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Aggregation of macroparasites among hosts is nearly universal among parasite-host associations.
Researchers testing hypotheses on origins of parasite aggregation and its importance to parasite and host
population ecology have used different measures of aggregation that are not necessarily measuring the
same thing, potentially clouding our understanding of underlying epidemiological processes. We high-
light these differences in meanings by exploring properties and interrelationships of six common mea-
sures of parasite aggregation, and provide a ‘‘user’s guide” to inform researchers’ decisions regarding
their application. We compared the mathematical expressions of the different measures of aggregation,
and ran two series of simulations and analyses. The first simulations tested the effect of random removals
of parasites on aggregation levels under different conditions, while the second explored interrelation-
ships between the measures, as well as between other individual parasitological sample measures (i.e.
mean abundance, prevalence) and aggregation. Results of simulations and analyses showed that the
six measures of aggregation could be separated readily into three groups: the variance-to-mean ratio
(VMR) together with mean crowding, patchiness with k of the negative binomial, and Poulin’s D with
Hoover’s index. These three pairs of measures showed differing responses to random parasite removals
and differing relations with mean abundance and/or prevalence, highlighting that metrics capture differ-
ent variation in other sample measures and different attributes of aggregation. We used results of our
simulations and analyses, and a literature review, to list the properties, advantages, and disadvantages
of each aggregation metric. We provide a comprehensive exploration of what is assessed by each metric,
as a guide to metric choice. We implore researchers to provide enough information such that aggregation
measures from each group are reported or can be readily calculated. Such steps are needed to allow large-
scale analyses of variation in degrees of aggregation within and among parasite-host associations, to
uncover epidemiological processes shaping parasite distributions.

� 2023 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Aggregation of macroparasites among hosts is a nearly univer-
sal phenomenon, and as such it is one of the few ‘‘laws” of parasite
ecology (Poulin, 2007a). This widespread pattern of most hosts
harbouring few or no infecting macroparasites (hereafter para-
sites), while a minority of hosts experience much higher intensity
infections, has important consequences for the impacts of disease-
causing organisms on hosts (Hudson et al., 1992; Poulin, 2007b),
the probability and intensity of co-infection of hosts by different
parasite strains or species (Morrill et al., 2017), and the stability
of host-parasite associations (Anderson and May, 1978; Rosà and
Pugliese, 2002). Such a common and consequential phenomenon
has attracted much attention from researchers – principally ecolo-
gists, wildlife researchers and parasitologists – who have sought to
measure and explain aggregation, as well as predict its conse-
quences (Shaw and Dobson, 1995; Johnson and Hoverman, 2014;
Cox et al., 2017). Understanding aggregation of parasites is a fun-
damental problem in the study of parasite evolutionary ecology,
owing to its impact on, as examples, parasite population genetic
structure (Cornell et al., 2003), infection intensity-dependent pop-
ulation regulation (Møller, 2005), and both parasite reproduction
and mating systems (Criscione et al., 2005; Cox et al., 2017). It is
an important problem in applied ecology and wildlife management
as well, since treating only the small subset of heavily infected
hosts can be an efficient and cheaper approach to parasite control
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in managed populations (Perkins et al., 2003). The advances in the
study of parasite aggregation also have the potential to inform
other branches of science (e.g. contaminant biology), where mea-
sures of aggregation or skew are used (Morrill et al., 2014).

Researchers may agree – or, at least, take it for granted that they
agree – on a general definition of parasite aggregation, but have
adopted and/or developed various measures for its quantification.
When discussing measures of aggregation in ecology more broadly,
Pielou (1977) offered the following observations on how these dif-
ferent methods highlight contrasting interpretations (quoted also
by Hurlbert, 1990; McVinish and Lester, 2020):

‘‘. . . the phrase ‘degree of aggregation’ describes a vague, unde-
fined notion that is open to several interpretations. If aggrega-
tion is to be measured, we must first choose from a number
of possibilities some measurable property of a spatial pattern
that is to be called its aggregation, and the method of measure-
ment is then implicit in the chosen definition. Thus the several
existing ways of measuring aggregation are not different meth-
ods of measuring the same thing: they measure different
things.”
It is incumbent on the research community using, and choosing
between, various measures of aggregation to know that common
measures can capture contrasting properties, and that these dis-
parities point to differences in the meanings of aggregation
between such measures. Having discussions about the underlying
and general causes of aggregation, for example, are most fruitful
if researchers are measuring the same thing, or at least know when
they are discussing different attributes of aggregated distributions.
Different measures of aggregation might be more or less amenable
to specific research questions and analyses (as, for example, when
researchers are interested in wholly different research questions
such as intraspecific competition between parasites versus
parasite-mediated effects on hosts).

A simple expectation is that measures less similar in their
implicit meanings should be less strongly correlated with one
another; they may also show distinctly different relationships with
other sample-level parasitological indices such as prevalence (the
proportion of hosts that are infected in a sample) and/or mean
abundance (the mean number of parasite individuals per host,
including uninfected hosts). Naturally, as the different measures
of aggregation all attempt to encapsulate an emergent,
population-level general property of the ‘‘clustering” of infecting
parasites, they should be expected to correlate with one another
to some degree. Nevertheless, departures from near perfect corre-
lations, or losses of correlations in certain contexts, would help to
identify differences between the various aggregation measures in
their meanings. By extension, wherever near perfect correlations
do arise, researchers can be more confident that the choice of
one measure over another is of less consequence.

