Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographical distance or faunal similarity?

Boris R. Krasnov1,*, Georgy I. Shenbrot1, David Mouillot2, Irina S. Khokhlova3 and Robert Poulin4

INTRODUCTION

Patterns of spatial variation in biological diversity represent one of the central themes in modern biogeography and ecology (Rosenzweig, 1995; Gaston & Williams, 1996). Much of the knowledge about these patterns available to date is based strictly on studies of free-living organisms (Rosenzweig, 1995), whereas patterns of parasite diversity have until now attracted

ABSTRACT

Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables?

Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic.

Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method.

Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature.

Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co-evolutionary history to determine local parasite biodiversity.

Keywords Faunal similarity, fleas, geographical distance, Holarctic mammals, parasite species richness, small mammals.
much less attention. However, parasites form a large proportion of the diversity of life, and parasite communities represent convenient models for investigations of spatial diversity patterns (Poulin, 2003). Species richness of parasite communities is usually not extremely high and, thus, enumeration of all species is quite possible. Representative data on the parasite communities from different host species within the same geographical region and those from several populations of the same host across different geographical regions are available from the literature.

Indeed, the number of studies aiming to explain patterns of parasite species richness among host species has increased greatly during the last decade (see Poulin, 1998; Combes, 2001 and references therein). In fact, Combes (2001) listed as many as 16 different (not necessarily alternative) hypotheses related to correlates of parasite species richness among different host species. Although some of these hypotheses have never been tested, and testing of others has provided contradictory results (e.g. Price & Clancy, 1983; but see Guegan & Kennedy, 1993), it is now commonly accepted that parasite species are not distributed randomly among their hosts but rather parasite species richness results from multiple host-related factors (Caro et al., 1997; Morand & Poulin, 1998; Morand & Harvey, 2000). However, most studies of parasite species richness have focused on a broad scale (e.g. among different host species), whereas patterns of diversity of parasite communities on a smaller scale (e.g. among different populations of the same host species) are much less studied (Carney & Dick, 2000; Poulin & Valtonen, 2002; Poulin, 2003; Calvete et al., 2004). In addition, geographical variation in the diversity of parasite xenocommunities (sensu Combes, 2001) in the same host species has been studied mainly in endoparasites (e.g. Kisielewska, 1970; Kennedy & Bush, 1994). For example, Poulin (2003) found that the similarity in the composition of helminth communities in vertebrate hosts decreased with increasing geographical distance between host populations, although this was only true for some host species and not others. On the contrary, ectoparasite xenocommunities have attracted much less attention (e.g. Proctor & Jones, 2004). However, ectoparasites, particularly periodic ones such as fleas, must be strongly influenced by the characteristics of their off-host environment. Consequently, species diversity of ectoparasites should demonstrate strong geographical variation and covary with the parameters related to the host environment such as climate and the species composition of sympatric host species.

Fleas (Siphonaptera) are characteristic mammalian ectoparasites, most abundant and diverse on small and medium-sized species. In most fleas, all stages of the life cycle are spent off the host, except for the adults that feed intermittently on the host. Here, we examined spatial variation in species diversity and similarity of flea assemblages on small mammalian hosts. We used two measures of diversity of flea assemblages: flea species richness and the taxonomic distinctness of species within an assemblage. The latter measure is based on the average taxonomic distances between species in an assemblage (Clarke & Warwick, 1998, 1999, 2001 Warwick & Clarke, 2001), and provides a measure of the composition, and not the size, of an assemblage.

The aims of this study were threefold. First, we asked whether diversity of the flea assemblage on a host species, measured either as flea species richness or taxonomic distinctness, is a true host characteristic. In other words, we asked if the diversity of flea assemblages is repeatable within a host species, i.e. a feature that varies less among different populations of the same host species than among different host species. Repeatability of flea species richness within a host species would indicate that the accumulation of flea species in a host population reaches the same upper limit on all populations of the same host species. In contrast, repeatability of taxonomic distinctness would suggest similar patterns of host colonization and intra-host speciation across all conspecific populations in the course of the co-evolutionary history of fleas and mammals (Poulin & Mouillot, 2004).

