Empyema in New Zealand
Declaration of conflicts

• Investigator led research in otitis media and nasopharyngeal carriage of pathogens funded by GSK

• Lead investigator in NZPSU empyema project
Outline

• NZ paediatric empyema incidence
 – Current data from greater Auckland

• Is NZ empyema different?
 – Microbiology and empiric antibiotic

• The NZPSU
Background

- Incidence of empyema in children has increased worldwide

- *S. pneumoniae* predominant causative organism in empyema in Europe/United States/Australia
 - Serotype 1 not covered by early generation conjugate pneumo vaccines
 - Post vaccine emerging serotypes 3 and 19A

- Increasing rates of *S. aureus* empyema noted in some centres (US)
 - +/- impact of MRSa

- Inclusion of 2009 pandemic data changing epidemiology

References:

Fletcher et al. Eur J Clin Micro Inf Dis 2014
Byington et al. Ped Inf Dis J 2006
Li et al. Pediatrics 2010
Grivalja et al Clin Inf Dis 2010
Ampofo et al 2010 Ped Inf Dis J
Annual hospitalization rates for empyema among children <5 yrs, United States 1996–2007

Reasons postulated

- Decreased primary care antibiotic prescribing
- Pre-hospital treatment with ibuprofen
- Delayed hospital presentation

- Changing microbiologic epidemiology &/or virulence
 - Impact of vaccination
 - *Pneumococcal vaccine & serotype replacement
 - *Staphylococcus aureus* virulence & emergent MRSa

*Introduction of national childhood PCV-7
What is the incidence of paediatric empyema in NZ?
N= 168
Mean age: 4.5 years
Primary discharge codes (J86–J86.9) likely represents minimum

Rate hospitalisations for empyema <15 yr old /100,000 (95% CI)

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>0.4</td>
<td>(0.1 -1.2)</td>
</tr>
<tr>
<td>2001</td>
<td>0.8</td>
<td>(0.4-1.8)</td>
</tr>
<tr>
<td>2013</td>
<td>1.5</td>
<td>(0.9 – 2.6)</td>
</tr>
</tbody>
</table>
Increased Incidence of Pleural Empyema in Sth Auckland Children
Retrospective Review of Parapneumonic effusion (PPE) and Empyema 1998-2012

Caroline Mahon (Paed trainee)
presented at RACP congress 2014

Acknowledgement: Wendy Walker, Emma Best
Christian Coomarasamy, Dr Vandal, Peter Reid statisticians
Case Definitions

- Parapneumonic effusion (PPE)
 - Pleural effusion in association with pneumonia on formal CXR report
- Empyema
 - CT/USS showing complex fluid, loculation and/or $>1000 \times 10^6$ WCC on pleural tap and/or positive bacterial culture or positive ICT/PCR

N= 187 cases of PPE/empyema
- 104 criteria for empyema
- 83 cases of PPE
CMDHB empyema incidence children <15yrs, 1998 - 2012

Incidence rate increased by 13% per year from 1998 (p = 0.0001)

[Graph showing empyema incidence rates from 1998 to 2012 with peak incidence in 2009 labeled 'Pandemic H1N1', followed by PCV 10 vaccination in 2011-2012.]
Relative rates of empyema vs PPE do not vary over the 15 years of the study
RR 1.3 (CI 0.94-1.80) p=0.11
Introduction of conjugate pneumococcal vaccine – impact on childhood pneumonia

Consistent effect to lessen hospitalisation due to radiologically confirmed pneumonia

Reductions of 13-65% on all cause pneumonia

Pneumonia admissions for CMDHB resident children < 2y

Vogel, Trenholme, Best, Lennon, et al. NZMJ 2013

Impact of pneumococcal vaccine on hospital admission with LRI in children resident in South Auckland, NZ
So….

- High empyema incidence in Sth Auckland children
 - Now exceeds that seen in other countries
 - 10/100,000 <15yrs
 - 20/100,000 <4 yrs

- Empyema presentations increased 10x over 15 yrs
 (increase also reflected in national discharge data)
 - UK 3.7/100,000 (children<15yrs) & 3x increase
 - US 6/100,000 (children<15yrs) & 3x increase
 - Australia 0.4/100,000 - 1/100,000 & > 2x increase
 - further increase in 1-4yr olds empyema since PCV7 2006 -2010

- Quebec also report 10x increase in empyema1990-2007

Deceuninck et al. J Pediatric Inf Dis 2013
Peak incidence of empyema cases in 2009 - relates to H1N1 pandemic?