As other sample-level measures also describe how parasites are
distributed among hosts (e.g. infection prevalence, mean abun-
dance), it is not surprising that these too show varying levels of
correlation with degree of parasite aggregation (Gregory and
Woolhouse, 1993; Poulin, 1993; McVinish and Lester, 2020), and
with each other. Pielou (1977) proposed an insightful question that
highlights a simple, but informative, apparent dichotomy in mea-
sures of aggregation in terms of their relationship with the mean
number of individuals per unit area/volume: should aggregation
change or remain unchanged when a random proportion of indi-
viduals are removed from a distribution (e.g. random removals of
parasites from a sample of hosts)? As she describes, both answers
are reasonable. One could consider that random removals would
be expected to result, simply by chance, in more parasites being
removed from larger infrapopulations (i.e. groups of conspecific
764
parasites infecting a single host) than smaller ones, thereby mak-
ing those infrapopulations less ‘‘dense.” From this perspective, as
the overall number of parasites decreases, so too should aggrega-
tion. On the other hand, as removals would be random, the only
resulting difference in the distribution would be in its overall ‘‘den-
sity,” while its shape would otherwise remain unchanged; there-
fore, one could consider that the essential property of
aggregation relating to the distribution’s shape similarly should
remain unchanged. Importantly, this simple thought experiment
highlights two contrasting expected consequences of random
removals: either aggregation should decrease, or remain the same.

The present study has three objectives. The first two are to
address the related questions: how do the implicit meanings of
parasite aggregation differ among the common methods used for
its quantification? And how do these measures compare in terms
of their relationship with mean abundance, prevalence, and each
other? Such a synthesis is, to our knowledge, lacking in the study
of distributions of infecting parasites among hosts, and where pre-
vious analyses have partially addressed these questions, conclu-
sions have been inconsistent. Our third objective is to provide a
‘‘user’s guide” to help researchers choose the measure(s) of aggre-
gation most relevant to their studies, based on the properties and
context-specific advantages and disadvantages identified in simu-
lations, and in previous research. To accomplish these objectives,
we first summarize the various commonly used measures of aggre-
gation and consider explicitly their mathematical expressions. We
then compare measures in terms of their responses to random par-
asite removals, following from the thought experiment posited by
Pielou (1977). With a second series of simulations, we explore their
relationships to one another and to mean abundance and preva-
lence. We propose a framework that simplifies and synthesizes
these perspectives, clarifies previous results relating to the attri-
butes of some measures, and highlights important and previously
unrecognized properties of some of the popular aggregation
metrics.

More specifically, we illustrate that random removals of infect-
ing parasites results in three groupings of measures either showing
no change in response to removals, a negative effect, or a positive
effect on their estimate of aggregation. We then show strong cor-
relations between certain common measures of aggregation, and
that these pairs of measures align with the same three groups seen
in the initial simulation. Importantly, the three pairs of measures
also differ in their relationships with sample prevalence and mean
abundance. This work will help guide approaches to, and interpre-
tations of, studies of parasite aggregation, and help researchers
report or calculate degrees of aggregation in such a way as to
ensure inclusion of their studies in future syntheses.
2. Summary of considered aggregation measures

Given the many available measures of parasite aggregation, a
problem faced by researchers is deciding which one(s) to choose
to report or include in analyses. To aid researchers in their choices,
our synthesis should encompass a variety of measures including
those measures which are most popular, as well as those whose
properties may make them particularly useful in specific contexts.
However, the diversity of available measures – several of which are
closely related to at least one other – means that we, too, are faced
with a choice of only a subset to keep our analyses tractable. Our
first inclusion criterion was that each measure can be applied
directly to a sample of hosts variously infected by a single taxon
of parasites at known abundances; i.e. the measure can be applied
to a set of discrete counts of parasites infecting each sampled host.
Secondly, we included measures if they were commonly used, only
recently proposed, or if they were long-established indices of par-
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ticular value in quantifying levels of aggregation from the para-
site’s perspective.

The first criterion results in the exclusion of measures which are
based on multiple samples of the same parasite-host system, either
across time or space. The established approach of measuring the
slope of the log-variance–log-mean relationship based on multiple
samples was therefore excluded (Shaw and Dobson, 1995; Poulin,
2013), as well as any related methods (e.g. the I10 index; Lester and
Blomberg, 2021). While methods have been developed to extend
some of these approaches to single samples via bootstrapping
(e.g. Boag et al., 2001), we chose to follow our first criterion strictly
and exclude those approaches, focusing on those measures most
broadly applicable across past treatments and future studies of
parasite distributions. Still, approaches based on Taylor’s power
law have had notable success in explaining determinants of para-
site aggregation (Johnson and Hoverman, 2014; Johnson and
Wilber, 2017). The first criterion also resulted in exclusion of
indices used to differentiate patterns of aggregation across hierar-
chical levels of sampling, as the appeal of the approach must not
depend on such stratification in the data (e.g. comparing aggrega-
tion levels of ticks infecting chicks between the within- or among-
nests scales; Boulinier et al., 1996).

We therefore considered six measures of parasite aggregation:
the variance-to-mean ratio (VMR), the parameter k of the negative
binomial distribution, mean crowding, the patchiness index, Pou-
lin’s D, and Hoover’s index (the R code used to calculate each of
these measures from samples of parasites is included with the
associated simulation scripts). The first four were described as gen-
eral measures of aggregation in early and still valuable treatments
of this topic (Pielou, 1977), although they later found varying
degrees of popularity (Wilson et al., 2001). Poulin’s D and Hoover’s
index are relatively more recent measures, both based on Lorenz
curves (Poulin, 1993; McVinish and Lester, 2020). Together, these
six measures encompass a variety of conceptualizations of parasite
aggregation, both host- and parasite-centric, and are either
expected or not expected to relate to mean abundance. We sum-
Table 1
Relationships between different measures of aggregation and other parasitological measure
pairwise relationships between aggregation measures (bottom six rows). Relationships ar
indicated with duplicated symbols (e.g. ++). Note that relationships listed as lacking (o) d
weak. Calculations for each of the aggregation measures are provided in the first column
sample size, and xj (j = 1, 2, . . ., N) represents the number of parasites infecting host j). Al
calculated from the sample mean and variance), as well as details of some of the measure

VMR k Mean crow

Related to mean abundance ++ o ++
Related to prevalence + + +
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VMR, variance-to-mean ratio.
a Note that this calculation for k assumes a very close fit of the data to a negative binom

size, very high l), it would instead be more accurate to estimate k via maximum likelih
b Importantly, this formula for Poulin’s D requires that hosts in the sample be ordere
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marize each index below and explain why we excluded some other
indices due to their close relations with one or more of these six.
Formulas for each of the measures are provided in Table 1; alterna-
tive formulations and some additional mathematical details are
provided in the Supplementary Data S1.