Secondly, we asked how variable (if at all) the diversity and composition of flea assemblages are among different populations of the same host by comparison of the similarity in flea assemblages among conspecific host populations that occur in different geographical locations and belong to host faunas of different species composition. The proportion of species shared by two communities often decreases with increasing distance between them (distance decay of similarity; see Nekola & White, 1999; Poulin, 2003 and references therein). A decrease of similarity with increasing distance has been shown not only for free-living organisms but for helminth parasites also (Poulin, 2003). Consequently, we predicted that the similarity in flea assemblages between different populations of the same host would decrease with increasing distance between these populations as is the case with communities of both free-living organisms and helminths. The decrease of similarity in biological communities with distance can arise because of various mechanisms: one of them being a decrease in environmental similarity with increasing distances (Nekola & White, 1999). However, environmental similarity for parasites involves not only the physical environment but also an environment represented by the species composition of the host community (host ‘faunal’ environment). For example, host species in communities of similar composition but under different environmental conditions can support similar flea assemblages and vice versa. Consequently, we predicted the same pattern for ‘faunal’ dissimilarities as expected for geographical distances, namely that similarity in flea assemblages would decrease with increasing dissimilarity of host ‘milieu’.

Finally, we determined the effect of the off-host climatic conditions on the diversity of flea assemblages of the same host species. The effect of climatic variables on the diversity and composition of flea assemblages can be related to the microclimatic and substrate (mediated via microclimate) preferences of the off-host stages of fleas (eggs, larvae and/or pupa) as well as of adult fleas (e.g. Krasnov et al., 1998).
MATERIALS AND METHODS

Data set

Data were obtained from published surveys that reported flea distribution and abundance on small mammals (Insectivora, Lagomorpha and Rodentia) in 24 different regions of the Holarctic (Table 1). These sources provided data on the number of individuals of a particular flea species found on a number of individuals of a particular host species. We cross-checked the flea species lists with the catalogue of Lewis & Lewis (1990) to resolve cases of synonymy. Single findings of a flea species on a host species or in a region were considered accidental and were not included in the analyses. Synanthropic widespread mammalian species (*Mus musculus* L., *Rattus rattus* L. and *Rattus norvegicus* Berkenhout) were considered in the borders of their natural geographical ranges only.

We included in the analyses only those mammal species that were recorded in at least two regions. In total, we used data on 254 mammal samples, representing 366,737 individuals of 69 species from which 1,292,643 individual fleas of 246 species were recovered. The number of hosts examined in a survey is an important determinant of the number of the less common parasite species found and estimates of flea species richness might be inaccurate for smaller samples (see Walther et al., 1995; Stanko et al., 2002). Consequently, sampling effort was included as a potential confounding variable in the repeatability analysis (see below), whereas only data from surveys that examined at least 10 individual hosts per population were included in the similarity analyses (60 species, see below).

Measures of flea abundance and species diversity

We used the mean number of flea individuals per individual host of a given species in a given region as a measure of flea abundance on a host in a region. The two measures of flea species diversity we used were: (a) the number of flea species found on a host species, or species richness, corrected for sampling effort (residuals of the linear regression against number of hosts examined); and (b) average taxonomic distinctness (∆+) and the variance in taxonomic distinctness (K+) of the flea species present. When these flea species are placed within a taxonomic hierarchy, the average taxonomic distinctness is the mean number of steps up the hierarchy that must be taken to reach a taxon common to two flea species, computed across all possible pairs of flea species (Clarke & Warwick, 1998, 1999; Warwick & Clarke, 2001; Poulin & Mouillot, 2003a, 2004). The greater the taxonomic distinctness between flea species, the higher the number of steps needed, and the higher the value of the index ∆+. Using the taxonomic classification of Hopkins & Rothschild (1953, 1956, 1962, 1966, 1971), Traub et al. (1983) and Medvedev (1998), all flea species included here were fitted into a taxonomic structure with eight hierarchical levels above species, i.e. subgenus (or

