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a b s t r a c t

We consider the question of how accurately we can hope to predict future biodiversity in a world in
which many interacting species are at risk of extinction. Simple models assuming that species’
extinctions occur independently are easily analysed, but do not account for the fact that many species
depend on or otherwise interact with each other. In this paper we evaluate the effect of explicitly
incorporating ecological dependencies on the predictive ability of models of extinction. In particular, we
compare a model in which species’ extinction rates increase because of the extinction of their prey to a
model in which the same average rate increase takes place, but in which extinctions occur
independently from species to species. One might expect that including this ecological information
would make the prediction of future biodiversity more accurate, but instead we find that accounting
for food web dependencies reveals greater uncertainty. The expected loss of biodiversity over time
is similar between the two models, but the variance in future biodiversity is considerably higher in
the model that includes species interactions. This increased uncertainty is because of the non-
independence of species—the tendency of two species to respond similarly to the loss of a species on
which both depend. We use simulations to show that this increase in variance is robust to many
variations of the model, and that its magnitude should be largest in food webs that are highly
dependent on a few basal species. Our results should hold whenever ecological dependencies cause
most species’ extinction risks to covary positively, and illustrate how more information does not
necessarily improve our ability to predict future biodiversity loss.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Prediction is very difficult, especially about the future.

Niels Bohr, Danish physicist (1885–1962)

1.1. Predicting future biodiversity

We are in the midst of a major biodiversity crisis, with many
species either extinct or threatened by extinction (Pimm et al.,
1995). To predict how much of present biodiversity will be lost in
the future, and to evaluate the ability of conservation strategies to
slow this decline, we need estimates of species’ risk levels and a
framework in which to model how these risks will translate to
extinctions. By expressing threat levels as extinction rates—or
probabilities that species will be lost over a given period of
time—we can model the expected loss of biodiversity. A common
approach is to envision a ‘field of bullets’ (Nee, 1997; Raup, 1992)
in which species go extinct stochastically over time.

A drawback to this modelling approach is the assumption that
species’ extinctions are independent of one another. If species are
members of the same ecological communities this assumption is
likely to be invalid. The extinction of any one species has the
potential to affect the extinction rate of other species that it
interacts with directly or indirectly. If secondary extinctions—
extinctions caused at least in part by the extinction of other
species—are common, diversity should decline more rapidly than
if species were independent. Furthermore, the non-independence
of interacting species may affect the precision with which we can
predict biodiversity loss. We might expect information about
species interactions to improve prediction, but this is not
necessarily the case. The non-independence of interacting species
could increase uncertainty if it causes species’ extinctions to be
clustered into extinction cascades rather occurring independently
through time.

1.2. Incorporating ecological interactions into models of extinction

The original field of bullets (FOB) model assumed a single
extinction rate for all species, leading to a Poisson process of
extinction and an exponential decline of future biodiversity
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(Raup, 1992). This simple approach can be generalized to
situations where extinction rate varies among species or over
time. Species may have different extinction rates because they
differ in traits such as body mass that make some species
intrinsically more vulnerable (Purvis et al., 2000). Extinction rates
may change over time if threat factors intensify or are amelio-
rated by conservation measures; this change in extinction rate
may be uniform or may itself vary among species. Rate variation
among species and with time can be incorporated into a
generalized field of bullet (‘g-FOB’) model, in which extinction is
modelled as a non-stationary Poisson process. Despite this added
realism, the g-FOB model still makes the key assumption that
extinction events occur independently among species, such that
the extinction of one species does not change the extinction rate
of any another.

In a first step toward incorporating species interactions, Solé and
Manrubia (1996) devised a model in which species have both positive
and negative interactions of varying strength, and go extinct when
extinctions of interacting species drive the sum of their interactions
with surviving species below a threshold value. The addition of these
interactions causes the waiting times to extinction and the size of
‘extinction avalanches’ (simultaneous extinction of multiple species)
to shift from an exponential to a power-law distribution. In biological
terms, this implies that species losses will be clustered into fewer,
larger avalanches. This should make future biodiversity inherently
less predictable when species depend on each other, as the rate of
species loss will depend on a few critical events. While this model
represents progress toward incorporating ecology into extinction
models, the arbitrary topology of the interaction network makes its
relevance to real communities unclear.

A second line of theoretical research has focussed on one
important interaction type—predation—to model the extinction
of species interacting in food webs (networks that map who eats
who in ecological communities). A primary goal of these studies is
to determine whether robustness (resistance to secondary
extinctions) can be predicted by the topology of food webs. A
common approach is to simulate the collapse of real or model
food webs by sequentially deleting species, and test whether
robustness varies with food web diversity, complexity, or other
features (Dunne et al., 2002). These topological analyses have
shown that robustness can indeed be predicted by food web
structure, often increasing with connectance (density of links) or
redundancy (frequency of trophically identical species) (Borrvall
et al., 2000; Dunne et al., 2002; Dunne and Williams, 2009;
Petchey et al., 2008; Quince et al., 2005). Subsequent work has
identified features such as bottlenecks and important individual
links that make food webs prone to extinction cascades (Allesina
and Bodini, 2004; Allesina et al., 2009). This work has contributed
to the longstanding argument about the relationship between
complexity and stability (May, 1973; McCann, 2000) by showing
that aspects of food web complexity may confer resistance to
ecosystem collapse.