The first two measures, VMR and k, are arguably the most often
used measures of parasite aggregation (Wilson et al., 2001; Poulin,
2007b). VMR, besides being easy to calculate, allows a comparison
with a theoretical random (Poisson) distribution of parasites, as the
variance in parasite abundances in such a case would be equal to
the mean (i.e. VMR = 1). Note, however, that use of VMR as a test
criterion for randomness versus as a sample statistic measuring
aggregation should be distinguished, and that discrete distribu-
tions other than Poisson may have a VMR = 1 (Pielou, 1977;
Hurlbert, 1990). When parasite distributions are more even than
a random distribution, VMR is less than one; when they are more
aggregated, VMR is greater than one. Given the strong relationship
of VMR with mean abundance and lack of a direct biological inter-
pretation, it is not useful for comparisons of aggregation across
samples where the mean abundances differ (Morisita, 1962;
Poulin, 1993).

The parameter k of the negative binomial distribution provides
an inverse measure of aggregation: as aggregation increases, k
decreases. The nearly universally aggregated distributions of para-
sites infecting hosts generally can be well approximated by the
negative binomial (Shaw and Dobson, 1995), meaning that k is
often an appropriate measure to quantify aggregation of parasites
in natural systems. As k tends towards infinity, the negative bino-
mial distribution converges with the Poisson; therefore, if the dis-
tribution is not aggregated – i.e. does not differ much from random
– aggregation quantified via k becomes intractably variable, since
minute changes in distribution shape may cause large fluctuations
in k. The majority of empirical k values in natural systems are less
than or around one (Shaw and Dobson, 1995). Notably, use of k as a
measure of aggregation becomes inappropriate in those cases
s (mean abundance and prevalence; top two rows) observed in simulations, as well as
e described as either positive (+), negative (–), or absent (o); strong relationships are
o not necessarily mean no correlation, but can signify that the relationship was only
(in all cases, r2 is the sample variance in abundance, l is the sample mean, N is the
ternative formulations for some of the measures (e.g. mean crowding can instead be
s’ properties (e.g. maxima and minima) are provided in Supplementary Data S1.

ding Patchiness Poulin’s D Hoover’s index

o – –
– –– ––

+

+ ++

ial distribution, and regardless that in many cases (e.g. extremely low k, low sample
ood approaches rather than using this formula.
d from lowest to highest individual abundances prior to calculation.
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where the parasite distribution is not well approximated by a neg-
ative binomial.

Mean crowding (m
�
) is a parasite-centric measure that describes

the average number of conspecifics co-occurring on/within a host

from the perspective of any individual parasite. That is, m
�
quanti-

fies the average intraspecific ‘‘crowding” experienced across the
sampled parasites.

Patchiness is the mean crowding divided by the sample mean. It
therefore describes the average conspecific ‘‘crowding” on/within a
single host from the perspective of any one parasite, in units of the
mean abundance. Alternatively, it can be thought of as how many
times more ‘‘crowded” an average parasite is, compared with if the
same parasites were distributed randomly among hosts (Lloyd,
1967).

Poulin’s D and Hoover’s index are both related to Lorenz curves,
commonly used in economics to represent relative inequalities in
distributions of wealth (McVinish and Lester, 2020), and range
from a minimum of zero (all abundance values equal to the mean)
to a theoretical maximum of one (in the parasitological context, all
parasites infecting a single host). As they both quantify the devia-
tion of the observed parasite distribution from a hypothetical even
distribution towards all the parasites being concentrated in/on a
single host, these measures attempt to quantify what many para-
sitologists naturally intuit as the meaning of aggregation, and
allow for comparisons across samples or studies with different
mean abundances. Unlike D, Hoover’s index has an exact biological
interpretation: it represents the proportion of parasites that would
need to be redistributed to achieve an even distribution among
hosts (e.g. a value of 0.7 indicates that 70% of the parasites would
need to be redistributed in the sample to achieve evenness).

There are other measures of aggregation that fit most of our
selection criteria, but that we chose to exclude because they were
too closely related to other values, and not as frequently used. Ives’
J, similarly to the patchiness index, describes the relative increase
in the number of conspecifics co-occurring in a single host com-
pared with a hypothetical random distribution, and is equal to
the patchiness minus one (Ives, 1988). Patchiness is also nearly
mathematically equivalent to Morisita’s index of dispersion, the
latter being more common in spatial ecology (Morisita, 1959;
Taylor, 1984). The coefficient of variation (CV) has also been used
as a measure of parasite aggregation, and is equal to r

l (the stan-

dard deviation divided by the mean abundance; Wilson et al.,
2001). Its use is less common, and it is closely correlated with both
Poulin’s D and Hoover’s index, although it lacks their useful con-
straint of ranging from zero to one, as well as a clear biological
interpretation (McVinish and Lester, 2020).

We suspected these six selected measures covered the vast
majority of indices used in parasitological studies where aggrega-
tion could be quantified in a single sample of hosts. To assess this,

we first searched Web of Science (https://clarivate.com/prod-

ucts/scientific-and-academic-research/research-discovery-and-

workflow-solutions/webofscience-platform/) for research which
included ‘‘parasite” (or related words; e.g. ‘‘parasitism”) in the title,
and both ‘‘parasite” and either ‘‘aggregation” or ‘‘overdispersion” in
the abstract, as well as any of our considered aggregation measures
in the abstract (search term: AB=(parasit* AND (aggregat* OR
overdisper*) AND (VMR OR ‘‘variance-to-mean” OR k OR ‘‘mean
crowding” OR patchiness OR ‘‘Poulin’s D” OR ‘‘Hoover’s”)) AND
TI=(parasit*)). We then found that adding Ives’ J, Morisita’s index,
and the coefficient of variation to the abstract search terms (OR
‘‘Ives’ J” OR Morisita OR CV or ‘‘coefficient of variation”) only
returned seven (8.75%) more records. We explored the properties
of these six chosen measures and the interrelationships of these
measures with results from our simulations.
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3. Simulation 1: effects of random parasite removals on
aggregation

3.1. Simulation methods

Our first series of simulations explored the effects of random
parasite removals on the six measures of aggregation, testing
whether changes in mean abundance which do not otherwise
affect the general ‘‘shape” of the distribution of parasites among
hosts influenced quantified aggregation levels. Here, probabilities
of each individual parasite’s removal across hosts were propor-
tional to hosts’ infrapopulation sizes. This simple comparison
serves to categorize the different measures, highlighting how they
relate aggregation to properties of the distribution of infection
abundances.

