Diploma at Victoria University.

For full bio CLICK HERE.

Merry Christmas and a healthy, happy 2015!
FROM THE TEAM AT
RESEARCH REVIEW
A cascade of care for diabetes in the United States: visualizing the gaps

Authors: All MK et al.

Summary: These researchers developed a ‘cascade of care’ concept for diabetes in adults using data from the US NHANES. They estimated 28.4 million adults had diabetes in 2012, 72.2% of whom were aware of their diagnosis. Of those diagnosed, 95.3% had a usual care provider to whom 91.7% had made ≥2 or more visits in the preceding year. Among undiagnosed adults, 84.5% had a usual care provider to whom 66.5% reported ≥2 visits in the preceding year. Respective individualised goals for HbA1c, BP (<140/80mm Hg), lipid (LDL [low-density lipoprotein] cholesterol <2.6 mmol/L [<100 mg/dL]) and nonsmoking were met by 63.7%, 65.5%, 56.6% and 80.6% of diagnosed patients and by 77.0%, 57.9%, 36.0% and 77.9% of undiagnosed adults. A combined HbA1c, BP and LDL cholesterol target was met by 26.7% and 22.1% of diagnosed and undiagnosed adults, respectively, and a combination target of all four goals (i.e. including nonsmoking) was met by 21.3% and 18.8%, respectively.

Comment: These data from the US are not dissimilar to those taken from our ‘Get Checked’ data. A combined achieved target of less than 25% of people meeting glucose, lipid and BP goals is appalling. In many cases though, this is not through lack of effort on behalf of clinicians or patients. In addition the acceptance of more individualised targets makes it harder to interpret these data. However, clinical inertia has been shown in other studies to be a major contributor. Of more concern are the group of patients who do not engage with primary care. They are hard to reach and even harder to motivate to engage. These data call for increased efforts to systematically standardise care, actively review practice data down to an individual patient level and proactively reach out to those not achieving targets, rather than depend on more patient-driven encounters. This is a real challenge that many primary-care systems are grappling with.

Incidence of remission in adults with type 2 diabetes

Authors: Karter AJ et al.

Summary: The incidence of diabetes remission was examined in 122,781 adults with type 2 diabetes in the Diabetes and Aging study; remission was defined as absence of ongoing antidiabetic therapy and an HbA1c level of 39–46 mmol/mol (5.7–6.4%) for ≥1 year (partial remission) or an HbA1c level <39 mmol/mol (<5.7%) for ≥1 year (complete remission) or ≥5 years (prolonged remission). The respective partial, complete or prolonged remission incidence densities were 2.8, 0.24 and 0.04 per 1000 person-years and the 7-year cumulative incidences were 1.47%, 0.14% and 0.007%. The 7-year cumulative incidence of any remission was 1.60% overall and 4.6% in those with a recent diabetes diagnosis (<2 years). Age >65 years, <2 years since diagnosis, baseline HbA1c level <39 mmol/mol (<5.7%) and no diabetes medication at baseline were among the correlates for remission after adjustments.

Comment: When discussing treatment options with people with type 2 diabetes who are obese, it is not infrequent to be asked if people can reverse their diabetes. This is commonly in the context of a discussion about potential benefits of bariatric surgery versus escalation of drug treatment. This study provides useful real-world data to show just how rarely people do reverse diabetes without surgery. This does not mean that significant improvements in control and delays in progression to insulin therapy can’t be achieved with weight loss through diet and lifestyle changes, but so-called ‘remission’ is rare.

Reference: Diabetes Care 2014;37(12):3188–95

Cost of diabetic foot disease to the National Health Service in England

Authors: Kerr M et al.

Summary: Using national datasets and economic modelling, these authors estimated that diabetic footcare cost the UK NHS £580 million in 2010–2011, which was ~0.6% of the NHS’s total expenditure in England. They estimated that £307 million was spent on ulcer care in primary and community settings. Hospital records showed that 8.8% of diabetes admissions included ulcer care or amputation. A regression analysis suggested that foot disease increased length of stay by a factor of ~2.5. The respective estimated costs of inpatient ulcer care and amputation were £219 million and £55 million.

Comment: I include this paper not because it is brilliant science, but because it addresses an important issue that is highly relevant to NZ. The paper reports on cost to the health system of diabetes-related footcare in the UK, and estimates this to be 0.6% of the total NHS budget. There are two important observations. The first was that half of this was for ulceration in a primary-care setting, and the second was the increased length of stay during hospital admissions. In NZ there are new guidelines and pathway for footcare in diabetes that should go a long way to prevent ulceration and amputation in diabetes. What is critically important is that these guidelines are implemented across the DHBs and that podiatry services are adequately staffed and resourced to manage the workload. Unfortunately, at present neither are the case. Note to planners and funders for 2015 – must try harder.

Diabetes New Zealand information booklets for your practice

Support your patients and order

www.researchreview.co.nz
Socio-economic status and incident diabetes mellitus among employees in Denmark

Authors: Cleal B et al.

Summary: This prospective analysis of Danish registry data from 1005,572 men and 951,039 women aged 20–59 years explored the relationship between socio-economic status and incident diabetes. There were 43,439 cases of incident diabetes recorded among 916,305 person-years of follow-up. The incidence rate was highest among men in the socio-occupational reference group, other groups had an increased risk of developing diabetes, and excess fractions were 0.349 (95% CI 0.340, 0.358) for men and women, respectively.

Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes

Authors: Zoungas S et al., for the ADVANCE Collaborative group

Summary: This was an analysis of data from 11,140 ADVANCE trial participants with type 2 diabetes who had been randomised to intensive or standard glucose control. Significant associations were seen between diabetes duration and risk of macrovascular events (adjusted HR 1.13 [95% CI 1.08, 1.17]), microvascular events (1.28 [1.23, 1.33]) and death (1.15 [1.10, 1.20]). Age (or age at diagnosis) was significantly associated with increased risks of macrovascular events (adjusted HR 1.33 [95% CI 1.27, 1.39]) and death (1.56 [1.48, 1.64]), but not microvascular events. No interactions were seen between diabetes duration, age and the risk of macrovascular events or death (p>0.4 for both), but the effects of increasing diabetes duration on risk of microvascular events were greatest in younger versus older patients (p=0.002).

Comment: Understanding risk for micro- and macrovascular complications for individuals with diabetes is an important part of our daily practice. This report from the ADVANCE dataset looked at the relationship between age and diabetes duration and complications. Although the number of participants in this trial was over 11,000, the results of this analysis must be interpreted with caution. Those enrolled were highly selected and are not representative of those seen most commonly in primary care. They were at high risk of a macrovascular event, either because they had already had one, or they had at least one risk factor and a duration of diabetes of at least 10 years. That said, the results align with what we might expect with diabetes duration being more important than age for microvascular disease, but both are important for macrovascular disease after adjustment for diabetes control.

Reference: Diabetologia 2014;57(12):2465–74

Abstract

Time spent reading this publication has been approved for CME by The College of Nurses Aotearoa (NZ) for RNs and NPs. For more information on how to claim CME hours please CLICK HERE.

Lantus* (insulin glargine) is now fully funded for Type 2 diabetes patients requiring insulin.1,2

• Once daily Lantus delivers 24-hour peakless efficacy.2,3
• There is no pronounced peak, and less risk of symptomatic and nocturnal hypoglycaemic events than NPH in T2D patients.2,4,5

For prescribing information, visit www.medsafe.govt.nz

References:
Fertility is reduced in women and in men with type 1 diabetes

Authors: Webe JC et al., on behalf of the T1DGC

Summary: This analysis of data from affected (n=3010) and unaffected (n=801) siblings aged ≥18 years from families included in the T1DGC (Type 1 Diabetes Genetics Consortium) explored the effect of type 1 diabetes on fertility. Unaffected individuals had more offspring than affected individuals, with the difference more pronounced in women than men. Sex and birth cohort significantly affected the between-group differences in a Poisson regression analysis. Among affected siblings, associations were seen between higher fertility and diabetes onset at age ≥18 years, female sex and older birth cohort.

Comment: This observational study assessed whether type 1 diabetes impacts on fertility. It used data from the genetics consortium, which includes siblings of those with diabetes, and compared the number of offspring between affected and unaffected siblings. Those with type 1 diabetes had fewer children and this was more pronounced in women. However, it isn’t possible to determine from this study whether this is an infertility consequence of having diabetes or whether this may be personal choice and all the factors that may contribute to that. The observation that adult onset of disease was associated with a higher number of offspring might suggest that early onset of disease may have an effect on fertility, and this warrants further research.

Reference: Obesity 2014;22(12):2481–4

Abstract

Cost-effectiveness of reducing glycaemic episodes through community pharmacy management of patients with type 2 diabetes mellitus

Authors: Hendrie D et al.

Summary: This Australian research compared a pharmacist-led diabetes education programme with standard care in patients with type 2 diabetes from Perth; eight community pharmacies were paired, with one randomised to deliver intervention with the other assigned as controls. The programme cost AU$394 per patient to implement for the 6-month intervention period. Compared with controls, the intervention was associated with significantly greater reductions in the number of hyperglycaemic and hypoglycaemic episodes (respective odds ratios 0.34 [95% CI 0.22, 0.52; p=0.001] and 0.54 [0.34, 0.86; p=0.009]), with a net reduction in glycaemic episodes of 1.86 days per patient per month. Relative to standard pharmacy care, the cost-effectiveness of the programme was AU$43 per day of glycaemic symptoms avoided. Furthermore, surveyed patients with type 2 diabetes indicated they were willing to pay an average of 1.9 times that amount to avoid 1 day of hypoglycaemia.

Comment: With increasing numbers of people with type 2 diabetes, it is important that we look for new opportunities to influence care, particularly in community and primary-care settings. Community pharmacies are increasingly being seen as a possible focus for long-term condition management. This RCT assessed whether a pharmacist-led education programme is cost effective for reducing symptomatic glycaemic excursions. The conclusion was that it is, and particularly when compared with what people with type 2 diabetes would be prepared to pay to avoid hypoglycaemia. It would have been useful to know whether this also impacts on HbA1c level, and this should be an outcome tested in a longer RCT. However, these results are encouraging, that community pharmacists may have an important role to play.

Abstract

Erratum

In the previous issue of Diabetes Research Review issue 88, our summary of the study ‘Metformin and low levels of thyroid-stimulating hormone in patients with type 2 diabetes mellitus’ by Fournier J-P et al. incorrectly stated:

“Compared with sulphonylurea monotherapy, metformin monotherapy was associated with a significantly lower incidence rate of low TSH levels in patients with treated hypothyroidism (79.5 vs. 125.2 per 1000 person-years; adjusted HR 1.55 [95% CI 1.09, 2.20]), particularly 90–180 days after starting treatment (2.30 [1.00, 5.29]), but not in euthyroid patients (0.97 [0.69, 1.36]).”

The correction for this sentence is as follows:

“Compared with sulphonylurea monotherapy, metformin monotherapy was associated with a significantly higher incidence rate of low TSH levels in patients with treated hypothyroidism (125.2 vs. 79.5 per 1000 person-years; adjusted HR 1.55 [95% CI 1.09, 2.20]), particularly 90–180 days after starting treatment (2.30 [1.00, 5.29]), but not in euthyroid patients (0.97 [0.69, 1.36]).”