Topological analyses are informative about the relationship
between food web interactions and extinction cascades, but the
method of sequential deletion does not provide a timescale on
which to estimate either the mean or variance of future
biodiversity. A model by Amaral and Meyer (1999) organizes
species into different trophic levels in a food web and tracks the
fate of species over time. As in the previous models, extinctions
are deterministic (i.e. a species goes extinct immediately when its
final prey becomes extinct). In most cases the effects of
incorporating ecological dependencies are similar to those
identified by Solé and Manrubia (1996), although in highly
connected food webs the distribution of extinction avalanche
sizes may be even more skewed toward a few large events
(Pękalski et al., 2008).

To our knowledge, the effect of ecological dependencies on our
ability to predict future biodiversity has not yet been studied
explicitly. In the topological analyses described above this
unpredictability could in principle be quantified as the variance
in robustness among different deletion sequences, but we are
unaware of this having been done. It is perhaps more appropriate
to model this uncertainty using a framework related to the g-FOB
model that includes explicit extinction rates rather than sequen-
tial deletions. This approach allows us to model a species’
extinction rate as an increasing function of the proportion of its
prey that have gone extinct, in contrast to the usual assumption
that extinction rate does not change until the extinction of the
final prey species, whereupon extinction is immediate. In our
approach, the extinction rate of a predator begins to increase as
soon as some of its prey begin to go extinct, reflecting the
likelihood of lower population sizes and decreased foraging
success. When all of a species’ original prey have gone extinct,
its extinction rate is higher but finite, allowing some capacity for
switching to novel prey types. Here, we develop a framework that
uses food web topology to model extinction rates that change
following other extinctions. In this context, we use ‘extinction’ to
refer to the permanent extirpation of a species from the
community, as the effect on the food web should be the same
whether the extinction is local or global.

2. Model presentation

Here we summarize the properties of the field of bullets class
of models, and discuss extensions that allow for secondary
extinctions by incorporating ecological dependencies. We examine
how these dependencies affect our ability to predict future
biodiversity. We measure biodiversity as the number of species
remaining (though we discuss other possibilities), and quantify
our uncertainty as the variance in future biodiversity.

2.1. Modelling extinction I: generalized ‘field of bullets’ (g-FOB)
models

Consider a finite set X of species. First, suppose each species
xAX undergoes extinction independently according to a non-
stationary death process, at rate rx(t). We suppose that the present
time is t¼0, and that biodiversity declines under a ‘pure death’
process, assuming that any contribution from speciation is
negligible over the time frame involved. Allowing rx(t) to vary
with time allows for (i) changing environmental conditions (e.g.
climate change) that may alter extinction risk, and (ii) changes in
the timing or intensity of conservation measures. Let px(t) denote
the probability that x is extant (has not gone extinct) at time tZ0.
This is given by the well-known formula for a non-stationary
Poisson process:

pxðtÞ ¼ exp $
Z t

0
rxðuÞdu

! "
: ð1Þ

Notice that px(t) decreases monotonically with increasing t, and it
converges to zero—meaning that species x is guaranteed to
eventually go extinct—if and only if rx(t) converges to zero slowly
enough that

R t
0 rxðuÞdu tends to infinity (e.g. if rxðtÞ ¼ ðtþ1Þ$g for

gr1, but not for g41). This process induces a continuous-time
non-stationary Markov process Yt on the state space 2X (the set of
all subsets of X) defined by Y0 ¼ X (with probability 1) and

PðYt ¼ YÞ ¼
Y

xAY

pxðtÞ &
Y

xAX$Y

ð1$pxðtÞÞ,

where px(t) is given by Eq. (1). In this extension of the generalized
field of bullets (g-FOB) model from Faller et al. (2008), extinction
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rates can vary among taxa and with time, but we still assume
independence of extinction events between taxa.

2.2. Modelling extinction II: ecology-based ‘field of bullets’ (eco-FOB)
models

We incorporate ecology by using food web topology to define
species’ dependencies on one another. A food web can be
represented as a directed graph (X,A, w) where the set of arcs is
A (a subset of X'X) and an arc (y, x) is drawn from each prey y to
each of its predators x. w is a weighting function w : X ' X-R
that satisfies the constraint:

for each xAX,
X

yAPðxÞ

wxy ¼ 1,

where P(x) denotes the set of prey species of x—that is
PðxÞ :¼ fyAX : ðy,xÞAAg. The weight wxy describes the proportional
importance of y to x. We can assume that each prey species y has
equal weight, or wxy can be quantified as the proportional
numerical or energetic contribution of y to the diet of x. It is
convenient in what follows to introduce a root vertex r (outside
of X) that corresponds to the external environment (Allesina and
Bodini, 2004). For each source species x that has no incoming arc
(i.e. the primary producers in the food web), we add an arc from r
to x. For an example of a food web topology, see Fig. 1, which
shows the Chesapeake Bay estuarine food web (Baird and
Ulanowicz, 1989) used for simulations later in this manuscript.

In an ecological network, it is reasonable to assume that the
extinction risk of a species x at any time t depends not only on its
intrinsic response to threat factors and conservation efforts
(collectively described by rx(t)) but also on the fate of the other
species with which it interacts. Thus, we can use (X, A,w) to define
a modified continuous-time non-stationary Markov pure death
process, Yt on 2X defined by Y0 ¼ X (with probability 1) and with

PðYtþd ¼ Y$xjYt ¼ YÞ ¼ rxðt,YÞdþoðdÞ ð2Þ

for each xAY , and for some rate function rx(t,Y) and

PðYtþd ¼ Y 0jYt ¼ YÞ ¼ oðdÞ ð3Þ

for any set Y 0 that is not a one-element deletion of Y, or equal to Y.
Informally, what these last two equations express is that over a
sufficiently short period of time (of duration d), the only possible
outcomes are that either there is no new extinction or one of the

species extant at that moment becomes extinct. Moreover, the
probability that a particular extant species becomes extinct in
that moment depends on which other species are extant.

