Red X iconGreen tick iconYellow tick icon
The Clocktowers clockThursday 9 July 2015 9:08am

Clive Ronson image
Professor Clive Ronson

A University of Otago researcher is part of an international team of scientists that has discovered how legumes, which include important agricultural species such as white clover, are able to tell helpful and harmful invading bacteria apart.

Their study, which changes the understanding of carbohydrates as signal molecules, is newly published in the leading international journal Nature. The research has implications for improving the understanding of how other plant and animal species interact with bacteria in their environment and defend themselves against hostile infections.

Clover and other legumes form a unique symbiotic relationship with bacteria known as rhizobia, which they allow to infect their roots. This leads to root nodules being formed in which the bacteria convert nitrogen from the air into ammonia that the plant can use for growth.

Exactly how these plants are able to distinguish and welcome in compatible rhizobia for this self-fertilising activity—while halting infection by incompatible bacteria—has been a mystery.

Now Otago's Professor Clive Ronson and colleagues in a research team led by Professor Jens Stougaard in Denmark at the Centre for Carbohydrate Recognition and Signalling (CARB) have determined how legumes perceive and distinguish compatible bacteria based on the exopolysaccharides featuring on the invading cells' surfaces.

Professor Ronson says that exopolysaccharides, along with other carbohydrates, are found on the cell surfaces of all organisms.

“Bacteria display a wide selection of polysaccharides, and many of these are important for cell-to-cell interactions, immune evasion, pathogenesis, biofilm formation and colonisation of ecological niches,” he says.

Using an interdisciplinary approach involving plant and microbial genetics, biochemistry and carbohydrate chemistry, the CARB researchers have identified the first known exopolysaccharide receptor gene, called Epr3.

They found that a membrane-bound receptor kinase (a type of enzyme) encoded by the Epr3 gene binds directly with exopolysaccharides and regulates beneficial bacteria's passage through the plant's epidermal cell layer.

“Now that we have identified this key mechanism that allows a host organism to distinguish friendly bacteria from those that cause disease, this opens up exciting new research avenues across a number of fields,” says Professor Ronson.

Microbiome studies in plants, animals and humans are some of the areas that will benefit from the new discovery. The mechanism governing microbiota colonisation of hosts is poorly understood and the identification of an exopolysaccharide receptor is likely to inspire new approaches to understand the interaction between multicellular organisms and microbes, he says.

CARB is a centre of excellence funded by the Danish National Research Foundation – with researchers from Denmark (Aarhus University and the University of Copenhagen) and New Zealand (University of Otago). In addition the collaboration involved researchers from the USA (the Centre for Complex Carbohydrate Research in Georgia).

For more information, contact:

Professor Clive Ronson
Department of Microbiology & Immunology
University of Otago
Tel 03 479 7701
Email clive.ronson@otago.ac.nz

Professor Jens Stougaard
Department of Molecular Biology and Genetics
Aarhus University, Denmark
Cell: 004560202649
Email stougaard@mbg.au.dk

A list of Otago experts available for media comment is available elsewhere on this website.

Electronic addresses (including email accounts, instant messaging services, or telephone accounts) published on this page are for the sole purpose of contact with the individuals concerned, in their capacity as officers, employees or students of the University of Otago, or their respective organisation. Publication of any such electronic address is not to be taken as consent to receive unsolicited commercial electronic messages by the address holder.
Back to top