To start, a single simulated distribution of parasites infecting
1,000 hosts was generated randomly based on a negative binomial
with a mean of five (approximately 5,000 parasites total) and k
equal to one. That parasite load distributions generally closely
match negative binomials in natural systems ensures that this ini-
tial state reflects realistic conditions (Shaw and Dobson, 1995).
Beginning with this distribution, 2,000 of the parasites were ran-
domly removed one-by-one, with aggregation quantified for each
of the six measures at each step (after each single parasite was
removed). This process – which is analogous to binomial thinning
(subsampling based on the binomial distribution), although imple-
mented in a stepwise manner – was repeated, always beginning
with the same initial distribution, over 100 trials. The effects of
starting from an initial distribution with either higher or lower
mean abundance (mean = 250 or 0.5) or aggregation (k = 0.1 or
2) were also explored (detailed results presented in the Supple-
mentary Data S1; Supplementary Figs. S1–S4). In this analysis,
we used the corrected moment estimate for quantifying k (Table 1)
at each step, rather than using maximum likelihood approaches, to
increase simulation speed. We were confident that the large sam-
ple size and pre-determined fit to the negative binomial distribu-
tion guaranteed that the estimation would be accurate, as the
accuracy of this estimator depends on these criteria and the mean
and k values not being intractably high or low, respectively (Bliss
and Fisher, 1953; Elliot, 1977; Wilson et al., 2001).

All simulations, both for these random removals and the later
correlation analyses, were conducted using the R programming
language (version 4.2.1; R Core Team, 2022).
3.2. Results: three contrasting effects of random parasite removals

Three distinct patterns of change in estimated aggregation
given random removals emerged across the six measures (Fig. 1).
First, there are those measures – k and patchiness – that on average
do not change with random parasite removals. While the stochas-
tic nature of the simulations results in deviations from the average,
these are quite random, and represent a random walk around the
original aggregation values (note the very small range of values
on the Y-axes in Fig. 1). That these measures should not change
with random parasite removals agrees with mathematical descrip-
tions from Pielou (1977); a somewhat analogous demonstration is
given in discussion of the Bernoulli damage processes in Johnson
et al. (2005). However, that k does not seem to be affected by
changes in mean abundance does not agree with expectations
commonly described in the literature (Scott, 1987; Poulin, 1993;
Johnson and Wilber, 2017; Lester and Blomberg, 2021); this is a
point worth exploring further.

The second pattern was a strong, linear decrease in aggregation,
with little variation around the trend; this pattern was observed
for mean crowding and VMR. These patterns again were not sur-

https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/
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Fig. 1. Aggregation measured after each consecutive removal of a random parasite, repeated across 100 trials. Simulations all began with the same initial negative binomial
distribution (mean = 5 and k = 1; n = 1,000). Effects of removals on aggregation demonstrated three contrasting trends, reflecting the measures’ various relationships with
distribution density: aggregation either fluctuated randomly around the initial value (k and patchiness), showed a strong linear decrease (mean crowding and the variance-
to-mean ratio), or demonstrated a slow but significant slight increase (Poulin’s D and Hoover’s index). The thicker, fluctuating red–orange lines represent the same single trial
across all six measures, while the thicker, smoother blue lines are smoothed averages across trials. VMR, variance-to-mean ratio.
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prising, and agree with predictions and mathematical treatments
by Pielou (1977), as both measures are highly related to distribu-
tion mean abundance (rationale for this pattern is discussed in
more detail in the following sections considering measure interre-
lationships and correlations with mean abundance).

The third pattern, observed for Poulin’s D and Hoover’s index,
was unexpected, given that there were only two hypothesized pos-
sible outcomes of the original thought experiment (i.e. no change
in aggregation or a decrease with random removals). These two
indices showed a gradual increase in aggregation with removals
of parasites. In other words, decreasing the total number of para-
sites through random removals (eventually) resulted in higher
aggregation when quantified using these two measures. This move
to higher aggregation likely occurs because the removal of a para-
site resulting in a reduction of a small infrapopulation (i.e. smaller
than the mean abundance) – particularly when diminishing an
infrapopulation to zero – must always have a larger impact on D
or Hoover’s in the positive direction than would the removal of
one parasite reducing a large infrapopulation (i.e. larger than the
mean abundance) on the measure in the negative direction. The
observed pattern is perhaps not surprising in retrospect, given
the strong negative relationship between prevalence and both D
and Hoover’s index (Poulin 1993; McVinish and Lester, 2020;
prevalence decreased with random removals). These intermittent
reductions of small parasite infrapopulations cause a slow, slight,
but significant overall trend towards higher aggregation, even
though many parasites are also being removed from relatively
large infrapopulations; in other words, the positive effect is dispro-
portionate. Additionally, McVinish and Lester (2020) demonstrated
how aggregation measured with D or Hoover’s index decreases as
the probability of a parasite being included in the sample increases,
using their ‘‘incomplete count” setting (binomial thinning); inver-
sely, one could expect aggregation measured using these indices to
generally increase as parasites are randomly removed. These
explanations agree with patterns presented in the Supplementary
Data S1, as the rate of increase in D and Hoover’s with random
removals decreases when the mean abundance of the initial para-
site distribution is high (many large infrapopulations; few
removals would result in decreases of infrapopulations to zero),
and the rate appears to increase when initial mean abundance is
low.

