Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Professor Abigail Smith

Head of Department

Contact DetailsAbbySmith

Office: 310 Castle Street, room 103
Tel: 64 3 479 7470
Email: abby.smith@otago.ac.nz

Academic Qualifications

BA (Geology, Biology) Colby College
SM (Earth Atmospheric and Planetary Sciences) Massachusetts Institute of Technology
DPhil (Earth Sciences) University of Waikato

Research Interests

Temperate carbonate sediments

Cool water reefs and temperate carbonate sediments differ from their tropical counterparts, requiring new ideas about budgets, production, destruction, preservation and lithification. My students and I investigate these processes in a range of environments, from the coast out to the shelf and beyond.

Geochemical signals in skeletons

Variations in isotopic composition and mineralogy of skeletal carbonate may contain information about age, environment, and productivity. Our research team includes Prof C S Nelson (University of Waikato), Prof M M Key Jr (Dickinson College), and Dr P Wyse Jackson (Trinity College), investigating how geochemical signals in carbonate (both modern and fossil) can be used to deduce production, age and growth rate in temperate organisms, particularly bryozoans, as well as how they might reflect longer-term changes in climate and water chemistry.

South Island shelf sediments

The Otago and Southland continental shelves are unusual in their cool-water carbonate reefs and mixing of carbonate and terrestrial sediments. We have studies underway off Otago Peninsula, in Paterson Inlet, through Foveaux Strait, and in Doubtful Sound.

Bryozoans as important carbonate producers

The major taxon producing carbonate sediments on shelves in the Southern Hemisphere is largely unstudied. I work on taxonomy and systematics, identification, growth and production, ecology, and geochemistry of New Zealand's Bryozoa, and I am an active member (and currently Treasurer) of the International Bryozoology Association.

Ocean acidification on the temperate shelf

The next global climate challenge is ocean acidification. Rapid anthropogenic production of CO2 has driven the carbonate chemistry of the sea, causing lowered pH in surface waters. Understanding temperate southern hemisphere shelf carbonate dynamics is important. We study the temperate carbonate budget -- production, geochemistry, dissolution, and accumulation in cool temperate environments. Temperate shelf carbonate sediments, which blanket southern shelves of New Zealand and Australia, may serve as biological saturometers, monitoring the effects of acidification over shelf depths.

Courses

Abby is the Chief Course Advisor for the Department of Marine Science.
She is also the fourth-year coordinator.
She teaches in:

  • MARI 112 Global Marine Systems — lecturer
  • MARI 201 Physical Oceanography — lecturer, sometimes course coordinator
  • MARI 202 Marine Invertebrate Ecology and Biology — lecturer
  • MARI 401 Advanced Methods in Marine Science — Coordinator, principal lecturer
  • MARI 429 Coastal Marine Environment -- Coordinator, principal lecturer
  • MARI480/490/495 Research Projects and Proposals -- Coordinator

Postgraduate Students

Nadjejda Espinel Velasco - Thesis Title (PhD): Response of marine invertebrates to reduced seawater pH and warming at larval settlement and metamorphosis

Tyler Northern - Thesis Title (MSc):Mineralisation and dissolution in two common New Zealand squid species: warty squid (Onykia ingens) and southern arrow squid (Nototodarus sloanii)

Bryce Peebles - Thesis Title (PhD):Chiton Mineralogy: Structure, Genesis, and Dissolution Resistance

Susan Wells - Thesis Title (MSc): Changes in the growth rate of the New Zealand cockle (Austrovenus stutchburyi) since early human settlement in New Zealand: an indication of the extent of human impact on estuarine health.