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of host species</th>
<th>Number of flea species</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adzharia, southern Caucasus</td>
<td>9 (7487)</td>
<td>16 (1323)</td>
<td>Alania et al. (1964)</td>
</tr>
<tr>
<td>Akmolinsk region, northern Kazakhstan</td>
<td>17 (302)</td>
<td>25 (2027)</td>
<td>Mikulin (1959a)</td>
</tr>
<tr>
<td>Altai mountains</td>
<td>19 (1332)</td>
<td>8 (1834)</td>
<td>Sapegina et al. (1981)</td>
</tr>
<tr>
<td>California</td>
<td>4 (407)</td>
<td>13 (307)</td>
<td>Davis et al. (2002)</td>
</tr>
<tr>
<td>Central Yaktutia</td>
<td>7 (556)</td>
<td>17 (848)</td>
<td>Elshanskaya & Popov (1972)</td>
</tr>
<tr>
<td>Dzungarskyi Alatau, Kazakhstan</td>
<td>15 (5230)</td>
<td>21 (5219)</td>
<td>Burdelova (1996)</td>
</tr>
<tr>
<td>East Balkhash desert, Kazakhstan</td>
<td>18 (443)</td>
<td>32 (6507)</td>
<td>Mikulin (1959b)</td>
</tr>
<tr>
<td>Idaho</td>
<td>10 (3352)</td>
<td>27 (10,017)</td>
<td>Allred (1968)</td>
</tr>
<tr>
<td>Kabarda, northern Caucasus</td>
<td>11 (1632)</td>
<td>18 (1695)</td>
<td>Syracheva (1964)</td>
</tr>
<tr>
<td>Khabarovsk region, southern Russian Far East</td>
<td>8 (6596)</td>
<td>22 (5192)</td>
<td>Koskin (1966)</td>
</tr>
<tr>
<td>Kustanai region, north-western Kazakhstan</td>
<td>18 (195)</td>
<td>18 (958)</td>
<td>Reshetnikova (1959)</td>
</tr>
<tr>
<td>Moynkum desert, Kazakhstan</td>
<td>30 (45,443)</td>
<td>12 (260,774)</td>
<td>Popova (1967)</td>
</tr>
<tr>
<td>Mongolia</td>
<td>3 (844)</td>
<td>13 (2180)</td>
<td>Vasiliev (1966)</td>
</tr>
<tr>
<td>North Asian Far East</td>
<td>9 (1374)</td>
<td>13 (1010)</td>
<td>Yudin et al. (1976)</td>
</tr>
<tr>
<td>North Kyrgyzstz</td>
<td>14 (4750)</td>
<td>31 (6858)</td>
<td>Shwartz et al. (1958)</td>
</tr>
<tr>
<td>North New Mexico</td>
<td>10 (3941)</td>
<td>23 (2704)</td>
<td>Morlan (1955)</td>
</tr>
<tr>
<td>Novosibirsk region, southern Siberia</td>
<td>23 (1841)</td>
<td>27 (4161)</td>
<td>Violovich (1969)</td>
</tr>
<tr>
<td>Pavlodar region, eastern Kazakhstan</td>
<td>12 (256)</td>
<td>16 (74)</td>
<td>Sinetschikov (1956)</td>
</tr>
<tr>
<td>Selenga region, central Siberia</td>
<td>9 (974)</td>
<td>13 (1045)</td>
<td>Pauller et al. (1966)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>14 (9825)</td>
<td>18 (10,525)</td>
<td>Stanko et al. (2002)</td>
</tr>
<tr>
<td>Tarbagatai region, eastern Kazakhstan</td>
<td>22 (318)</td>
<td>31 (1124)</td>
<td>Mikulin (1958)</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>11 (234,257)</td>
<td>36 (906,797)</td>
<td>Zagniborodova (1960) and unpubl. data</td>
</tr>
<tr>
<td>Tuva</td>
<td>9 (2450)</td>
<td>26 (25,665)</td>
<td>Letov et al. (1966)</td>
</tr>
<tr>
<td>Volga-Kama region</td>
<td>30 (32,932)</td>
<td>34 (33,619)</td>
<td>Nazarova (1981)</td>
</tr>
</tbody>
</table>
species group), genus, tribe, subfamily, family, superfamily, infraorder and order (Siphonaptera). We restricted our use of taxonomic levels to these basic ones because they are the only ones available for all flea taxa included here. The maximum value that the index Δ^+ can take is thus 8 (when all flea species belong to different infraorders), and its lowest value is 1 (when all flea species belong to the same subgenus or species group). However, as the index cannot be computed for hosts exploited by a single flea species, we assigned a Δ^+ value of 0 to these host species, to reflect their extremely species-poor flea assemblages. The variance in Δ^+, Λ^+, provides information on any asymmetries in the taxonomic distribution of flea species in assemblages (Clarke & Warwick, 1998, 1999; Warwick & Clarke, 2001; Poulin & Mouillot, 2003a); it can only be computed when a flea assemblage comprises three or more flea species (it always equals zero with two flea species). To calculate Δ^+ and Λ^+, DM and RP developed a computer program using Borland C++ Builder 6.0 (available at http://www.otago.ac.nz/zoology/downloads/poulin/TaxoBiodiv1.2).