This simulation of random parasite removal highlights three
categories of aggregation measures, each represented by two mea-
sures considered herein. This simulation adds another possible
outcome to the hypothetical removal experiment proposed by
Pielou (1977), that of aggregation increasing with removals. The
qualitative patterns appear robust to changes in the initial parasite
distribution; quantitatively, the rate of the increase in D and
Hoover’s appears dependent on mean abundance, and the slope
of the relationship with VMR decreases as the initial distribution
becomes less aggregated (see Supplementary Data S1).

In the next section, we consider interrelationships of measures
more directly, as well as the relationships of measures with both
sample prevalence and mean abundance.
4. Simulation 2: interrelationships of aggregation measures,
and correlations with other parasitological measures

4.1. Simulation and analytical methods

The aim of the second series of simulations was to generate
many parasite distributions of varying mean abundance and aggre-
gation levels that reflected realistic samples of parasites in or on
hosts, and then to explore the correlations between the resulting
measures of aggregation, and between those measures and mean
768
abundance and prevalence, using principal component analysis
(PCA). As such, this analysis will identify interrelationships that
are emergent and unavoidable statistical phenomena, as well as
ones that arise due to some broadscale (not system-specific) bio-
logical constraints. Additionally, this series of simulations will help
to further delineate the categorizations, as well as help define
properties of the measures, thereby equipping the reader to evalu-
ate the relevance and importance of such measures in their
research.

To start, 1,000 parasite distributions for n = 200 hosts were ran-
domly generated following negative binomial distributions. k val-
ues were sampled from a uniform distribution between 0.01 and
2.5. The review and analysis of parasitism of vertebrate host taxa
by Shaw and Dobson (1995) suggested that most naturally
observed k’s fall in this range. Mean abundances of parasites per
host were sampled from a lognormal distribution, following the
distribution described in the same review by Shaw and Dobson
(1995; mean log = 0.4735, S.D. log inferred from other statistics,
� 2.754). While this omits any possible covariance between aggre-
gation levels and mean abundance observed in natural systems, it
ensures, besides that the means and k’s of the distributions follow
realistic ranges, a large amount of variation for the correlation
analysis. Aggregation was calculated for all 1,000 random distribu-
tions using the same six measures as in the previous section, pro-
viding the values for the PCA. k was estimated using maximum
likelihood due to the lower computational cost of analyzing only
1,000 distributions, compared with the first simulations. We recog-
nize that several of the aggregation measures are expected to be
sufficiently correlated with one another that they may seem
redundant in the analysis (e.g. k and patchiness), but we note that
the PCA serves as an illustrative tool to demonstrate the potential
for correlations between measures.

After simulating the data and measuring the different degrees
of aggregation, trials were removed if there were errors calculating
k (which sometimes occurred during maximum likelihood estima-
tions), if k > 10 (which resulted from problematic estimations, or
possibly chance occurrences of seemingly random distributions),
or if less than three hosts were infected (prevalence < 0.015). Note
that rare instances of high k values and erroneous calculations of k
were possible despite the simulations restricting sampling of this
parameter between 0.01 and 2.5 (k is estimated from the resultant
simulated distribution), due to chance emergences of very low
variation in abundances or extremely low prevalences. This filter-
ing left 851 of the original 1,000 distributions. As some of the
aggregation measures were positively skewed (sometimes extre-
mely so), all those values (k, patchiness, mean crowding, and
VMR) required log-transformation prior to running the analysis
of correlations. Finally, all values (including D and Hoover’s index)
were standardized prior to the PCA, by subtracting means and then
dividing by standard deviations. After performing the PCA, two
additional variables not used to calculate the principal components
(i.e. mean abundance (log-transformed) and prevalence) were pro-
jected onto the first two principal components as supplementary
variables to evaluate with which of the aggregation measures they
demonstrated strong correlations. To confirm that resultant rela-
tionships between the mean abundance and VMR were robust
and not contingent on unimportant model design decisions, we
include in Supplementary Data S2 results of an alternative param-
eterization of the simulation using randomly generated mean
abundances and VMRs to produce the negative binomial distribu-
tions, rather than mean abundances and k’s. This alternative
method also produced positive mean abundance-VMR correlations
after the accompanying k values were restricted to the realistic
range (0.01–2.5).
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4.2. Results: three groups of related aggregation measures

The distributions and co-distributions of these transformed
variables are visualized in Fig. 2, where several patterns become
apparent. First, some pairs of measures are extremely correlated:
VMR with mean crowding, k with patchiness, and D with Hoover’s
index. These strong correlations were expected from relationships
between the measures’ modes of calculation, and for the most part,
were documented previously (see Pielou, 1977 for relationships
between mean crowding, VMR, patchiness, and k). To illustrate,

VMR should be equal to m
�
– l + 1, where m

�
and l are the mean

crowding and mean abundance. Patchiness should be approxi-
mately equal to 1 + 1/k (assuming the distribution fits well to a
negative binomial). As mentioned, both D and Hoover’s index are
related to Lorenz curves, and were expected to be related
(McVinish and Lester, 2020).

There are regions highlighted in the co-distributions in Fig. 2
where values do not occur. For example, given a low value of k
(high aggregation), there appears to be a corresponding lower limit
on what values of D and Hoover’s are possible (somewhat similar
lower limits on D and Hoover’s appear in relation to the other mea-
sures as well). Also, there are apparent bounds around the co-
distribution of mean crowding and patchiness values, perhaps aris-
ing from limits given a certain number of hosts across mean
abundances.