Like most previous studies of extinctions in food webs
(Allesina and Bodini, 2004; Amaral and Meyer, 1999; Dunne
et al., 2002), ours focuses on bottom-up extinctions (secondary
extinction of predators following extinction of some or all of their
prey). This means we do not account for any changes in extinction
rate caused by other interaction types, such as top-down effects of
predators on prey, exploitation competition or mutualism. Models
with explicit population dynamics can allow extinctions driven by
other interaction types, and indicate that a focus on bottom-up
extinctions underestimate the total number of secondary extinc-
tions (Ebenman et al., 2004). However, these models require
detailed knowledge (or many more assumptions) about how
these interactions influence extinction rates (Ebenman and
Jonsson, 2005). For example, following the extinction of its
predator, the extinction rate of a prey species may decrease if it
was limited by predation or increase if the predator was
suppressing a competing prey species. We focus on the more
straightforward bottom-up interactions for the analyses and
simulations in this paper, and explore the possible implications
of doing so in the Discussion.

The model described by Eqs. (2) and (3) is very general, and
without further restrictions it would require a huge number of
parameters to fully specify the model for even a moderately sized
network. Thus it is helpful at this point to propose a simple
parametric description for the rate function rx(t,Y). We assume
that only the prey taxa of x are directly involved in determining its
extinction rate, and that the rate function rx(t,Y) in (2) can be
written as

rxðt,YÞ ¼ rxðtÞþðqxðtÞ$rxðtÞÞ & ð1$sx,Y Þb ð4Þ

for a constant b40 and where rxðtÞrqxðtÞ and sx,Y ¼
P

yAPðxÞ\Ywxy

(Fig. 2). Thus the extinction rate of x increases as the proportion
of its prey remaining sx,Y decreases. We refer to rx(t) as the
intrinsic extinction rate of species x at time t, and to rx(t,Y) as the
effective extinction rate of species x at time t (this latter rate is a
random variable as it depends on the status of P(x) at time t).
The quantity qx(t) is the maximum rate of extinction of x when all
of its prey are extinct; this rate may be very high but we assume
it is finite. b is a curvature parameter determining how a
predator’s extinction rate increases as more of its prey go
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Fig. 1. Structure of the Chesapeake Bay food web (Baird and Ulanowicz, 1989). Trophic links are represented as arrows pointing from prey to predator.
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extinct. When b ¼ 1, the effective rate of extinction rx(t,Y)
increases linearly from rx(t) to qx(t) as the prey of x go extinct.
Values of 0obo1 mean that most of the increase in rx(t,Y) occurs
with the first prey extinctions, while b41 mean that rx(t,Y)
increases most with the last prey extinctions (Fig. 2). We will
assume throughout that for the root vertex r does not go extinct,
so that rrðtÞ ¼ 0 for all tZ0. We will refer to this model (defined
by (2)–(4)) as the eco-FOB model.

The model is now sufficiently well-specified that it can easily
be simulated, allowing us to study the effect of including ecology
on the distribution of quantities of interest. While the distribution
of Yt (the actual subset of species that are extant at time t) will
typically be difficult to measure by simulation when X is large,
real-valued quantities that are dependent on Yt (such as the
number of species extant at time t) will generally be much easier
to estimate reliably. We can therefore examine how ecological
dependencies influence the mean, the variance, or the entire
distribution of measures of biodiversity.

3. Analytic properties of a simple eco-FOB model and a
matching g-FOB model

We have now defined a model that incorporates species
dependencies, but to evaluate the effect of these dependencies we
require a suitable formulation of the g-FOB model as a basis for
comparison. We are most interested in the variance in future
biodiversity, so we would like the g-FOB model to match the trend
for mean future biodiversity under the eco-FOB model, allowing
differences in variance to be isolated. We could in principle
parameterize a single-rate g-FOB model by fitting an exponential
function to the expected decline in biodiversity through time.
However, this decline can diverge considerably from an expo-
nential under the eco-FOB, so a g-FOB using this rate estimate
leads to a poor match to the expected biodiversity decline and
inappropriate calculations of its variance.

Our solution is to use the results of the eco-FOB model itself to
construct a ‘matching’ g-FOB model. We calculate the trend in
mean extinction rate over time for each species in the food web.
We then use these rates to simulate extinctions under a g-FOB
model in which extinction rates vary among species and with
time. This model produces trends for mean future biodiversity

that closely match the eco-FOB model, allowing variances to be
compared and the effect of ecological dependencies on variance to
be isolated.

In this section, we consider a special case of the eco-FOB model
in which:

( b¼1;
( rx(t) ¼r for all species xAX and tZ0;
( qx(t) ¼ q for all species xAX and tZ0;

where qZr. Under these conditions, Eq. (4) simplifies to

rxðt,YÞ ¼ q$ðq$rÞ & sx,Y : ð5Þ

As in the g-FOB setting, let px(t) denote the probability that
species x is extant at time t in this eco-FOB model. Thus, if the
random variable Tx is the time until the extinction of species x,
pxðtÞ ¼PðTx4tÞ. We will derive equations for px(t) under the eco-
FOB model, and a matching g-FOB model.