The number of flea species exploiting a host species was significantly positively correlated (albeit weakly) with both Δ^+ and Λ^+ ($r = 0.45$, $n = 254$ and $r = 0.27$, $n = 176$; respectively, $P < 0.05$ for both), indicating that these measures were influenced by the number of species in a host’s flea assemblage. Therefore, in the subsequent analyses Δ^+ and Λ^+ were corrected for the flea species richness in an assemblage. In addition, Δ^+ and Λ^+ did not covary with each other ($r = 0.01$, $n = 174$ $P > 0.05$).

Repeatability analysis

To determine whether species diversity of flea assemblages expressed either as the number of flea species found on a host species (species richness), average taxonomic distinctness among fleas in an assemblage of a host species, Δ^+, or its variance, Λ^+, is a true host species attribute, i.e. a parameter that varies less among populations of the same host species than among host species, we performed a repeatability analysis (see Arneberg et al., 1997; Poulin & Mouillot, 2004). Using host species for which at least two samples were available, we analysed the variation in the number of flea species, taxonomic distinctness among fleas, Δ^+, and its variance, Λ^+ in three separate one-way ANOVAs in which host species was the independent factor. A significant effect of host species would indicate that the measures are repeatable within host species, i.e. that they are more similar to each other than to values from other host species. We estimated the proportion of the total variance originating from differences among host species, as opposed to within species, following Sokal & Rohlf (1995). First, we carried out the repeatability analysis using all flea species in the data set. Then, we re-analysed the data using flea genera instead, using the repeatability analysis to see if the composition of flea assemblages at the generic level is repeatable within host species. For this part of the analysis, fleas were fitted into a taxonomic structure of six hierarchical levels above genus (tribe, subfamily, family, superfamily, infraorder and order) and Δ^+, and its variance, Λ^+ were calculated as described above.

Similarity analysis

To examine how the species composition of flea assemblages on a host species varies with geographical or ‘faunal’ distance among host populations, we selected 11 host species that occurred in at least six regions. These were Neomys fodiens Pennant, Apodemus agrarius Pallas, Apodemus uralensis Pallas, M. musculus, Arvicola terrestris L., Clethrionomys glareolus Schreber, Clethrionomys rutilus Pallas, Microtus arvalis Pallas, Microtus gregalis Pallas, Microtus oeconomus Pallas and Cricetus migratorius Pallas. For each host species, similarity in flea species composition, as well as geographical and ‘faunal’ distances, were computed for all possible pairs of host populations. To evaluate similarity in flea species composition we used both the Jaccard and Morisita–Horn similarity indices. The Jaccard index is based on presence/absence data. It represents the number of flea species shared by two host populations divided by the total number of flea species found in both populations. It ranges from zero (no species in common between two host populations) to one (the two host populations have exactly the same flea species). In contrast to the Jaccard index, the Morisita–Horn index is quantitative. It is based on relative abundance of different species in the assemblages and has been found to be insensitive to species richness and sample size (Magurran, 1988). Similarity indices were computed using EstimateS 5.0 software (Colwell, 1997).

The geographical distance between pairs of host populations was calculated as the linear distance between the centres of each region (described in the respective sources), obtained from a map using the ArcView 3.2 software. ‘Faunal’ distance between pairs of regions was calculated as the reciprocal of the Jaccard similarity between the small mammal (Insectivora, Lagomorpha and Rodentia) faunas of these regions. Faunal lists were compiled based on the respective sources as well as Hall (1981); Panteleev et al. (1990) and Gromov & Erbaeva (1995). Similarity values for the composition of flea assemblages were log-transformed, and the transformed values were regressed against either log-transformed or untransformed values of both geographical and faunal distance (Poulin, 2003) using stepwise multiple regression. Linear regressions of the transformed similarity values on untransformed distance values gave the best overall fit of data and, thus, we present only these results. Following Poulin (2003), the significance of each regression model was tested using a randomization approach (Manly, 1997) using the RT 2.1 software (Western EcoSystems Technology, Inc., Cheyenne, Wyoming) because the pairwise similarity values and distances were not truly independent in a statistical sense. All regression probabilities are based on 10,000 permutations.

