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Abstract
Human land use causes habitat loss and fragmentation, influencing host-parasite associations through changes in infestation 
rates, host mortality and possibly local extinction. Bat-ectoparasite interactions are an important host-parasite model pos-
sibly affected by such changes, as this system acts as both reservoirs and vectors of several pathogens that can infect different 
wild and domestic species. This study aimed to assess how the prevalence and abundance of bat ectoparasites respond to 
forest loss, fragmentation, and edge length. Bats and ectoparasites were sampled at twenty sites, forming a gradient of forest 
cover, in southwestern Brazil during two wet (2015 and 2016) and two dry (2016 and 2017) seasons. Effects of landscape 
metrics on host abundance as well as parasite prevalence and abundance were assessed through structural equation models. 
Nine host-parasite associations provided sufficient data for analyses, including one tick and eight flies on four bat species. 
Forest cover positively influenced the prevalence or abundance of three fly species, but negatively influenced one fly and the 
tick species. Prevalence or abundance responded positively to edge length for three fly species, and negatively for the tick. 
In turn, number of fragments influenced the prevalence or abundance of four fly species, two positively and two negatively. 
Our results support species-specific responses of ectoparasites to landscape features, and a tendency of host-generalist ticks 
to benefit from deforestation while most host-specialist flies are disadvantaged. Differences in host traits and abundance, 
along with parasite life cycles and environmental conditions, are possible explanations to our findings.
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Introduction

The intensification of human activities has threatened the 
global biodiversity by reducing biologically diverse areas 
into low diversity systems (Foley et al. 2005; Newbold et al. 
2015). Land use for agriculture and livestock production, 
when not performed in a sustainable way, is a major cause of 
habitat loss and fragmentation, two combined processes that 
additionally create edge effects through abrupt transitions 
from natural to human-modified areas (Jose 2009; Meyer 
et al. 2016; Fletcher et al. 2018; Put et al. 2019). Such an 
increase of human land use has markedly caused declines 
in taxonomic and functional diversity of communities, con-
traction or disruption of species geographic distributions, 
and reductions of population size and genetic diversity of 
wild species, though providing an increased occupation 
by more generalist, invasive and/or synanthropic species 
(Brooks et al. 2002; Gonçalves et al. 2017; Lino et al. 2019). 
Therefore, the effects of landscape features on organisms 
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can greatly vary according to the group studied and their 
lifestyles. Parasites negatively affect their hosts directly and 
often indirectly as vectors of pathogens, establishing com-
plex interactions that are poorly understood for many groups, 
and whose consequences after disturbances are still hard 
to predict, raising concerns to human health and wildlife 
(Morand and Lajaunie 2021; Speer et al. 2022).

Although some trends have been found, there are no con-
sensus patterns regarding the effects of landscape changes on 
different host-parasite interactions, and the processes gov-
erning them are yet to be understood (Cottontail et al. 2009; 
Pilosof et al. 2012; Ramalho et al. 2018). The effects of land-
scape changes on parasitic organisms have been highly vari-
able. On the one hand, habitat fragmentation can increase 
parasite prevalence in the host populations due to changes 
in habitat configuration and the decline of hosts diversity 
(Cottontail et al. 2009; Ogrzewalska et al. 2011). In addi-
tion, habitat fragmentation can negatively affect the hosts’ 
immune system, the size and genetic diversity of their popu-
lations, which may result in their enhanced susceptibility 
to acquire parasites that can then more severely infest most 
local host individuals, further contributing to host popula-
tion declines (Mbora and McPeek 2009; Lino et al. 2019; 
Belasen et al. 2019; Edworthy et al. 2019). On the other 
hand, as the number of host species decreases with habitat 
loss, the highly host-specific parasites can decline or suffer 
local extinction, whereas host-generalist ones may predomi-
nate or even increase in abundance through infestation of 
multiple host species (Dunn et al. 2009; Esser et al. 2019).

The Neotropics harbour an amazing diversity of bat spe-
cies (Burgin et al. 2018), which reflects their importance to 
the ecosystems, acting as pollinators, seed dispersers, preda-
tors that control prey populations, and hosts, reservoirs, or 
vectors of parasites and diseases that affect both wildlife 
and human populations (Kuzmin et al. 2011; Moratelli and 
Calisher 2015; Hayman 2016; Wang and Anderson 2019). 
Ectoparasites of bats are potential vectors of diseases among 
bat populations, an aspect still poorly studied (Dick and Ditt-
mar 2014; Tahir et al. 2016). It is expected that highly host-
specific parasites maintain pathogens among conspecific 
bats in different populations, whereas generalist parasites 
could act as vectors of pathogens to different host species 
(Loftis et al. 2005; Socolovschi et al. 2012; Dick and Dittmar 
2014; Muñoz-Leal et al. 2018).