Let rxðtÞ be the expected value of the instantaneous extinction
rate rx(t,Y) of species x. From Eq. (5), we have

rxðtÞ ¼ q$ðq$rÞ &
X

yAPðxÞ

wxypyðtÞ, ð6Þ

where py(t) is the probability that y is extant at time t.
Similarly, let rxxðtÞ denote the expected value of the instanta-

neous rate rx(t,Y) of species x conditional on x being extant at time
t. From Eq. (5) we have

rxxðtÞ ¼ q$ðq$rÞ &
X

yAPðxÞ

wxyp
x
yðtÞ, ð7Þ

where pxy(t) is the conditional probability that y is extant at time t
given that x is extant at time t.

Note that, in general, we have

pxðtÞaexp $
Z t

0
rxðuÞdu

! "
aexp $

Z t

0
rxxðuÞdu

! "
apxðtÞ, ð8Þ

as we will show by a simple example below.

3.1. Example: two special cases

We now consider two very special cases of the eco-FOB model
that are simple enough that we can explicitly calculate the
relevant rate functions (rxðtÞ and rxxðtÞ) and see how they are
related.

( First, suppose that either (i) the network is arbitrary and r¼q,
or (ii) the network consists only of the root vertex and the first
trophic level, so that species’ extinctions are independent. In
either case, the eco-FOB model is stochastically identical to a
g-FOB model with a single extinction rate r.

( Second, consider a network that consists of a directed chain
0-1-2- & & &-n$1-n, where 0 is the root vertex (with
extinction rate 0 as usual) and where all other vertices have
intrinsic extinction rate roq for all tZ0. In this case, it can be
shown that, for all integers xZ1:

pxþ1ðtÞ ¼ e$rtpxðtÞ$e$qt
Z t

0
eðq$rÞup0xðuÞdu: ð9Þ

A formal justification of Eq. (9) in provided in the Appendix.
To specialize this second case even further, suppose that n¼2

(a chain of length 3, including the root node 0). Thus we have the
simplest possible non-degenerate ecological network. For x¼1 we
have px(t) ¼ e$rt, while, for x¼2, Eq. (9) gives

pxðtÞ ¼ e$2rtþ
r

2r$q
ðe$qt$e$2rtÞ: ð10Þ
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Fig. 2. Parameters of the eco-FOB model. The parameter b (five values shown)
determines the trajectory from r (the intrinsic rate of extinction) to q (the
maximum effective rate of extinction).
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The unconditional and conditional rate functions rxðtÞ and rxxðtÞ for
x¼2 are given from (6) and (7) as

rxðtÞ ¼ q$ðq$rÞe$rt and rxxðtÞ ¼ q$
q$r

1þYxðtÞ
,

where YxðtÞ ¼ ðr=ð2r$qÞÞðeð2r$qÞt$1Þ, and where Eq. (10) and Bayes’
rule is used to derive the conditional probability pxy(t) in (7) for
x¼2, y¼1. This example suffices to establish the inequalities
recorded in (8). An interesting contrast between rxxðtÞ and rxðtÞ is
that, as t-1:

rxðtÞ-q while rxxðtÞ-minf2r,qg,

because rxxðtÞ is based only on the extinction rates of x conditional
on its having survived to time t.

3.2. Alternate measures of biodiversity

The biodiversity of an ecosystem can be measured in a variety
of ways. Recalling that Yt is the random subset of species in X
extant at a future time t, we can consider the number Nt ¼ jYtj of
species extant at time t, as we have done in this paper. Depending
on the unit of interest to conservation, X may refer to levels of
biological organization below (population or subspecies) or above
the species level (e.g. genus or aggregated ‘trophospecies’ that
occupy the same role in the food web). We can also generalize
from species richness to the sum ct over those species in Yt of
species-specific weights (e.g. weighting species by trophic level or
some other quantity of interest). That is

ct ¼
X

xAX

lxyxðtÞ,

where the Bernoulli random variable yxðtÞ is defined by

yxðtÞ :¼
1 if xAYt ði:e: species x is extant at time tÞ,
0 otherwise;

(

and where the species-specific weights lx are non-negative. The
special case ct ¼Nt , corresponds to setting lx ¼ 1 for all xAX.

Another option is phylogenetic diversity (PD), which describes
how much evolutionary history is captured by a group of species
(Faith, 1992; Gernhard et al., 2008; Hartmann and Steel, 2007;
Steel et al., 2007; Witting et al., 2000). Future biodiversity can be
measured as the PDt of the extant species at a future time t in
some evolutionary tree—in this case, a phylogenetic X-tree
T¼(V,E) with branch lengths l. PDt is the sum of the branch
lengths of the subtree that is spanned by the leaves in Yt and the
root of the tree. Formally

PDt ¼
X

eAE

leZeðtÞ,

where the random variable Ze(t)¼ 1 precisely if at least one
species in Yt is a descendant of e, and Ze(t) ¼ 0 otherwise. Note
that ct is also a special case of PDt where the tree is a ‘star tree’
with one interior vertex and weighted edges.

3.3. Comparing the distribution of ct under eco-FOB and
a matching g-FOB

We wish to compare the mean and variance of ct under two
matching models:

1. An eco-FOB model of the special type considered in this section
where b¼1, rx(t)¼r, qxðtÞ ¼ q4r.

2. A matching g-FOB model where the extinction rate of each
species x at time t is set equal to a mean rate derived from the
eco-FOB model. For our purposes we focus on the conditional
mean rate rxxðtÞ, which provides the best match to mean ct .