In addition, we examined the effect of geographical and ‘faunal’ distance on the similarity of flea assemblages using the whole set of host species that occurred in at least two regions and for which at least 10 individuals were examined per region.
diversity in a region (species richness, different regions, we regressed measures of flea assemblage 2000). For each of 11 host species occurring in at least six et al. averaged across all grids within a region (Kineman calculated for each region using 30 mean surface air temperature of July. These variables where characterized climate for each region. These were annual variation in species diversity and composition of flea assem-
blages within a host species, we calculated parameters that

Analyses of determinants of geographical variation in host specificity

To determine the possible climatic causes of geographical variation in species diversity and composition of flea assemblages within a host species, we calculated parameters that characterized climate for each region. These were annual precipitation, mean surface air temperature of January and mean surface air temperature of July. These variables where calculated for each region using 30’ grid data, and then averaged across all grids within a region (Kineman et al., 2000). For each of 11 host species occurring in at least six different regions, we regressed measures of flea assemblage diversity in a region (species richness, Δ* and Δ+) against the mean regional values of the climatic parameters. We avoided an inflated Type I error by performing sequential Bonferroni corrections of the significance level.

RESULTS

Repeatability of species richness and composition of flea assemblages within host species

The repeatability analysis for 69 mammal species occurring in at least two regions demonstrated that the species richness of flea assemblages can be considered as a host species character. Estimates of the number of flea species from the same host species were more similar to each other than expected by chance and varied significantly among host species (\(F_{68,185} = 2.48, P < 0.0001\)), with 32.8% of the variation among samples accounted for by differences between host species. However, this was not the case for either Δ* or Δ+ (Fig. 1). Estimates of taxonomic distinctness of flea assemblages (Δ*) and of asymmetry of this distinctness (Δ+) were too variable within-host species (\(F_{68,185} = 1.25\) and \(F_{44,114} = 1.08\), respectively, \(P > 0.3\) for both), and only 6.9% and 2.4%, respectively, of the variation among samples could be accounted for by differences between host species. Thus, estimates of flea species richness, but not of their taxonomic distinctness appeared to be repeatable within the same host species. The number of flea genera in the assemblages was also repeatable across host species (\(F_{41,275} = 3.01, P < 0.001\)), with 21.7% of the variation among samples originating from between-host differences. However, the taxonomic distinctness (Δ*) and asymmetry (Δ+) of flea assemblages considered at the generic level were, again, not repeatable within host species and were as variable across as within host species (\(F_{41,275} = 1.33\) and \(F_{30,174} = 1.12, P > 0.09\) for both).

Figure 1 Rank plots of number of flea species, or species richness (a), and average taxonomic distinctness (Δ*) between fleas (b) in flea assemblages on small mammals. The 69 host species recorded in at least two regions are ranked according to their mean log-transformed values of either number of flea species (controlled for sampling effort) or Δ* (controlled for number of flea species), with rank 1 given to the species with the lowest mean value; all sample estimates are plotted for each species. If variation is small within compared to between flea species, we expect the points to fall in a region of the plot stretching from the lower left to the upper right corner, with few or no points in either the upper left or lower right corner.
Similarity of flea assemblages within host species

The results of regression analyses of two measures of similarity in species composition of flea assemblages on 11 host species against geographical or ‘faunal’ distances between pairs of host populations are summarized in Table 2. No relationship between either similarity measure and either distance measure was found in one host species, the insectivore N. fodiens ($r^2 = 0.09$, $F_{1,8} = 1.99$ for the Jaccard similarity of flea assemblages and $r^2 = 0.43$, $F_{2,7} = 2.60$ for the Morisita–Horn similarity of flea assemblages, $P > 0.1$ for both). In the other 10 species, at least one of the similarity measures was negatively correlated with at least one of the distance measures. Similarity in species composition of flea assemblages decreased with an increase in both distance measures in two species (A. uralensis, C. glareolus), ‘Faunal’, but not geographical, distance determined dissimilarity in species composition of flea assemblages in four species (A. agrarius, M. musculus, M. arvalis and C. migratorius). Finally, in A. terrestris, C. rutilus, M. gregalis and M. oeconomus, similarity in species composition of flea assemblages decreased with increasing geographical distance but was not affected by ‘faunal’ distance.