Neotropical bats host a myriad of ectoparasites, with bat 
flies and ticks being the most conspicuous and widespread 
groups (Dick and Patterson 2006; Nava et al. 2017). Most 
bat flies are highly host-specific, whereas ticks often are 
generalists that can parasitize different mammal taxa (Dick 
2007; Nava et al. 2017). Recent studies focused on land use 
changes have shown that the response of bat ectoparasites 
to habitat loss, fragmentation, and human density tend to 
be species-specific (Pilosof et al. 2012; Bolívar-Cimé et al. 

2018; Hiller et al. 2020). For instance, in Costa Rica, human 
disturbances have led to a decrease of bat fly abundance 
on Artibeus planirostris and Pteronotus parnellii bats, but 
to an increase on Carollia perspicillata. These findings are 
possibly related to roosting habits, as the former species use 
less exposed roosts and the last roosts in exposed places, 
which are prone to be affected by environmental conditions 
(Pilosof et al. 2012). The presence of riparian forests was 
associated with an increase of bat fly prevalence on Arti-
beus jamaicensis bats in Mexico (Hernández-Martínez et al. 
2018), while Ramalho et al. (2018) found a higher preva-
lence of the bat fly Trichobius joblingi on C. perspicillata in 
preserved compared to degraded habitats. However, to the 
best of our knowledge, the effects of landscape changes on 
the abundance of ticks on bats have not yet been addressed, 
though fragmentation has been found to increase the preva-
lence of ticks on birds (Ogrzewalska et al. 2011). Overall, 
the available studies on the effects of landscape features on 
bat ectoparasites abundance suggest that the direction of the 
responses is host species and parasite species-specific (Mello 
et al. 2023). Here, we evaluate changes in the prevalence and 
abundance of bat ectoparasites across landscapes forming 
a gradient of forest loss and fragmentation, in the Serra da 
Bodoquena region, Brazilian Cerrado. We ask whether and 
how forest cover area, number of forest fragments, length of 
forest edge, and host abundance can influence the prevalence 
and abundance of ectoparasites on bats.

Methods

Study region

The study was carried out in the karstic region of Serra da 
Bodoquena (18,000 km2; 150–800 m altitude), southwestern 
Brazil (Fig. 1). The climate is type Aw of Köppen-Geiger 
(Kottek et al. 2006), with the wet season from November 
to April and the dry season from May to September. The 
mean annual rainfall ranges from 1300 to 1700 mm, and 
the mean annual temperature, from 22 to 26 °C (Hijmans 
et al. 2005). The vegetation is mainly composed of decidu-
ous and semi-deciduous forests, woody savannas, and grass-
lands (Baptista-Maria et al. 2018; Scremin-Dias et al. 2018). 
The Serra da Bodoquena National Park comprises the two 
largest continuous areas of pristine habitats (the northern 
area with 28,000 ha, and the southern area with 49,000 ha), 
being surrounded by small natural fragments of lands modi-
fied for agricultural and livestock production (Fig. 1). After 
dividing the entire region (18,000 km2) in 360 hexagons of 
5000 ha using satellite images and measuring the forest area 
in each one, we selected 20 sample sites in the centre of 20 
hexagons forming a gradient from 3 to 100% of forest cover. 
Additional criteria for selection of sites were accessibility, 
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presence of watercourses, authorization from landowners, 
and avoidance of nearby sites with similar values of forest 
cover.