The eco-FOB model: Under this model, the mean and variance of
ct are given by

E½ct* ¼
X

xAX

lxpxðtÞ ð11Þ

and

VarðctÞ ¼
X

xAX

l2xpxðtÞð1$pxðtÞÞþ
X

x,x0 AX,xax0
lxlx0Cov½yxðtÞ,yx0 ðtÞ*, ð12Þ

where Cov refers to covariance (Cov½yxðtÞ,yx0 ðtÞ* is the probability
that both x and x0 are extant at time t minus the product of the
two separate probabilities that each are extant at time t).

The matching g-FOB model: In this model, ct has mean:

E½ct* ¼
X

xAX

lxpxðtÞ ð13Þ

and variance

Var½ct* ¼
X

xAX

l2xpxðtÞð1$pxðtÞÞ, ð14Þ

where

pxðtÞ ¼ exp $
Z t

0
rxxðuÞ du

! "
,

substituting rxðtÞ for rxxðtÞ if one wished to use the unconditional
mean rate.

Regarding the distribution of ct at a given time t under the
matching g-FOB model, we can apply the Central Limit Theorem
provided that (i) the number of species is large, (ii) any variation
in the pxðtÞ values with x is not too severe, and (iii) t is not so large
that most diversity has died out. In that case, ct will be
approximately normally distributed, with its mean and variance
given by (13) and (14), respectively.

The analysis of phylogenetic diversity (PDt) results in only
slightly more complex formulae—we have

E½PDt* ¼ PD0$
X

eAE

le &
Y

xACðeÞ

ð1$pxðtÞÞ,

where C(e) is the set of leaf taxa (subset of X) descendant from e
(this formula, and one also for the variance are provided in Faller
et al., 2008). A similar asymptotic normal distribution holds for
future phylogenetic diversity (PDt), though the conditions and
proof are more complex (Faller et al., 2008).

Although the expected value of ct under the two models is
very close (but not identical), the variance is quite different and
typically much larger under the eco-FOB model. To understand
this difference, it is helpful to compare Eqs. (12) and (14).

Recall that under the matching g-FOB model, CovðyxðtÞ,yx0 ðtÞÞ ¼ 0
for all distinct pairs x, x0AX because of the independence
assumption implicit in the g-FOB model. For the eco-FOB model,
we also have that CovðyxðtÞ,yx0 ðtÞÞ ¼ 0 if there is no species y that
has both a directed path to x and a directed path to x0 (this follows
because in the eco-FOB model, the effective extinction rate ry(t,Y)
of any species y at time t is determined (just) by the random
variable Y, which consists of the subset of the prey species of x
that are extant at time t). However, in contrast to the matching g-
FOB, in the eco-FOB, many of the covariance terms will typically
be positive, because of the dependencies between pairs of species
under the eco-FOB model. This in turn which will tend to inflate
the variance of ct over what it would be in a matching g-FOB
model.

We end this section by formally describing how pairs of
species are stochastically dependent in the eco-FOB model, as this
is relevant to the covariance issue that we have just discussed. We
will assume, for the remainder of this section, that the ecological
network is acyclic (i.e. it has no directed cycles). Given a subset S
of X, define the history of S up to time t, denoted ht(S), to be the
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random variable that assigns to each species sAS the value
maxft0rt : sAYtg. That is, s is assigned the value t if s is extant at
time t; otherwise, s is assigned the time at which it becomes
extinct. For any two species, the joint probability that both are
extant (or not) at time t is determined by the history of a
particular subset of species that lies below the two species in the
network, as the following proposition makes precise:

Proposition 1. For any two species x and x0 in X let Cx,x0 be a set of
species yAX for which (i) there is a path from y to x and a path from
y to x0, and (ii) y is maximal with this property (i.e. if y0 is any other
element of X with this property then there is no path from y to y0).
Then under the eco-FOB model, the random variables yxðtÞ and yx0 ðtÞ
are conditionally independent given htðCx,x0 Þ.

4. Simulated extinctions in complex food webs

The arguments above demonstrate that incorporating ecologi-
cal dependencies into models of extinction can increase our
uncertainty about the rate of biodiversity loss. To evaluate the
magnitude of this effect in complex ecological networks that
cannot be treated analytically, we simulated extinctions in real
and model food webs using the eco-FOB and matching g-FOB
models. First, we examined the effect of ecological dependencies
on variance in future biodiversity using a well-studied empirical
food web—the Chesapeake Bay estuary. We also used this food
web to explore how varying the assumptions of the eco-FOB
model influence the outcome. Second, we applied the eco-FOB
model to a large number of simulated food webs to assess which
structural properties of food webs make them likely to show this
effect of ecological dependencies.

The Chesapeake Bay estuarine food web (Fig. 1) contains
33 species and includes estimates of edge weights (interaction
strengths between species) that are based on multiple seasons of
data collection (Baird and Ulanowicz, 1989). Previous simulation
studies have predicted that this food web is neither especially
prone nor especially resistant to secondary extinctions (Allesina
and Bodini, 2004; Dunne et al., 2002).

For each analysis, we simulated 2000 extinction sequences
under the eco-FOB model, using Eq. (4). We divided time into
discrete intervals of 0.01 units and calculated the conditional
extinction rate rxxðtÞ for each species at each time interval as the
average over all simulations in which the species was extant at
time t. We then used these time-varying conditional rates for
2000 simulations under the g-FOB. This results in a trend for
mean richness through time that is very similar to the eco-FOB
(Fig. 3), allowing us to isolate the difference in variance. We

quantified the magnitude of increased variance due to ecology as
the maximum difference between the variance in species richness
under the eco-FOB and matching g-FOB models at any time during
the simulations (Fig. 4). We refer to this measure as the ‘variance
inflation’ (VI), referring to the general increase in variance under
eco-FOB compared to g-FOB (as defined, VIZ0, although it is
possible for variance to be lower under the eco-FOB at some time
during the simulation). VI was highly correlated with other
possible measures such as the average difference in variance
across all time steps.