The six measures of aggregation are represented in relation to
the first two principal components in Fig. 3. Three groups of highly
correlated measures appear: Poulin’s D with Hoover’s index (more
VMR k Mean crowding
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aligned with the first principal component), VMR with mean
crowding (more aligned with the second principal component),
and k with patchiness (negative correlation). The overall general
degrees of correlations between the aggregation measures are
summarized in Table 1. The projected supplementary variables in
Fig. 3 demonstrate the different relationships between the aggre-
gation measures and both mean abundance and prevalence. Natu-
rally, as mean abundance and prevalence are themselves
somewhat correlated, measures of aggregation which correlate
with one may be expected to correlate somewhat with the other.
However, three distinct patterns of relationships with these para-
sitological measures were evident. First, prevalence was strongly
and negatively associated with D and Hoover’s index (these two
are less strongly, but nonetheless associated negatively, with mean
abundance). Second, mean abundance was positively associated
with mean crowding and VMR; and third, patchiness and k appear
almost completely uncorrelated with mean abundance, though are
somewhat correlated with prevalence (negatively and positively,
respectively). Note that these three pairs of correlated variables
with their corresponding contrasting relationships with prevalence
and mean abundance match the same three contrasting responses
to random parasite removals identified in the first simulations.

Aggregation of the simulated distributions as measured by Pou-
lin’s D and Hoover’s index are plotted in relation to prevalence in
Fig. 4. That both measures should be expected to relate negatively
to prevalence is well established (Poulin, 1993; McVinish and
Lester, 2020). However, the visualization shows an important dif-
ference between D and Hoover’s index with respect to their rela-
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Fig. 3. Aggregation measures plotted on the first two axes of the principal component analysis, with mean abundance and prevalence projected as supplementary variables.
Three pairs of correlated measures are apparent; note that k is inversely related to aggregation, and is therefore, in terms of aggregation, similar to patchiness. The three pairs
of measures differ in their expected relationships with mean abundance and prevalence. The first two principal components explain 94.6% of the variation. VMR, variance-to-
mean ratio.
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tionship with prevalence: at lower prevalences, particularly those
lower than 50%, many of the Hoover values are exactly equal to
one minus the prevalence (this measure’s theoretical minimal
value). This arises from a necessary constraint: Hoover’s index will
exactly equal one minus the prevalence whenever all infected
hosts harbour infrapopulations larger than or equal to the overall
mean. When parasite distributions are aggregated, and particularly
when prevalence and/or mean abundance is low, it becomes more
likely that all infrapopulations will have abundances higher than
the overall mean. A consequence is that Hoover’s index becomes
more and more constrained as prevalence decreases; the potential
for variance in Hoover’s index becomes extremely limited and is
often zero. In the simulations, of those distributions with preva-
lence less than 25%, only 17% had Hoover indices not exactly equal
to one minus the prevalence (i.e. 83% of distributions with preva-
lence less than 25% had zero variability in aggregation measured
by Hoover’s index, despite existing variation in degrees of parasite
clustering). This constraint is relevant in natural systems as well:
using a published dataset of 771 lesser snow geese (Chen caerules-
cens) in which individuals were categorized by age (subadult or
adult) and sex, and where nine parasite species were enumerated
(Dargent et al., 2017a, 2017b), we found that 27 of the 36 samples
770
(75%) demonstrated Hoover’s indices equal to exactly one minus
the prevalence. D, on the other hand, while clearly negatively
related to prevalence (Fig. 4), and while showing a sort of con-
straint on variation in that there seems to be a defined region of
permitted values for certain degrees of prevalence, nonetheless
shows much more variation at low prevalence.

The positive correlation of both mean crowding and VMR with
sample mean abundance was expected (Fig. 5). While there is room
for variation in mean crowding at any given sample mean abun-
dance with varying aggregation, if mean abundance increases
and there are more parasite individuals in total, then naturally
the expected number of co-infecting parasites from any individual
parasite’s perspective should generally increase. Note that the min-
imum value for mean crowding is the mean abundance minus 1, so
the lower limit on this measure of aggregation increases with the
mean. The positive relationship between VMR and the mean abun-
dance is also intuitive. While the lower limit of the VMR is always
zero (given an even distribution), parasite distributions are not
expected to be underdispersed; given a random distribution, the
variance should equal the mean, and the VMR should be one. How-
ever, as parasite distributions are aggregated, the variance should
be higher than the mean, and we do not expect the VMR to equal



Fig. 4. Aggregation of simulated parasite distributions quantified using Poulin’s D and Hoover’s index in relation to prevalence. The dashed line represents 1 – prevalence (the
theoretical minimum value for Hoover’s). The lower the prevalence, the more frequently Hoover’s index is exactly equal to its minimum, reducing observed variation.
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one. More importantly, given an aggregated distribution, we
expect any increase in the mean to result in a larger increase in
the variance (consider that the variance of a negative binomial dis-

tribution can be expressed as lþ l2

k , i.e. as a function of the mean
added to the squared mean divided by k). In other words, we
should expect that as the mean abundance increases, the magni-
tude of the variance relative to the mean should also increase. Also,
while not a direct explanation for the pattern, the upper limit on
the VMR is equal to the total number of parasites, and this upper
limit naturally increases with increasing mean abundance given
a certain number of hosts.

Notably, both patchiness and k appeared unrelated to sample
mean abundance, while being only weakly related (negatively
and positively, respectively) with prevalence (Fig. 6). The lack of
771
clear relationship with mean abundance is contrary to an often-
cited expectation for such a relationship, at least with respect to
k (e.g. Scott, 1987; Poulin, 1993; Johnson and Wilber, 2017;
Lester and Blomberg, 2021). However, patchiness is not expected
to correlate with mean abundance, and (assuming a negative bino-
mial), patchiness and k are directly related (patchiness = 1 + 1/k).
Thus, the expectation that k is de facto related to mean abundance
is incorrect. Naturally, there is no interdependency between the
mean and k parameters in a negative binomial distribution, and
therefore no expectation for any relationship emerging from an
underlying statistical constraint; whether a relationship between
the mean abundance and k, after controlling for prevalence, is com-
mon across samples from natural systems is another question.
However, the biological interpretation of k, as discussed in the fol-
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lowing section, accounts for and encapsulates the sample mean
abundance, which could make k appropriate for analyses of aggre-
gation even in cases where mean abundance varies across samples.
We also discuss further potential reasons for the misconstrued
association between k and mean abundance in the following sec-
tion. Both k and patchiness appear correlated, although weakly,
with prevalence (positively and negatively). Either way, aggrega-
tion slightly decreased with increased prevalence. This relationship
with prevalence is not nearly as strong as that for D and Hoover’s
index. In the bottom two panels in Fig. 6, the simulated parasite
abundances appear to produce an approximately triangular distri-
bution of points, perhaps outlining constraints on possible aggre-
gation values given certain prevalence values. As prevalence
decreases, ‘‘permitted” variation in k or patchiness appears to
increase, so long as prevalence is not too low.