Bat and ectoparasite sampling

To sample the bat species and their ectoparasites across 
the 20 sites, we mistnetted bat individuals in four field 
expeditions, including two rainy seasons (2015, 2016) 
and two dry seasons (2016, 2017). Each site was sam-
pled one night per field expedition, thus totalizing four 
nights per site; except three sites that were sampled for 
three nights in total because they were inaccessible during 
one expedition. Each night we set ten 12 × 2.6 m mistnets 
per site during six hours after dusk; all nets were placed 
in deciduous or semideciduous forest understories. All 
captured bats were kept in individual cloth bags before 
being inspected for ectoparasites. Bat identifications and 
classification followed Gardner (2007). All ectoparasite 
individuals found on the bats’ bodies and inside the bags 

were removed manually or with tweezers and placed in 
vials containing 99% ethanol; each vial corresponding to 
one host bat. In the laboratory, we counted and identi-
fied the ectoparasites based on Wenzel (1976), Guerrero 
(1995), and Muñoz-Leal et al. (2016). Only bat species 
that occurred in all 20 sampling sites were included in the 
final analyses. Samplings were carried out under authori-
zation of the Brazilian environmental ministry (ICMBio 
– authorization number 41652–1).

Parasitological indices

We used two parasitological indices, prevalence and abun-
dance (Bush et al. 1997), to describe the ectoparasite popu-
lations on their hosts. Prevalence represents the proportion 
of individuals of a particular host species infested by one 
parasite species in a sample. Abundance is the number of 
individuals of a parasite species on an individual host, either 
infested or non-infested (abundance = zero).

Fig. 1   Distribution of the 20 
sampling sites (black dots) in 
the region of Serra da Bodo-
quena (red mark in South 
America). Green represents 
forest areas. At right, examples 
of the buffer areas (0.5, 1, 2.5 
and 5 km radius) corresponding 
to three sites (A, B, and C)
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Landscape metrics

We recorded landscape metrics at four spatial scales 
through concentric buffers with 0.5, 1, 2.5, and 5 km of 
radius around each sample site (Fig. 1). We used land-
scape variables at different scales because home range 
is expected to differ among bat species and may vary 
between regions. For each site and buffer size, we cal-
culated the proportion of forest cover area, number of 
forest fragments, and the total length of forest edges in 
kilometres. Landscape variables were calculated using a 
map created with 2012 Landsat images (30 m resolution), 
after checking for no significant landscape changes from 
2012 to the period of field data collection using maps and 
reports provided by the Non-Governmental Organization 
“SOS Pantanal”(SOS Pantanal 2017). The images were 
rasterized and processed with FRAGSTATS (McGarigal 
et al. 2012). Forest patches ≥ 0.1 ha were classified as 
‘fragment’. Buffers were created and landscape variables 
were calculated with the R packages rgeos (Bivand et al. 
2019) and spatialEco (Evans 2018), respectively. Because 
the spatialEco package mistakenly counts the buffer’s 
perimeter segments over forested areas as edges, we manu-
ally measured these perimeter segments in the images of 
each buffer and subtracted them from the values calculated 
by the package.

Data analyses

Landscape variable correlations and scale selection

To choose the buffer size in which each landscape metric 
should be incorporated into final models (see below), i.e., 
the scale representing the strongest response for each para-
site (Put et al. 2019; Amiot et al. 2021), we used Akaike 
information criteria (AIC) to rank models with ectopara-
site prevalence or abundance as response and each land-
scape metric of different buffer sizes as predictor. For each 
ectoparasite species on a given host bat species, we then 
selected the buffer scale for each landscape metric whose 
model presented ΔAIC = 0 (Table S1 – Supplementary 
material 1). Afterward, to account for collinearity in the final 
models, we correlated the selected variables to check and 
avoid cases when r > 0.7 (Dormann et al. 2013). Edge length 
in the 5 km radius buffer and number of fragments in this 
same buffer size were the only highly correlated variables 
(Figure S1 – Supplementary material 1). Therefore, when 
these two variables were initially selected for inclusion in 
the same final model (corresponding to each parasite-host 
species association; see below), we switched the choice of 
buffer size based on the one that presented the second lowest 
ΔAIC value (Table S1 – Supplementary material 1).