Empyema increase apparent before PCV7 introduction

Evidence of positive PCV7 vaccine impact in other areas - decrease radiologic & all-cause pneumonia in Sth Auckland

Ampofo K et al. Ped Inf Dis J. 2010;29:905-9
See H et al. Ped Inf Dis J. 2010;29:786-7
Pathogens of paediatric empyema in NZ—what’s our aetiology pie’?
NZ paediatric empyema: published data

- Retrospective review of empyema 2003-2008 @ SSH
- Identified 93 empyema cases (via hospital discharge data)
- Surgically managed empyema (n=62; VATS 55 or open thoracotomy 7), chest tube only (31)
 - 24/62 (39%) *S. aureus* (2/24, 8% MRSa)
 - 13/62 (21%) *S. pneumoniae*
 - 7/62 (11%) *S. pyogenes*
 - 18/62 (29%) no isolate

Audit of empyema & empiric antibiotics at SSH 2009 -2013

Aim

- To determine causative organisms (& susceptibilities) of empyema cases managed at SSH
- To review current first-line antibiotic recommendations

SSH empyema cases 2009 to 2013

- 150 cases identified via hospital discharge coding

Confirmed cases

- Positive culture from pleural fluid or pus in pleural space (microscopic or operative gross findings) or fibropurulent material on USS or CT

Acknowledgements: Cameron Burton (SHO), Neil Price (Surgeon)
Mode of infection: Paediatric empyema SSH 2009 -2013 (n=150)

- Pneumonia: 89%
- Disseminated Sepsis: 6%
- Other: 5%
- TB
- Lung abscess
Age: Paediatric empyema SSH 2009-2013

69% male, 31% female
Referring DHB: Paediatric empyema SSH 09-13

Auckland
CMDHB
WDHB
Nthland
Mid Cent
BOP
Waik
Hutt DHB
Lakes
Naki
Napier
Nel-Marl
Sthern
Tarawhiti
HB
CDHB
Sth CDHB
Hutt
Whang
CCDHB
Sthern
Hutt
Tarawhiti
HB
Whang
CDHB

2 cases referred from Pacific
Ethnicity: Paediatric empyema SSH 2009-2013

- Pacific: 32%
- Māori: 31%
- NZ European: 29%
- All other: 8%
Microbiology: Paediatric empyema SSH 2009-2013

- S.aureus 40%
- S.pneumoniae 26%
- S.pyogenes 6%
- H. influenzae 4%
- No pathogen 21%

12/61 (20%) MRSa
Microbiology: Paediatric empyema CMDHB
1998 - 2012 (n= 101)

Consistent increase in S.aureus empyema – now 50% of cases in Sth Auck

Byington et al. Clin Inf Dis 2002
Comparison: Microbiology for paediatric empyema 2001-2004, Paris

n= 78

Spneumoniae
Saureus
Spyogenes
No pathogen

Le Monnier et al CID 2006
Role of pneumococcal antigen detection in pleural fluid

- Empyema – pleural fluid proportion remain culture negative

S. pneumoniae antigen testing in kids

- YES - useful on pleural fluid
- NO - not useful on urine
 - (adult pneumonia only, children false positive results due to nasal carriage)

- When additional techniques (PCR/antigen) used *S. pneumoniae* most frequent pathogen in culture-neg empyema

Blaschke AJ et al. Ped Inf Dis J 2011; 30 (US)
Le Monnier et al. Clin Infect Dis 2006*
Usefulness of *S. pneumoniae* antigen detection directly on pleural fluid

Table 1. Review of Binax NOW *S. pneumoniae* assay performance for the diagnosis of pneumococcal empyema

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Study design</th>
<th>No.</th>
<th>Study population</th>
<th>Age</th>
<th>Standard methods</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al. [78]</td>
<td>Korea</td>
<td>Retrospective</td>
<td>62</td>
<td>Children</td>
<td>69 months (median)</td>
<td>Culture (blood or pleural fluid) or Positive PCR for lytA</td>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td>Picazo et al. [76]</td>
<td>Spain</td>
<td>Prospective</td>
<td>217</td>
<td>Children</td>
<td><15 years old</td>
<td>Culture (pleural fluid or CSF) or Positive PCR for lytA</td>
<td>88</td>
<td>73</td>
</tr>
<tr>
<td>Strachan et al. [74]</td>
<td>Australia</td>
<td>Prospective</td>
<td>137</td>
<td>Children</td>
<td>4.9 years (mean)</td>
<td>Culture (blood or pleural fluid) or Positive PCR for lytA</td>
<td>84</td>
<td>94</td>
</tr>
<tr>
<td>Martinon-Torres et al. [77]</td>
<td>Spain</td>
<td>Prospective</td>
<td>55</td>
<td>Children</td>
<td>6.5 years (mean)</td>
<td>Culture (blood or pleural fluid) or Positive PCR for ply/uza</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Casado Flores et al. [79]</td>
<td>Spain</td>
<td>Prospective</td>
<td>76</td>
<td>Children</td>
<td>3.5 year (median)</td>
<td>Culture (blood or pleural fluid) or Positive PCR for ply</td>
<td>88</td>
<td>71</td>
</tr>
<tr>
<td>Porcel et al. [75]</td>
<td>Spain</td>
<td>Retrospective</td>
<td>140</td>
<td>Adults</td>
<td>56 years (mean)</td>
<td>Culture (blood or pleural fluid)</td>
<td>71</td>
<td>93</td>
</tr>
</tbody>
</table>

PCR, polymerase chain reaction.