Regression analyses using independent contrasts demonstrated that, across 60 host species, average similarity in flea species composition between any two host populations calculated with the Jaccard but not the Morisita–Horn index was negatively correlated with average ‘faunal’ distance between these two populations ($r = -0.38$, $P < 0.003$; Fig. 2 and $r = -0.42$, $P > 0.1$, respectively). Two points with sharply higher and sharply lower than expected similarity (Fig. 2) correspond to contrasts between Apodemus flavicollis Melchior and Apodemus sylvaticus L. and between Spermophilopsis leptodactylus Lichtenstein and Spermophilus spp., respectively. In contrast, no relationship between average similarity in flea species composition and geographical distance between any two host populations was found across host species using independent contrasts ($r = -0.18–0.05$, $P > 0.16$). Stepwise multiple regressions of the similarity of flea assemblages against both geographical and the ‘faunal’ distances forced through origin provided essentially the same results.

Diversity of flea assemblages and climate variables

In nine of the 11 host species examined, at least one measure of flea diversity correlated positively or negatively with at least one of the climatic parameters (Table 3). One measure of flea

Table 2 Summary of the significant ($P < 0.005$) multiple regression analyses of the effect of geographical and ‘faunal’ distance on similarity in flea assemblages in 10 mammal species. For geographical distance, slope values are in units of log similarity per 1000 km distance. The sample size (n) is the number of similarity values and distances in each analysis, i.e. the number of pairwise comparisons between host populations.
assemblage diversity or another was correlated with the mean multiannual temperature in January in the majority of these host species (eight of 11 species), whereas a correlation between any measure of diversity of flea assemblages and the mean annual temperature of July or annual precipitation was found in three host species only.

DISCUSSION

The results of this study demonstrated that: (a) flea species richness but not their taxonomic distinctness was repeatable within a host species, (b) similarity in flea assemblages among different populations of the same host decreased with increases in either geographical or ‘faunal’ (or both) distances between these populations, and (c) in general, local environmental conditions, measured as climatic variables, influenced the diversity of flea assemblages on a host species.

Flea species richness is a true host species attribute

The repeatability of flea species richness among populations of the same host species suggests that the number of flea species that can be supported is a true attribute of a host species. This suggests the existence of some threshold of defence against parasites in a host species that limits the host’s ability to cope with multiple parasite species (e.g. because of presumably costly defence systems; Schmid-Hempel & Egert, 2003) but instead maintains their pressure (expressed as a number of parasite species) at a ‘tolerable’ level (Combes, 2001). If we use the encounter and compatibility filter concept of Combes (2001) that was originally proposed for the host spectrum of a parasite, we can adapt it to the array of parasite species that a host can support. In this case, the encounter filter excludes all parasites that cannot encounter the host for ecological and behavioural reasons (e.g. host occurs in a very specific habitat), whereas the compatibility filter excludes all parasites that cannot withstand the host immune defenses. Consequently, for each host species, there may be a threshold of encounter and/or a threshold of compatibility that determine the particular number of parasites capable of exploiting this host.

In contrast with flea species richness, the taxonomic distinctness of flea assemblages and its variance were not repeatable within a host species. This means that whenever a new exploiter is added to a host’s parasite community, this exploiter is a random addition from the regional pool of exploiter species that manages somehow to adapt itself to the new host species. This can happen, for example, when a new host (supporting its own parasite set) invades an area that is already inhabited by a certain array of exploiter species, and one or more of the resident parasites succeed in attacking and establishing themselves on this new resource. For example, introduced fish rapidly accumulate a rich assemblage of parasite species from the resident fish species (Poulin & Mouillot, 2003b). Alternatively, the parasites of a host invading a new area can succeed in attacking and establishing themselves on one or more resident hosts (e.g. Combes & Le Brun, 1990). From an ecological perspective, this can also mean that each host species is characterized by a certain number of flea species at which the community it can support becomes saturated; the lack of repeatability in taxonomic distinctness would suggest that different flea species are ecologically interchangeable and contribute equally to this saturation. In any case, the results are consistent with a co-evolutionary history dominated mainly by independent

Table 3 Summary of significant ($P < 0.05$) correlations between regional characteristics of flea assemblages and climatic factors across regions for nine mammal species. The factors are mean temperature of January (TJA) and July (TJU) and mean annual precipitation (P)