Main models

We used structural equation models (Piecewise SEM) to 
assess the direct effects of the landscape variables on the 
prevalence of ectoparasites and the abundance of ectopara-
sites and hosts, as well as the indirect effects of landscape 
on parasites through the host abundance. Bat individuals 
were the sampling units in all analyses. Host abundance per 
site was measured as Nm−2 h−1, expressing the number of 
captured bats (N) divided by the netting effort in terms of net 
area (m2) and netting time (h). We used generalized linear 
mixed models (GLMM) with binomial distribution to assess 
the effects of landscape metrics and host abundance on 
ectoparasite prevalence, and with negative binomial distribu-
tion for effects on ectoparasite abundance (Zuur et al. 2009). 
The site ID was included as random effect in all the mod-
els of prevalence and abundance of ectoparasites, in order 
to account for spatial stochasticity among sites (Dormann 
et al. 2007). Finally, we normalized host abundance through 
squared root transformation and analysed it as a response of 
landscape metrics with generalized linear models (GLM) 
and gaussian link-function. It was not possible to use mixed 
models in the analyses of host abundance since the correla-
tion of the response variable and the random effects was 
identical. Before performing the analyses, we checked for 
spatial autocorrelation of the response variables using the 
Moran´s I index (Table S2 – Supplementary material 1). 
The predictor variables were scaled to have a mean of 0 and 
a standard deviation of 1, allowing comparisons (Zuur et al. 
2009). We considered that a variable had an effect if the 
95% confidence intervals of the estimated regression coef-
ficients did not overlap zero in the regression estimates plot. 
Analyses were conducted with the package piecewiseSEM 
(Lefcheck 2019) in the R environment (R Core Team 2020). 
The raw data is provided in the supplementary material 2.

Results

We captured 2,091 bats of 23 species in four families 
– Molossidae, Noctilionidae, Phyllostomidae, and Ves-
pertilionidae. Phyllostomidae was the most abundant and 
speciose, with 2,050 individuals and 20 species sampled. 
Four phyllostomids that accounted for 85% of all captures 
matched our criteria (i.e., recorded at all sites) to be included 
in the analyses – Artibeus planirostris, Sturnira lilium, Car-
ollia perspicillata, and Platyrrhinus lineatus. The number 
of captured individuals varied from 224 to 930 among the 
four host species. The mean (± SD) abundance relative to 
the capture effort per site was 0.58 ± 0.35 Nm−2  h−1 for 
A. planirostris, 0.17 ± 0.20 Nm−2  h−1 for C. perspicil-
lata, 0.14 ± 0.13 Nm−2 h−1 for P. lineatus, and 0.23 ± 0.35 
Nm−2 h−1 for S. lilium. Eight bat flies and one tick species 
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parasitized these four bat species (Table 1); their prevalence 
varied from 9.8 to 66.9, with Ornithodoros hasei on A. plan-
irostris being the least prevalent, and Trichobius joblingi on 
C. perspicillata the most prevalent (Table 1). Mean abun-
dance of ectoparasites varied from 0.27 to 0.98, which cor-
responded to the occurrence of Paratrichobius longicrus on 
P. lineatus and Aspidoptera falcata on S. lilium, respectively 
(Table 1). The percentage of forest cover area ranged from 
3.2 to 100 among sites and buffer sizes, while the number 
of fragments and edge length varied from 1 to 326 and from 
zero to 361 km, respectively (Table S3 – Supplementary 
material 1).

The effects of the landscape variables on the abundance 
of A. planirostris were in the opposite direction to those 
on the abundance of the other three host bats. Forest cover 
and number of forest patches negatively affected A. planiro-
stris abundance, while edge length positively influenced it 
(Fig. 2). On the contrary, the abundances of C. perspicillata 
and P. lineatus responded positively to forest cover and num-
ber of patches, but negatively to edge length; and Sturnira 
lilium followed these same trends except that number of 
patches slightly negatively affected it (Fig. 3).

At least one landscape variable affected, directly or indi-
rectly through host abundance, the prevalence or abundance 
of six fly and one tick species (Fig. 4), but two fly species 
(T. joblingi and P. longicrus) were not directly nor indirectly 
affected. The effect direction of forest cover on the prev-
alence and abundance of the ectoparasites were host and 
parasite-specific. On the one hand, forest cover negatively 
influenced, directly and indirectly, the prevalence of the tick 
O. hasei (path coefficient = -0.44) as well as the abundance 
of M. aranea flies on A. planirostris bats; though it indirectly 

affected positively (path coefficient = 0.07) the prevalence 
of A. phyllostomatis on this host bat (Fig. 2). On the other 
hand, the prevalence and abundance of the flies A. falcata, S. 
guajiro, and T. angulatus, occurring on S. lilium, C. perspi-
cillata, and P. lineatus, respectively, were positively affected 
by forest cover (Fig. 3).