The number includes 12 CSF (cerebrospinal fluid) samples.
Audit: Empiric antibiotic recommendations for empyema - OK or not ?

$n = 101$

$S. aureus$ (n = 61)
 MRSa (n=12)

$S. pneumoniae$ (n= 19) 94% pen sensitive

$S. pyogenes$ (n= 9) 100% pen sensitive

$H. influenzae$ (n= 7) 83% sens amoxy, 100% sens to cef/co-amoxy clav

88% pathogens covered with empiric regimen of cefuroxime or co-amoxyclavulanic
Conjugate pneumococcal vaccine (PCV)

- What are the common serotypes causing empyema in NZ children

- Our unique pneumococcal schedule
 - given @6wks, 3mths, 5mths & 15mths

- PCV7 July 2008
- PCV10 July 2011
- PCV13 July 2014
Invasive *S. pneumoniae* serotypes in paediatric empyema greater Auckland region (n = 28) 1998 - 2012

PCV13 covers 89%
PCV10 covers 68%
PCV covers 36%
Pneumococcal Serotypes in Pediatric Empyema: 2001–2007, Utah (N=51)

>90% covered by PCV13

So our aetiology pie shows…

- **S. aureus** dominant pathogen for NZ paediatric empyema
 - accounts for >1/3 of cases;

- Appropriate empiric antibiotics choice = cefuroxime or co-amoxyclyclavulanate
 - +MRSA coverage for some areas

- Current vaccine PCV13 - likely good
 - Emergent invasive serotypes still possible
New Zealand and S.aureus

• More invasive?

• More resistant?

• More clonal?

• Just more generally?
• Rate of S. aureus infections in NZ – amongst highest reported in developed world
• Incidence rate for S. aureus SSTI - highest in age <5yrs and amongst Māori and Pacific peoples

Williamson et al. Staphylococcus aureus Infections in New Zealand, 2000–2011
Emerg Inf Dis 2014
In New Zealand

MSSA infections increased significantly 2001 to 2011

MRSa did not increase — remained as a proportion at 12% of all Staph aureus infections
Invasiveness?

- Community onset invasive *S. aureus* disease in children at Starship 2007-2010
- Compare clonal complexes and virulence genes of *S. aureus* strains

- 2200 *S. aureus* isolates from children
- 163 children/isolates were invasive
 - 37 bacteraemia
 - 27 respiratory
- Compared to children with simple skin infections in same time period

Clinical and molecular epidemiology of community-onset invasive *Staphylococcus aureus* infection in New Zealand children

Non-metric multidimensional scaling of virulence genes in inv and non-inv *S.aureus* isolates based on Euclidean distances.
• High rates of PVL* (50% and 57%) in both non-invasive MSSa and invasive MSSa

• Marked ethnic differences in rates of invasive MSSa
 societal, environmental and host factors (barriers to healthcare access, household crowding, hygiene and nutrition).

*Panton-Valentine leukocidin

There are NZ specific questions..

- Is empyema increasing across the country or only in certain populations?

- More *S. aureus* – what is best management where pathogens are so different

- Actual contribution of *S. pneumoniae* with best diagnostic techniques

- Vaccine impact with newer generation pneumococcal conjugate vaccine
NZPSU empyema

- Commenced June 2014
 - 16 cases notified (3 months of data)
 - Feedback and cases welcome

Co-investigators:
Paediatric registrars: Kathy Rix Trott & Caroline Mahon
Paediatrician CMDHB: Richard Matsas
Paed ID: Lesley Voss and Tony Walls
Paed Resp: Cass Byrnes and Jacob Twiss
Paed Surgeons: James Hamill and Steve Evans
Microbiologist (ESR): Debbie Williamson
Figure 3. MRSA infection period-prevalence rates by district health board, 2013
Effect of 13-valent pneumococcal conjugate vaccine on admissions to hospital 2 years after its introduction in the USA: a time series analysis

Simonsen et al Lancet Resp Med May 2014
Pneumococcal serotypes paediatric empyema; Oz 2007–2009

- Of 53 +*S. pneumoniae* serotypes 2 (3.8%) covered by PCV7
- 51 (96.2%) had non PCV7 serotypes
 - 19A (n = 20; 36.4%)
 - 3 (n = 18; 32.7%)
 - 1 (n = 8; 14.5%)

PCV10 covers 53%, PCV13 covers 90%