<table>
<thead>
<tr>
<th>Species</th>
<th>Characteristics of flea assemblage</th>
<th>Climatic factor</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apodemus agrarius</td>
<td>Δ'</td>
<td>TJA</td>
<td>-0.98</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>P</td>
<td>-0.90</td>
</tr>
<tr>
<td>Apodemus uralensis</td>
<td>Species richness</td>
<td>TJA</td>
<td>-0.73</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJA</td>
<td>-0.90</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>Species richness</td>
<td>TJA</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJU</td>
<td>0.83</td>
</tr>
<tr>
<td>Arvicola terrestris</td>
<td>Species richness</td>
<td>TJA</td>
<td>-0.86</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>P</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJU</td>
<td>-0.83</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>P</td>
<td>0.82</td>
</tr>
<tr>
<td>Clethrionomys rutilus</td>
<td>Δ'</td>
<td>TJU</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJU</td>
<td>0.86</td>
</tr>
<tr>
<td>Microtus arvalis</td>
<td>Species richness</td>
<td>TJA</td>
<td>-0.49</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJA</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>P</td>
<td>0.52</td>
</tr>
<tr>
<td>Microtus gregalis</td>
<td>Species richness</td>
<td>TJA</td>
<td>-0.98</td>
</tr>
<tr>
<td></td>
<td>Species richness</td>
<td>TJU</td>
<td>-0.79</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>TJU</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Δ'</td>
<td>P</td>
<td>0.99</td>
</tr>
<tr>
<td>Cricetulus migratorius</td>
<td>Δ'</td>
<td>TJA</td>
<td>0.69</td>
</tr>
<tr>
<td>Neomys fodiens</td>
<td>Species richness</td>
<td>TJA</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Distance decay of similarity in flea assemblages

In most mammal species examined, as well as in the across-species analysis, similarity in flea assemblages within a host species decreased with one or another measure of distance. This suggests that the pattern of distance decay of similarity found in communities of other organisms is universal (Nekola & White, 1999; Poulin, 2003). Furthermore, a negative exponential function provided the best fit to the distance decay of similarity in flea assemblages, as was the case for plant communities (Nekola & White, 1999) and helminth assemblages in fish and mammals (Poulin, 2003). This means that similarity in flea assemblages declines constantly and proportionally per unit distance. Moreover, slope values of the relationship between the Jaccard similarity and the ‘faunal’ distance were similar for all species in which this relationship was significant. The same was true for the slope values of the relationship between the Jaccard similarity and geographical distance, except for *C. rutillus*, which was rather high. With the exception of *C. rutillus*, slope values for the relationship between Jaccard similarity and geographical distance observed here for flea assemblages were roughly the same as those found for communities of helminth parasites in mammals (Poulin, 2003). In general, slope values for geographical distance were lower than those for the ‘faunal’ distance suggesting that, perhaps, difference in the surrounding ‘milieu’ between host populations is a more important determinant of the composition of flea assemblages than mere physical distance. This is supported also by the significant correlation between similarity in flea assemblages and the ‘faunal’, but not geographical, distance, found in the across-species analysis, and by the absence of repeatability in taxonomic distinctness of flea assemblages among different populations of the same host (see above).

Slope values of the regressions using the Morisita–Horn similarity appeared to be more variable than those using the Jaccard similarity. Perhaps, similarity calculations based on the presence/absence data (the Jaccard index) are more appropriate for comparisons using multiple data sets collected at different times by different researchers, than calculations using the abundance data (the Morisita–Horn index) because the latter can be influenced by some methodological differences between studies (but see Wolda, 1981). In addition, the Jaccard index is effective in detecting underlying ecological gradients (Faith et al., 1987).

Another aspect of the results of this study that requires an explanation is the difference between host species in the effect of either the ‘faunal’ or ‘geographical’ distance on the similarity of their flea assemblages. This difference can be related to either differences in the structure of geographical ranges of different species or in patterns of sampling across the geographical range of a species, or both. Indeed, all species for which the relationship between the similarity in flea assemblages and the ‘faunal’, but not geographical, distance was found are characterized either by continuous geographical ranges (*M. musculus, M. arvalis, C. migratorius*) or they were sampled in the continuous part of their geographical range (*A. agrarius*) that is situated in the same biome or group of biomes. For these species, environmental variability across the geographical range is likely lower than the ‘faunal’ variability. In contrast, species for which the relationship between the similarity in flea assemblages and geographical, but not the ‘faunal’, distance was found are either characterized by a fragmented geographical range (*M. gregalis*) or were sampled in those parts of their geographical ranges where they are distributed patchily in intrazonal habitats (*A. terrestris, C. rutillus* and *M. oeconomicus*). For these species, environmental variability can be higher than the ‘faunal’ variability (*M. gregalis, M. oeconomicus* and *C. rutillus*) and, thus, geographical distance plays the major role in determining similarity between different populations.