The effect of edge length on ectoparasite abundance 
and prevalence presented opposite direction between ticks 
and flies (Fig. 4). The abundance of O. hasei decreased, 
and that of the flies M. proxima, A. falcata, and S. guajiro 
increased, as edge length increased. The net effect of edge 
length on the prevalence of O. hasei was positive (path coef-
ficient = 0.16) because the negative direct effect was lower 
than the positive indirect effect through host abundance, 
whereas the prevalence of A. phyllostomatis was negatively 
affected (path coefficient = -0.16) indirectly only (Fig. 2). 
Effects of number of fragments also differed depending on 
the parasite-host species identity. The number of fragments 
negatively influenced the abundance of A. phyllostomatis on 
A. planirostris, as well as the abundance and prevalence of 
M. proxima on S. lilium. On the other hand, the prevalence of 
S. guajiro on C. perspicillata and the prevalence and abun-
dance of T. angulatus on P. lineatus were positively affected 
by the number of fragments (Fig. 3).

Discussion

Our results support that responses of bat ectoparasites to 
forest loss and fragmentation are host and parasite specific. 
The effect direction of forest amount on the ectoparasite 
prevalence or abundance seems to be greatly dependent on 
the host identity. The prevalence or abundance of the tick 
O. hasei and the fly M. aranea on the large-sized bat A. 
planirostris are negatively affected by forest area, contrast-
ing with the positive effect of forest cover on the prevalence 
or abundance of flies parasitizing the comparatively small 
bats S. lilium, C. perspicillata, and P. lineatus. Edge length 
and number of patches, which reflect forest fragmentation, 
also affect prevalence and abundance in different directions 
depending on the parasite-host species association. The 
effect of edge length supports opposite responses between 
the host-generalist tick (O. hasei) and the host-specialist 
flies, with the former negatively, and the flies positively, 
influenced by increasing edge length. This contrasting 
response between ticks and flies is reinforced by the absence 
of effect of edge length on the flies parasitizing the same 
host (A. planirostris) as the O. hasei ticks in the Serra da 
Bodoquena region. Likewise, different responses between 
ticks and flies occur regarding the influence of the number 
of fragments, which had no effect on ticks but positively or 
negatively affected fly species. Some similar studies also 
reveal different patterns among different ectoparasite-host 

Table 1   Prevalence and mean abundance (95% confidence interval) 
of ectoparasite species on four species of phyllostomid bats in the 
Serra da Bodoquena, southwestern Brazil

Host (N) Prevalence Mean abundance
  Ectoparasite (N)

Artibeus planirostris (930)
  Megistopoda aranea (903) 49.1 (45.9–52.4) 0.97 (0.88–1.06)
  Aspidoptera phyllostomatis 

(446)
26.5 (23.6–29.4) 0.48 (0.42–0.55)

  Ornithodoros hasei (589) 9.8 (8.0–11.9) 0.63 (0.44–1.03)
Sturnira lilium (346)
  Megistopoda proxima (310) 48.6 (43.2–54.0) 0.90 (0.77–1.04)
  Aspidoptera falcata (446) 44.8 (39.5–50.2) 0.98 (0.83–1.18)

Carollia perspicillata (269)
  Trichobius joblingi (515) 66.9 (60.9–72.5) 1.91 (1.67–2.20)
  Strebla guajiro (78) 22.0 (17.1–27.4) 0.29 (0.22–0.37)

Platyrrhinus lineatus (224)
  Trichobius angulatus (149) 33.9 (27.8–40.5) 0.67 (0.51–0.87)
  Paratrichobius longicrus (61) 18.8 (13.9–24.5) 0.27 (0.19–0.38)
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Fig. 2   Path analyses of the 
interactions between Artibeus 
planirostris bats and three 
ectoparasite species in the Serra 
da Bodoquena region. Arrows 
represent the direction of the 
effect, and thickness represents 
the values of the standardized 
regression estimates. Solid and 
dashed lines indicate posi-
tive and negative correlations, 
respectively. Only significant 
relationships are showed. 
Aphy = Aspidoptera phyllos-
tomatis, Mara = Megistopoda 
aranea, Ohas = Ornithodoros 
hasei, and Apla = Artibeus 
planirostris 
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species associations. For instance, the prevalence of M. ara-
nea on Artibeus jamaicensis bats (same size as, and closely 
related to A. planirostris) increases with forest cover in Mex-
ico (Bolívar-Cimé et al. 2018), though prevalence of this 
same fly species on A. planirostris was unaffected by, and its 
abundance negatively responded to forest cover in the Serra 

da Bodoquena. Furthermore, Frank et al. (2016) found no 
evidence of forest cover effects on bat fly abundance across 
Costa Rican phyllostomids, but Mello et al. (2023) reported 
negative effects of forest cover on the prevalence of bat fly 
species across a human-dominated tropical landscape in Bra-
zil. Therefore, the response of bat ectoparasites to changes 

Fig. 3   Path analyses of the six host-parasite relationships in the Serra 
da Bodoquena region. Arrows represent the direction of the effect, 
and thickness represents the values of the standardized regression 
estimates. Solid and dashed lines indicate positive and negative cor-
relations, respectively. Only significant relationships are showed. 