We first simulated the eco-FOB model with parameter values
r ¼ 0.2, q ¼ 0.8 and b ¼ 1 and all links weighted equally. We then
explored parameter space by carrying out simulations at a range
of combinations of b (log b ¼ $3, 2.6y2.6, 3) and q (q ¼ 0.2,
0.4y1.8, 2.0), all with r ¼ 0.2. We also examined two interesting
variants of the eco-FOB model. First, we used the first set of
parameters above (r ¼ 0.2, q ¼ 0.8 and b ¼ 1) but weighted links
by each consumer’s empirical diet proportions (meaning a
species’ extinction rate increases more when prey making up a
greater proportion of its diet go extinct). Next, we calculated each
species’ trophic position following Levine (1980), and performed
simulations assuming that the extinction rates r and q are

0 2 4 6 8 10

Time

Sp
ec

ie
s 

R
ic

hn
es

s

Mean Richness

eco−FOB

0 2 4 6 8 10

Time

Sp
ec

ie
s 

R
ic

hn
es

s

Mean Richness

eco−FOB
matching g−FOB

30

25

20

15

10

5

0

30

25

20

15

10

5

0

Fig. 3. Species richness through time under the eco-FOB (left) and matching g-FOB (right) models. The trajectories for 200 individual simulations (grey lines) and the mean
richness through time are shown. Note the similar trends for mean richness (the trend under the eco-FOB model is also shown on the right for comparison) and the greater
spread around the mean under the eco-FOB model.

0 2 4 6 8 10

0

Time

V
ar

 (R
ic

hn
es

s)

eco−FOB
matching g−FOB

7.7

15

10

5

Fig. 4. Variance in species richness through time under the eco-FOB and matching
g-FOB models. The double-headed arrow indicates the magnitude of variance
inflation (VI).

T. Ingram, M. Steel / Journal of Theoretical Biology 264 (2010) 1047–10561052



Author's personal copy
ARTICLE IN PRESS

proportional to trophic position (rx ¼ 0.08nTPx; qx ¼ 0.6+0.08nTPx).
These coefficients lead to average rates across species matching the
rx ¼ 0.2 and qx ¼ 0.8 used in other simulations, making the expected
decline in mean biodiversity comparable.

We found that the general result of variance inflation under
the eco-FOB model is robust to variations in many of its
assumptions. VI occurs unless q ¼ r (in which species extinctions
are independent as under the g-FOB model). Increasing q while
keeping r constant led to substantial increases in VI, while varying
the parameter b had subtler effects. Generally, at any given q,
smaller values of b (i.e. a saturating rather than an accelerating
increase in the predator’s extinction rate as its prey become
extinct) led to slightly larger VI (Fig. 5). Weighting edges by
empirical diet proportions led to a slight increase in VI, while VI
decreased when we assumed that the extinction rates r and q
were positive functions of trophic position (Fig. 6).

These simulations indicate that while the magnitude of VI can
vary, the effect is robust to many assumptions of the eco-FOB
model. To identify features of food webs that lead to greater
variance inflation, we constructed food webs from a simple
stochastic model that is similar (but not identical) to the
evolutionary model of Amaral and Meyer (1999). This model is

more complex than stochastic models such as the niche model
(Williams and Martinez, 2000), allowing us to independently
manipulate more aspects of food web structure. The input
parameters for the model are the initial number of species S,
the number of trophic levels TLmax, the expected number of prey
species per predator nw, the expected proportion of omnivorous
interactions pO and the expected proportion of basal (source)
species pB.

We fixed S ¼ 30 for all simulations, focussing on generating
variability in features other than species number. We repeated
the following process 200 times, generating a wide variety of
food web structure. First, we randomly assigned TLmax ¼ 2, 3 or 4
(with probabilities 0.2, 0.3 and 0.5), sampled integer nw from
2 to 5 with all probabilities ¼ 0.25, sampled pO from a uniform
distribution between 0 and 0.3 and sampled pB from a beta
distribution with shape parameters 1.5 and 3. Given these input
parameters we assigned the S species to trophic levels with
probability pB for the first trophic level and (1$ pB)/(TLmax$1) for
higher trophic levels. We sampled each species’ niche width
(number of prey) from a Poisson distribution with parameter nw.
Finally, we assigned prey to each predator with trophic level TLi,
sampling its prey from trophic level TLi$1 with probability 1$pO
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and from trophic levels TLi and TLi$2 with probabilities pO/2. For
each model food web, we simulated extinctions as in the first
simulation with the Chesapeake food web (r ¼ 0.2, q ¼ 0.8, b ¼ 1
and links weighted equally) and calculated VI.