^ Top of page

Publications

Peebles, B. A., Smith, A. M., & Spencer, H. G. (2017). Valve microstructure and phylomineralogy of New Zealand chitons. Journal of Structural Biology, 197(3), 250-259. doi: 10.1016/j.jsb.2016.12.002

Smith, A. M., Clark, D. E., Lamare, M. D., Winter, D. J., & Byrne, M. (2016). Risk and resilience: Variations in magnesium in echinoid skeletal calcite. Marine Ecology Progress Series, 561, 1-16. doi: 10.3354/meps11908

Smith, A. M., Key, Jr, M. M., Henderson, Z. E., Davis, V. C., & Winter, D. J. (2016). Pretreatment for removal of organic material is not necessary for x-ray-diffraction determination of mineralogy in temperate skeletal carbonate. Journal of Sedimentary Research, 86(12), 1425-1433. doi: 10.2110/jsr.2016.86

Smith, A. M., & Spencer, H. G. (2016). Skeletal mineralogy of scaphopods: An unusual uniformity. Journal of Molluscan Studies, 82(2), 344-348. doi: 10.1093/mollus/eyv061

Taylor, P. D., Waeschenbach, A., Smith, A. M., & Gordon, D. P. (2015). In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy. Systematics & Biodiversity, 13(6), 525-544. doi: 10.1080/14772000.2015.1049673

Journal - Research Article

Peebles, B. A., Smith, A. M., & Spencer, H. G. (2017). Valve microstructure and phylomineralogy of New Zealand chitons. Journal of Structural Biology, 197(3), 250-259. doi: 10.1016/j.jsb.2016.12.002

Smith, A. M., & Spencer, H. G. (2016). Skeletal mineralogy of scaphopods: An unusual uniformity. Journal of Molluscan Studies, 82(2), 344-348. doi: 10.1093/mollus/eyv061

Smith, A. M., Key, Jr, M. M., Henderson, Z. E., Davis, V. C., & Winter, D. J. (2016). Pretreatment for removal of organic material is not necessary for x-ray-diffraction determination of mineralogy in temperate skeletal carbonate. Journal of Sedimentary Research, 86(12), 1425-1433. doi: 10.2110/jsr.2016.86

Smith, A. M., Clark, D. E., Lamare, M. D., Winter, D. J., & Byrne, M. (2016). Risk and resilience: Variations in magnesium in echinoid skeletal calcite. Marine Ecology Progress Series, 561, 1-16. doi: 10.3354/meps11908

Riedi, M. A., & Smith, A. M. (2015). Tube growth and calcification of two reef-building ecosystem engineers in southern New Zealand: Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae). Marine Geology, 367(1), 212-219. doi: 10.1016/j.margeo.2014.10.010

Garden, C. J., & Smith, A. M. (2015). Voyages of Seaweeds: The role of macroalgae in sediment transport. Sedimentary Geology, 318, 1-9. doi: 10.1016/j.sedgeo.2014.11.007

Taylor, P. D., Waeschenbach, A., Smith, A. M., & Gordon, D. P. (2015). In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy. Systematics & Biodiversity, 13(6), 525-544. doi: 10.1080/14772000.2015.1049673

Smith, A. M. (2014). Growth and calcification of marine bryozoans in a changing ocean. Biological Bulletin, 226(3), 203-210.

Enke, S., Smith, A. M., & Hageman, S. J. (2014). Bryozoan settlement substrates and implications for carbonate sediment production. Studi Trentini di Scienze Naturali, 94, 95-99.

Smith, A. M., Riedi, M. A., & Winter, D. J. (2013). Temperate reefs in a changing ocean: Skeletal carbonate mineralogy of serpulids. Marine Biology, 160(9), 2281-2294. doi: 10.1007/s00227-013-2210-z

Smith, A. M., Berman, J., Key, Jr, M. M., & Winter, D. J. (2013). Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 463-472. doi: 10.1016/j.palaeo.2013.10.004

Smith, A. M., Sutherland, J. E., Kregting, L., Farr, T. J., & Winter, D. J. (2012). Phylomineralogy of the coralline red algae: Correlation of skeletal mineralogy with molecular phylogeny. Phytochemistry, 81, 97-108. doi: 10.1016/j.phytochem.2012.06.003