Parasites: Mpro = Megistopoda proxima, Afal = Aspidoptera falcata, 
Tjob = Trichobius joblingi, Sgua = Strebla guajiro, Plon = Para-
trichobius longicrus, and Tang = Trichobius angulatus. Hosts: 
Slil = Sturnira lilium, Cper = Carollia perspicillata, and Plin = Platyr-
rhinus lineatus 
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in land use appears to be intricate, highlighting the need for 
further data on their biology and ecology. Next, we discuss 
some particularities of hosts and parasites that may explain 
the contrasting effects of landscape features on different bat-
ectoparasite associations.

The abundance of A. planirostris bats increased as for-
est area declined and edge length increased, an opposite 
response compared to that of S. lilium, C. perspicillata, 
and P. lineatus bats across our study sites. This indicates 
that A. planirostris differs from the other three frugivorous 
bats by taking advantage of forest reduction and fragmenta-
tion, as indeed supported by previous studies in our region 
(Silveira et al. 2018; Lino et al. 2021). Ticks Ornithodoros 
hasei are generalist parasites on bats and other mammals. 
Immature forms have been recorded on more than 30 bat 
species, mostly on phyllostomids, and adult ticks are found 
in bat roosts only (Muñoz-Leal et  al. 2016; Nava et  al. 
2017). In our records, only O. hasei larvae occurred on A. 
planirostris and the prevalence of this species declined as 
forest cover increased. The free-living stages of some tick 
species respond positively to temperature and negatively to 
humidity (Randolph 2004), thus less covered areas could 
promote the occurrence of O. hasei because they become 
warmer and drier with evapotranspiration reduction (Davin 
and de Noblet-Ducoudré 2010). Such climatic changes in 
less covered and more fragmented landscapes can possibly 
reduce the proportion of forest areas safe from ticks, and 
consequently contribute to increase tick prevalence on A. 
planirostris. Furthermore, O. hasei might prevail on tree-
roosting bats rather than on cave-dwelling ones (Jones et al. 
1972; Muñoz-Leal et al. 2016), and A. planirostris com-
monly roosts in tree holes or foliage (Garbino and da Tavares 

2018). Therefore, the positive response of A. planirostris 
abundance to fragmentation may render it susceptible to O. 
hasei ticks, comparatively to the other three hosts with an 
opposite response to fragmentation.

Bats may use different roosting places intermittently as a 
strategy to escape ectoparasite infestation (Evelyn and Stiles 
2003; Gorresen and Willig 2004; Saldaña-Vázquez et al. 
2013). The low overall availability of roosting trees expected 
in landscapes with less forest cover may lead more bats to 
use the same roosts for longer, and to a greater aggregation 
of individuals roosting together (Hernández-Martínez et al. 
2018). In our region, A. planirostris can roost in small-hol-
low thinner trees, and even in isolated ones in more altered 
forests, and records of radio-tracked individuals showed 
that adult males (N = 5) forage only near their roosts, likely 
defending them against others (Martins 2016). This situation 
leads to a continuous use of the same roosts by several bats, 
thus contributing to ectoparasite transmission and to a higher 
prevalence of O. hasei ticks and abundance of M. aranea 
flies on A. planirostris in more deforested areas.