We quantified structural variables thought to affect food web
robustness, to assess whether they also influence variance
inflation. For each of the 200 food webs we calculated con-
nectance (C ¼ L/S2, where L is the total number of links), B (the
proportion of basal species), and VulSD (the standard deviation of
species’ ‘vulnerability’, or their number of predators normalized
by L/S). VulSD will be small if species tend to have similar
numbers of other species depending on them, and large if some
species are depended on by many more species than others
(Williams and Martinez, 2000). We quantified redundancy as
the proportion of trophically identical species sharing all
predators and prey (Quince et al., 2005). We also calculated
an index that directly quantifies how prone food webs should
be to secondary extinctions by identifying bottlenecks (species
whose extinction leads to the loss of many species above them).
First, we computed dominator trees following Allesina and Bodini
(2004), which identify species that are wholly dependent on other
species to remain connected to the food web. We then calculated
the ‘error susceptibility’ index (ES), which quantifies the prob-
ability that a randomly chosen species will become extinct
following the extinction of another randomly chosen species.
This is a useful index because food webs with low ES values
should have high robustness as defined in topological analyses
of extinctions in food webs (Dunne et al., 2002; Dunne and
Williams, 2009).

These variables showed numerous correlations both with
each other and with VI (Table 1, above diagonal). The proportion
of basal species, B, was most strongly correlated with VI
(r ¼ $0.937, Fig. 7). Of the other variables investigated, C and
ES were positively correlated with VI and redundancy was
negatively correlated with VI. However, these relationships are
confounded by the strong correlations of these variables with
each other and with B. It should be noted that the largest values of
B in the simulated webs were outside the range of values (0.04–
0.32) observed in a sample of empirical food webs (Williams and
Martinez, 2000), while distributions of the remaining variables
were generally similar to observed distributions.

Rather than attempt to statistically remove the effect of B to
evaluate the other variables, we elected to simulate a second set
of 200 food webs that each had three basal species (B ¼ 0.1). We
did this by setting pB ¼ 0.1, varying the other input parameters as
before, and rejecting any food webs with Ba0:1 In this second set
of food webs, relationships between VI and the other variables
were considerably weaker (Table 1, below diagonal), suggesting
that most of the correlations in the first set were driven by
variation in B. By far the strongest correlate of VI in this set of food
webs was VulSD, the standard deviation of species’ normalized
predator number (r ¼ 0.517, Fig. 7).

5. Discussion

Our findings demonstrate that accounting for ecological
dependencies may reduce our ability to predict future biodiversity.

Table 1
Pearson correlations among VI and several structural properties of simulated food websa.

VI C ESb redundancyb VulSDb B

VI – 0.604c 0.421 $0.575 0.049 $0.937
C $0.036 – $0.239 $0.580 $0.403 $0.657
ES $0.031 $0.835 – $0.088 $0.082 0.279
redundancy 0.153 $0.282 0.279 – 0.370 0.727
VulSD 0.735 $0.386 0.324 0.367 – 0.108
Bc – – – – – –

a Correlation coefficients within the first set of 200 simulated food webs (above diagonal) and for the set with all B¼0.1 (below diagonal). Boldface indicates
statistically significant correlation at a Bonferroni-adjusted a¼ 0:0033 (0.05/15, above diagonal) or a¼ 0:005 (0.05/10, below diagonal).

b Log-transformed for analysis.
c Invariant for second set of simulated food webs.
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Of course, the act of identifying these dependencies itself does not
change the true variance; it simply exposes the intrinsic
unpredictability of food web collapse. An intuitive explanation
of variance inflation is that interacting species in a food web are
not independent, and the extinction of one makes further
extinctions more likely. We will first discuss the significance of
the variance inflation we have described, then discuss the
potential implications of considering only bottom-up secondary
extinctions.

The generalized field of bullets model makes the crucial
assumption that the fate of one species does not affect the
probability that any other species will go extinct. Thus, while the
flexibility of this model allows for time- and taxon-varying
extinction rates, it ignores the potentially important effects of
species interactions. The most obvious implication of the process
investigated here—bottom-up secondary extinction—is that
biodiversity will decline more rapidly than if predator extinction
risk did not increase when prey went extinct. In the eco-FOB
model we present here, this simply means that for a given rx,
biodiversity will decline faster if qx4rx than if qx ¼ rx, an outcome
that is implicit in most analyses of secondary extinctions in food
webs. In this paper we have identified a less obvious consequence
of species dependencies: the increased uncertainty around
predictions of future biodiversity, which we quantify as VI. While
real estimates of rx, qx and b would be necessary to estimate VI in
real systems, we are able evaluate which features of the model
and which features of food webs are associated with relatively
larger variance inflation. Our ‘matching g-FOB’ approach allows us
to account for the faster loss of biodiversity due to dependencies,
and to isolate the effect of dependencies on the variance in future
biodiversity.

Our analyses of the Chesapeake Bay food web show that
variance inflation is robust to changes in the parameterization
and assumptions of the eco-FOB model. VI occurs whenever there
is scope for extinction rate to increase as prey go extinct (i.e. if
qx4rx), and its magnitude increases strongly with the maximum
extinction rate qx. There were subtler but potentially interesting
effects when we varied the curvature of the function describing
how a species’ extinction rate increases as progressively more of
its prey go extinct. VI tended to be higher when extinction rate
increased fastest with the first few prey extinctions. This scenario
implies that species have a low resistance to the loss of any prey
species, perhaps because different prey provide non-substitutable
resources. Conversely, VI was lower when extinction rate
increased fastest with the final few prey extinctions, as we might
expect if species are flexible foragers that can switch effort to
alternate prey types. At this point we can only speculate as to how
real species’ extinction rates change when their prey go extinct,
but variance inflation should occur under any increasing function
where rxoqx.

Two variants on the eco-FOB model yielded interesting
patterns. In the Chesapeake Bay food web, incorporating empiri-
cally estimated link strengths led to a slightly higher VI. If certain
prey species make up a large part of the diet of many predators,
the rate of species loss will largely depend on when these
important species go extinct, similar to the effect of large VulSD. It
remains to be seen whether other food webs also have link
strength distributions that tend to increase VI.