Climatic effect on flea diversity

In spite of flea species richness being a true host character, this character varied across the geographical range in many hosts, indicating that diversity of flea assemblages is also influenced by local factors. Variation across regions in the diversity of flea assemblages was found to be linked with climatic conditions in nine of 11 studied host species. This suggests the occurrence of a causal association between flea diversity and local ecological factors. The effect of climatic variables on flea diversity is likely related to the microclimatic preferences of the off-host stages of fleas (eggs, larvae and/or pupa) as well as adult individuals. For example, the jird *Meriones crassus* Sundevall demonstrates sharply different flea assemblages in different locations in the Negev desert of Israel (Krasnov et al., 1997). The reason for this was shown to be the unsuitability of microclimatic and substrate conditions in *M. crassus* burrows for the successful survival of eggs, larvae and newly-emerged imago of either *Xenopsylla ramesis* Rothschild or *Xenopsylla conformis* Wagner in different areas (Krasnov et al., 2001, 2002).

Winter temperature appeared to be the most important correlate of flea diversity. In most species studied, flea diversity decreased with increasing winter temperature. These species have boreal and/or temperate distributions, and, thus, regions with relatively warm winters represent the southern periphery of their geographical ranges. Peripheral host populations may be small and isolated (Carson, 1959) and may lose some of their parasites as is, for example, the case with island host populations (e.g. Goüy de Bellocq et al., 2002). However, in *M. musculus, C. migratorius* and *N. fodiens* the correlation between flea diversity and winter temperature appeared to be positive. *Cricetulus migratorius* inhabits mainly steppe and desert regions and, thus, can display a pattern opposite to what
was found in boreal species. Northern populations of this species are at the periphery of their geographical range, they can be small and isolated with decreased parasite species richness. The increase of flea diversity with increasing winter temperature in *M. musculus* can be explained by the fact that this species is synanthropous in northern regions and inhabits natural habitats in southern regions. Consequently, *M. musculus* is mainly nature-dwelling in regions with relatively warm winters, where it can easily get fleas from sympatric rodent species (Krasnov & Khokhlova, 2001). *Neomys fodiens* inhabits boreal and temperate biomes. Changes in the diversity of flea assemblages of this species with increasing winter temperature could be the same as in other boreal species (see above). However, in our data set, samples of *N. fodiens* were taken from the central part of its geographical range. This can explain the apparent increase of flea diversity from north to south. In addition, this explains why we did not find any relationship between similarity in flea assemblages of different populations of this species and either geographical or ‘faunal’ distance.

In conclusion, our results suggest that the diversity of flea assemblages on small mammalian hosts is: (a) a true species character, (b) affected by the availability of taxonomically-related host species in the region, and (c) to an important extent mediated by local climatic conditions.

ACKNOWLEDGEMENTS

This study was partly supported by the Israel Science Foundation (Grant no. 249/04 to B. Krasnov, I. Khokhlova & G. Shenbrot). R. Poulin was supported by a James Cook Research Fellowship from the Royal Society of New Zealand during this study. This is publication no. 169 of the Ramon Science Center and no. 432 of the Mitrani Department of Desert Ecology.

REFERENCES

BIOSKETCHES

Boris Krasnov and Georgy Shenbrot are senior researchers at the Ramon Science Center, Ben-Gurion University of the Negev. Boris Krasnov has a broad interest in the area of ecology. Recently, he has studied mainly the evolutionary ecology of host–parasite relationships, and population ecology and ecophysiology of hematophagous ectoparasites. The main interests of Georgy Shenbrot lie in the areas of community ecology and systematics of desert rodents.

David Mouillot teaches numerical ecology, statistics and histology at the University of Montpellier II. He belongs to a research unit investigating the ecology and evolution of fishes in marine and lagoon ecosystems. His research focuses on the relationship between community structure and ecosystem functions, and particularly on measures of biodiversity.

Irina Khokhlova is member of the Wyler Department of Dryland Agriculture, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev. She does research on the ecophysiology of animals, in particular the energy and water needs and expenditures of desert mammals, as well as the effect of ectoparasites on host physiological parameters.

Robert Poulin is a Professor in the Department of Zoology, University of Otago. His research interests include all ecological and evolutionary aspects of host–parasite interactions. In particular, his recent work has focused on the patterns of parasite biodiversity and the underlying processes behind them, and the impact of parasitism on host ecology and on the functioning of ecosystems.

Editor: Philip Stott