Edge length directly and positively affected the preva-
lence and abundance of M. proxima and A. falcata flies, both 
on S. lilium. This bat also roosts in tree hollows, though it 
apparently depends on large cavities of large-diameter trees 
of old-growth forests (Evelyn and Stiles 2003). Increased 
edge length can lead to low availability of large cavity-bear-
ing trees as forest borders mainly comprise pioneer trees and 
lianas, and it additionally enables an easy access for logging 
in forest interiors (Harper et al. 2005). This could partially 
explain the decline of S. lilium abundance as fragmenta-
tion progresses, and also the positive relationships between 
edge length and parasitic infestation because few suitable 

Fig. 4   Regression estimates, 
standard error (bold bars), 
and 95% confidence intervals 
(tick lines) of the GLMM 
models. Colours indicate the 
predictors (green = forest 
cover, blue = edge length, and 
orange = number of fragments) 
and shapes indicate response 
variables (square = ectoparasite 
prevalence, and circle = ectopar-
asite abundance). Ectoparasites: 
Afal = Aspidoptera falcata, 
Aphy = Aspidoptera phyllos-
tomatis, Mara = Megistopoda 
aranea, Mpro = Megistopoda 
proxima, Ohas = Ornithodoros 
hasei, Sgua = Strebla guajiro, 
and Tang = Trichobius angu-
latus 
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roosts could increases host aggregation facilitating horizon-
tal transmission (Morand and Poulin 1998).

We recorded two fly species on each of the three small 
bat species – S. lilium, C. perspicillata, and P. lineatus. On 
each of these hosts, forest cover positively influenced one 
fly species and had no effect on the other fly species. Such 
different responses between fly species on the same host 
may emerge due to difference of traits between them and/
or through interspecific interactions with asymmetrical out-
comes (Linhares and Komeno 2000; Hiller et al. 2018). The 
prevalence and abundance of A. falcata, S. guajiro, and T. 
angulatus (on S. lilium, C. perspicillata, and P. lineatus, 
respectively) were higher in sites with higher forest cover, 
thus on bats roosting in less altered environmental condi-
tions. Bat fly life cycles depend on the host roost conditions 
since their pupae are deposited in its internal walls until the 
emergence of the adults, which promptly need to find a bat 
to parasitize (ter Hofstede and Fenton 2005; Patterson et al. 
2007). The greater fluctuations of temperature and humidity 
inside roosts at sites with low forest cover could be harmful 
for A. falcata, S. guajiro, and T. angulatus pupae develop-
ment (Davies-Colley et al. 2000; Pilosof et al. 2012), which 
may explain the lower abundance of these ectoparasites in 
less forested landscapes. However, the absence of effect of 
forest cover on M. proxima, and no effect of any landscape 
variables on T. joblingi and P. longicrus (on S. lilium, C. 
perspicillata, and P. lineatus, respectively), show that they 
could tolerate more variable conditions or deposit their 
pupae deeper inside roosts, thus less exposed to external 
environmental conditions (Dittmar et al. 2009). Nonethe-
less, it is intriguing that Mello et al. (2023) found no effect 
of forest cover on the prevalence of A. falcata in an anthro-
pogenic landscape, while the prevalence of M. proxima, S. 
guajiro, and T. joblingi increases in deforested areas. These 
contradictory results support that the biology of bat fly and 
host bat species per se do not influence alone the ectopara-
site responses to landscape changes, and that local extrinsic 
factors may additionally account for them.

Overall results and previous studies indicate that 
responses of bat-ectoparasite interactions to forest loss 
and fragmentation are species-specific and dependent 
on the local context. Our results further highlight that 
responses of bat flies can vary due to their different life 
history traits, to the type and usage of roosts by their hosts, 
and to variable host abundance in different ways. Further 
data on the biology of multiple bat fly species are criti-
cal to shed light on the mechanisms behind different pat-
terns of bat fly and bat species interactions in the Serra 
da Bodoquena. Since changes in land use can potentially 
lead to widespread disease outbreaks and epidemiological 
emergencies (Kitron 1998; Satjanadumrong et al. 2019), 
the higher prevalence of ticks on bats in deforested areas 
is of special concern. Ornithodoros hasei is a potential 

vector of pathogenic microorganisms, such as Rickettsia 
and Bartonella (Davoust et al. 2016; Tahir et al. 2016). 
Ticks carrying Rickettsia species can transmit spotted 
fever agents (Satjanadumrong et al. 2019), and bats are 
potential reservoirs of human pathogenic Bartonella spp. 
in the northern hemisphere (Veikkolainen et al. 2014). As a 
host-generalist ectoparasite, O. hasei is likely able to infest, 
and thus spread pathogens, to several mammal species and, 
ultimately, to domestic animals and humans (Mühldorfer 
2013; Nava et al. 2017; Kingsley and Taylor 2017). Based 
on this concern and on our findings for O. hasei prevalence 
and abundance, we stress the importance of forest mainte-
nance in order to prevent zoonotic diseases.
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