5. A user’s guide to aggregation measures: considerations and
recommendations

Differences between measures of parasite aggregation in their
‘‘meanings” were evident given differences in their properties that
we observed. These dissimilarities between measures make them
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differentially appropriate for use in various research contexts,
despite them all purporting to describe a common population-
level natural phenomenon. Among the six widely used measures
of parasite aggregation we considered, there exist three groups of
paired measures with similar properties, i.e. similar both in terms
of their expected correlations with each other and with mean
abundance and prevalence. We suspect that the three identified
groups represent general categories that capture similar, single-
sample-appropriate aggregation measures. Other aggregation
indices that could also be applied to single parasite taxon-single
host taxon individual samples but that were not included in this
research (e.g. Ives’ J, or the coefficient of variation) are closely
related to one or more of the measures considered herein. The
identified interrelationships and correlations with other parasito-
logical values, together with the potential and different biological
interpretations of the aggregation measures, highlight the advan-
tages and disadvantages of each, and suggest guiding principles
for their use in different contexts.

The general advantages and disadvantages of each of the six
aggregation measures are summarized in Table 2. These advan-
tages and disadvantages can help researchers discuss and choose
the most appropriate measure(s) for their study problem(s), based
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on context-specific answers to questions, and as such Table 2 may
serve as a first reference point for those who are faced with the
choice of how best to quantify parasite aggregation. For example,
are researchers interested in how aggregation compares between
samples/populations/species (in which case any strong, necessary
relationship with mean abundance should be avoided), or is the
assessment specific to quantifying aggregation in a single sample
Table 2
Potential advantages and disadvantages of the six considered measures of aggregation.
interpretation, whether or not they lend themselves to comparisons across studies, and
abundance and prevalence. Any biological interpretations of the different measures are w
certain measures may be context-specific, and in certain circumstances may not actua
intraspecific competition arising from aggregation, a measure such as mean crowding cou
parasite abundance.

Aggregation
measure

Advantages

Variance-to-
mean ratio
(VMR)

Easy to calculate
Provides quick estimation of whether a parasite distribution may b
aggregated than random (VMR > 1) or less aggregated than random
VMR < 1)

The significance of a distribution’s deviation from randomness can
using tests based on the VMR (e.g. Sun and Hughes, 1994)

k Not necessarily correlated with mean abundance; only weakly corr
prevalence

Direct biological interpretation: the reciprocal of k describes the propo
abundance by which the mean crowding exceeds the mean abundance
½, the average number of conspecifics infecting with a given parasit
abundance greater than the mean abundance)

Realistic samples of parasite loads can be simulated from negative
distributions based on biologically relevant values of k

Mean
crowding

Direct biological interpretation: the average number of conspecifics i
with a single parasite; i.e. the expected number of conspecifics sharing

Patchiness Not necessarily correlated with mean abundance; only weakly corr
prevalence

Direct biological interpretation: the average amount of conspecific co
the perspective of a single parasite, in units of the sample mean abund
crowding divided by the mean abundance). Alternatively, it is how
crowded an individual parasite is, compared with a hypothetical Poiss

Can be directly converted to k for a historically more common mea
distribution is well-approximated by a negative binomial (k = 1 / [p

Poulin’s D Interpretable with reference to what many parasitologists mean by
degree to which a given number of parasites infecting a sample of hosts
even distribution (D = 0) towards the most extreme aggregation possibl
a single host; (D = 1)

Owing to its interpretation and its constraint to falling between zero
itself well to comparisons of aggregation between studies

Hoover’s index While similar to Poulin’s D in that it theoretically falls between zer
from an even distribution to maximum possible aggregation), it has
biologically interpretable meaning: the proportion of parasites that w
moved to achieve an even distribution

Owing to its interpretation and its constraint to falling between zer
measure lends itself well to comparisons of aggregation between st
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(e.g. asking if the distribution differs from random)? Care should
be taken in considering the relevant null before inferences about
aggregation are made; are deviations from a Poisson (random) or
from an even distribution of parasites requiring explanation?
Researchers also must be concerned with whether variation in
aggregation across a collection of samples is sufficient to allow
its use as an explanatory or response variable in analytical models.
Among other considerations, specific attention is given to each measure’s ease of
to what degree they correlate with other parasitological measures such as mean

ritten in italics under the ‘‘Advantages” column. Note that the listed disadvantages of
lly be disadvantageous; for example, in studies interested in quantifying parasite
ld be the most appropriate despite (or even due to) its strong relationship with mean

Disadvantages

e more
(more even;

be estimated

No direct biological interpretation, outside of a distribution’s
potential deviation from randomness

Strongly positively correlated with sample mean abundance
(less strongly, but still positively, correlated with prevalence)

Inappropriate for comparisons between samples due to its
direct relationship with mean abundance

elated with

rtion of the mean
(e.g. if k = 0.5, or
e is two � mean

binomial

The use of k becomes inappropriate when parasite
distributions are not well approximated by a negative
binomial; its applicability as a measure of aggregation, and its
biological interpretation, are lost when this condition is not
satisfied

Weakly positively related to prevalence (i.e. aggregation
decreases with increasing prevalence, as k is an inverse
measure of aggregation)

nfecting together
the same host

Strongly positively correlated with sample mean abundance

Not immediately interpretable in terms of the host-
perspective experience of parasite aggregation

Historically relatively less common in the parasitological
literature

elated with

-occurrence from
ance (mean
many times as
on distribution.

sure when the
atchiness – 1])