We found that when the extinction rates rx and qx were
positive functions of trophic position, VI was notably smaller. This
reduction in VI can be explained by the tendency of predators to
go extinct before their prey in this scenario. When the more basal
species on which most other species depend also have the lowest
extinction rates, they will tend to outlive most of the other species
and thus reduce the number of secondary extinctions. This
version of the model is consistent with the evidence in both

aquatic and terrestrial ecosystems that species with higher
trophic position have higher extinction risks or threat levels
(Pauly et al., 1998; Purvis et al., 2000). This tendency of predators
to have higher extinction rates than their prey—usually attribu-
table to a combination of their higher rates of exploitation by
humans, larger body sizes and lower population sizes—should
reduce but certainly not eliminate the variance inflation effect we
have described.

Our simulations with model food webs allowed us to identify
structural features of food webs that affect the magnitude of
variance inflation. Of a number of interrelated variables, the
strongest correlate of VI was the proportion of basal species in the
food web (B). This can be interpreted as both an ecologically
meaningful result and a mathematical banality. On the one hand,
food webs with many basal species will tend to contain fewer of
the bottlenecks in energy flow that make more top-heavy food
webs highly sensitive to the loss of particular species. On the
other hand, source species in the eco-FOB model have no prey
aside from the root, so their fates are independent of any other
species just as they would be under the g-FOB. As B increases, the
eco-FOB model thus converges on the g-FOB model, making it
unsurprising that VI tends toward zero.

The second set of simulations accounted for the relationship
between VI and B by forcing B to be equal for all food webs. We
found that when there was no variation in B, relationships
between VI and other variables such as connectance and
redundancy effectively disappeared, and VulSD was the only
strong correlate of VI. This result is also intuitive and biologically
intriguing. Food webs with high VulSD have some (typically basal)
prey species with many predators, and others with very few,
while food webs with low VulSD have a more equitable
distribution of numbers of predators. Food webs with high VulSD
should therefore tend to feature ‘keystone’ species on which many
other species ultimately depend. The dynamics of species loss in
these food webs will be highly dependent on precisely when these
important species go extinct, leading to high VI. It is perhaps
surprising that there was no relationship between VI and ES, the
variable that attempts to measure the occurrence of bottlenecks
directly (Allesina and Bodini, 2004). However, ES only includes
information about ‘dominators’, species whose extinction would
leave another species disconnected from the food web. VulSD,
while a crude measure of food web structure, may better account
for the fact that many species partly depend on species that do
not meet the dominator criteria. As there was no relationship
between connectance and VI, the magnitude of variance inflation
seems to depend on how links are distributed among species
rather than on link density per se.

Before we conclude, it is necessary to discuss the implications
of our focus on bottom-up food web interactions in this study.
This practice, which is common in analysis of extinction in food
webs, is due to our ignorance about how other interaction types
affect extinctions in complex food webs, rather than any belief
that secondary extinctions due to other interactions types do not
occur. Ebenman et al. (2004) found that moving from a
topological, bottom-up analysis to one that incorporates popula-
tion dynamics (and thus the potential for top-down or other types
of coextinctions) increased the total number of secondary
extinctions. However, it remains unknown how such interactions
would impact the variance in future biodiversity. Of particular
importance for our model is the fact that when all secondary
extinctions are transmitted ‘up’ the food web—from prey to
predator—all covariances between species’ fates are necessarily
either zero or positive. If most covariances were negative, species
interactions will actually tend to reduce variance in future
biodiversity. Incorporating processes other than bottom-up
secondary extinctions could lead to more negative covariances
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(decreased extinction rate following the extinction of a compe-
titor or predator) or positive covariances (increased extinction
rate following the extinction of a mutualist or a predator that
allowed coexistence of competing prey species). We can predict
that VI will be highest in communities heavily biased toward
positive interactions—such as plant-pollinator mutualism net-
works—and lowest in highly competitive communities with
mainly negative interactions.

While a full, empirically driven parameterization of the eco-
FOB model is likely to remain out of reach, it may be possible to
estimate properties such as the relationship between extinction
rate and trophic position, or the functional form of the increase in
extinction rate due to prey extinctions (Fig. 2). When we reach a
point of being able to properly estimate the variance in future
biodiversity in food webs, we can evaluate the practical implica-
tions and plan conservation strategies to account for this level of
uncertainty. In the meantime, we should remember that more
information may not improve our predictive ability in the case of
intrinsically variable processes such as the collapse of food webs.
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Appendix A. Proof of Eq. (9)

Recall that Tx is the random variable that measures the time to
extinction of species x. We have

pxþ1ðtÞ ¼PðTxþ14tÞ ¼
Z 1

0
PðTxþ14tjTx ¼ uÞfxðuÞdu,

where fx(u) is the probability density function for Tx. Splitting up
the range of integration into the two intervals [0,t) and ½t,1Þ and
noting that PðTxþ14tjTx ¼ uÞ ¼ e$rt when u4t, gives

pxþ1ðtÞ ¼
Z t

0
PðTxþ14tjTx ¼ uÞfxðuÞduþe$rtpxðtÞ: ð15Þ

Now, PðTxþ14tjTx ¼ uÞ ¼ e$qðt$uÞ & e$ru ¼ e$qt & eðq$rÞu and fxðuÞ ¼
ðd=dsÞPðTxrsÞjs ¼ u ¼$p0xðuÞ. Substituting these into Eq. (15)
gives Eq. (9).
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