Smith, A. M., Henderson, Z. E., Kennedy, M., King, T. M., & Spencer, H. G. (2012). Reef formation versus solitariness in two New Zealand serpulids does not involve cryptic species. Aquatic Biology, 16(1), 97-103. doi: 10.3354/ab00444

Smith, A. M., Kregting, L., Fern, S., & Fraser, C. I. (2011). Sedimentology of a wreck: The Rainbow Warrior revisited. Marine Pollution Bulletin, 62(11), 2412-2419. doi: 10.1016/j.marpolbul.2011.08.028

Smith, A. M., & Girvan, E. (2010). Understanding a bimineralic bryozoan: Skeletal structure and carbonate mineralogy of Odontionella cyclops (Foveolariidae: Cheilostomata: Bryozoa) in New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 289(1-4), 113-122. doi: 10.1016/j.palaeo.2010.02.022

Smith, A. M., Wood, A. C. L., Liddy, M. F. A., Shears, A. E., & Fraser, C. I. (2010). Human impacts in an urban port: The carbonate budget, Otago Harbour, New Zealand. Estuarine, Coastal & Shelf Science, 90(2), 73-79. doi: 10.1016/j.ecss.2010.07.004

Smith, A. M., & Lawton, E. I. (2010). Growing up in the temperate zone: Age, growth, calcification and carbonate mineralogy of Melicerita chathamensis (Bryozoa) in southern New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3-4), 271-277. doi: 10.1016/j.palaeo.2010.09.033

Smith, A. M. (2009). Bryozoans as southern sentinels of ocean acidification: A major role for a minor phylum. Marine & Freshwater Research, 60, 475-482. doi: 10.1071/mf08321

Smith, A. M., Taylor, P. D., & Spencer, H. G. (2008). Resolution of taxonomic issues in the Horneridae (Bryozoa: Cyclostomata). Annals of Bryozoology, 2, 359-411.

Smith, A. M. (2007). Age, growth and carbonate production by erect rigid bryozoans in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 256, 86-98.

Smith, A. M., Key, Jr, M. M., & Gordon, D. P. (2006). Skeletal mineralogy of bryozoans: Taxonomic and temporal patterns. Earth-Science Reviews, 78, 287-306.

Steger, K. K., & Smith, A. M. (2005). Carbonate mineralogy of free-living bryozoans (Bryozoa: Otionellidae), Otago shelf, southern New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 195-203.

Smith, A. M., & Key, Jr, M. M. (2004). Controls, variation, and a record of climate change in detailed stable isotope record in a single bryozoan skeleton. Quaternary Research, 61, 123-133.

Smith, A. M., & Nelson, C. S. (2003). Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews, 63, 1-31.

Smith, A. M., Stewart, B. G., Key, M. M., & Jamet, C. M. (2001). Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 201-210.

^ Top of page

Conference Contribution - Published proceedings: Full paper

Smith, A. M., & Garden, C. J. (2013). Being a bimineralic bryozoan in an acidifying ocean: Ocean acidification and bryozoans. In A. Ernst, P. Schäfer & J. Scholz (Eds.), Bryozoan studies 2010: Lecture notes in Earth system sciences (Vol. 143). (pp. 327-337). Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-16411-8_22

Smith, A. M., Wolfe, K., & Byrne, M. (2012). Argonauta at risk: Dissolution and carbonate mineralogy of egg cases. In D. Yellowlees & T. P. Hughes (Eds.), Proceedings of the 12th International Coral Reef Symposium. Townsville, Australia: James Cook University. [Full Paper]

^ Top of page

Working Paper; Discussion Paper; Technical Report

Smith, A. M., & Gordon, D. P. (2011). Bryozoans of southern New Zealand: A field identification guide [New Zealand Aquatic Environment and Biodiversity Report No. 75]. Wellington, New Zealand: Ministry of Fisheries. 64p.

More publications...