Historically relatively less common in the parasitological
literature

Weakly negatively related to prevalence

aggregation: the
deviates from an
e (all parasites on

and one, D lends

Strongly negatively correlated with prevalence; weakly
negatively correlated with mean abundance

While capturing an arguably intuitive general meaning of
aggregation, exact values of D have little direct biological
interpretation (e.g. little can be said about the difference
between a sample with D = 0.75 and one with D = 0.70, other
than that the former appears more aggregated)

Actual permitted maximum value only approaches one when
given a sufficiently large sample size

o and one (i.e.
a more directly
ould need to be

o and one, this
udies

Permitted variation in Hoover’s index can be limited, or even
zero, particularly at low prevalences of infection (it is always
equal to 1 – prevalence when all parasite loads are equal to or
larger than the mean abundance)

Strongly negatively correlated with prevalence, weakly
negatively correlated with mean abundance

Actual permitted maximum value only approaches one when
given a sufficiently large sample size

Only recently publicized as a measure of parasite aggregation
(few examples in the literature; McVinish and Lester, 2020)
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Of course, there is also the question of how interpretable the mea-
sure is, relevant to the biological inquiry. The relationships
between the answers to these and similar questions, and the suit-
ability of the different measures, are discussed throughout the rest
of this section.

All six measures correlate to some degree with either or both of
mean abundance and prevalence. As mentioned, this is expected
because these two variables and aggregation all seek to quantify
properties of the distribution of parasites among hosts, and there-
fore cannot be entirely independent. VMR and mean crowding –
together constituting one of the three identified groups – demon-
strated strong positive correlations with mean abundance and
are therefore generally not suitable for comparisons between sam-
ples where means differ, as mentioned. The VMR can, however,
provide a straightforward evaluation of whether a distribution
may differ from random; one can statistically test the null hypoth-
esis that VMR = 1 (i.e. the expected value for a Poisson distribution
in a given sample; Pielou, 1977; Sun and Hughes, 1994). For exam-
ple, one might be interested in experimentally testing whether
aggregating factors remain (i.e. do parasite distributions remain
aggregated?) after controlling for hypothesized explanatory effects
relating to heterogeneity in exposure and/or host characteristics
(Karvonen et al., 2004; Johnson and Hoverman, 2014); however,
testing for differences in aggregation, rather than an absence of
aggregation, may be more appropriate. Mean crowding is arguably
the measure that most explicitly takes the parasite’s perspective,
and therefore may be of the highest value in parasite-centric stud-
ies (e.g. those assessing intensity-dependent effects on infrapopu-
lation dynamics, or analyzing individual parasite growth or
fecundity within infrapopulations).

All the considered measures correlated with prevalence,
although inconsistently, as some correlations were positive while
others were negative. The (weaker) positive correlations between
prevalence and both VMR and mean crowding likely arose due to
the strong relationship of those measures with mean abundance;
in other words, they are likely emergent due to an underlying coin-
cident relationship between prevalence and mean abundance
(Poulin, 2007b). All the other indices demonstrated increasing
aggregation with decreasing prevalence. This negative relationship
makes sense, considering aggregation colloquially as the relative
clustering of parasites among hosts: as prevalence decreases, the
sampled parasites are more ‘‘concentrated” within a smaller pro-
portion of hosts (Poulin, 1993).

Poulin’s D and Hoover’s index showed particularly strong, and
expected, negative correlations with prevalence. As described
above, our analyses revealed that potential variability in Hoover’s
index, unlike variability in D, may be extremely diminished at
low prevalence. Hoover’s index is invariably equal to one minus
the prevalence when all infrapopulations are larger than, or equiv-
alent to, the mean abundance. Intuitively, this constraint is
revealed in the biological interpretation of this index, i.e. that it
represents the proportion of the parasite population that would
need to be redistributed to achieve an even distribution. When
all infrapopulations are at least as large as the mean abundance,
the only hosts that would receive parasites in a hypothetical redis-
tribution to reach evenness would be those that are uninfected; the
number of uninfected hosts would be Nhosts � (1 – prevalence). The
total number of parasites moved would be this quantity of hosts
multiplied by the mean abundance (l). Finally, to arrive at what
proportion of the parasite population this represents, we would
divide by Nhosts � l; therefore, the only term not cancelled out is
the one minus prevalence term. Hoover’s index’s use as a highly
interpretable measure of aggregation is not lost in any contexts;
however, our study suggests low prevalence, high aggregation,
and/or low mean abundance can result in cases where it demon-
strates extremely limited or no possible variation. As such,
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Hoover’s index may not be appropriate in some comparative stud-
ies, or those studies involving analytical models with aggregation
included as a variable, when explanatory/explainable variation is
lacking, but otherwise might be preferred over D when biological
interpretation of degree of aggregation is paramount.

In comparison, Poulin’s D did not demonstrate a similar imped-
iment, and showed far less of a constraint on variation given vari-
able parasite prevalence. While D is particularly apt for
comparisons of aggregation across samples and even across differ-
ent host-parasite associations, this permitted variability also
allows its use as a response variable in analytical models seeking
to explain predictors of parasite aggregation, or as an independent
variable in models testing for biological consequences of aggrega-
tion among hosts. For example, one may wish to compare whether
degrees of parasite aggregation differ among host groups with vari-
able expression of behavioural resistance mechanisms (cf. Horn
et al., 2023), or whether aggregation predicts expected within-
host genetic variation of parasites (cf. Eppert et al., 2002; Poulin
2007b). While the strong underlying relationship between D and
prevalence may still limit its usefulness, researchers have success-
fully modeled D as a response variable, for example in beta regres-
sions demonstrating the influence of parasite taxonomy on degree
of aggregation in a common host species (Morrill et al., 2022).

The final pair of measures that group together are the parame-
ter k of the negative binomial distribution and patchiness. k and
patchiness demonstrated only weak correlations with prevalence
in the second simulation (aggregation increasing with decreasing
prevalence), and essentially no correlation with mean abundance.
This lack of a necessary relationship with mean abundance, as well
as their biological interpretations (Table 2), makes them particu-
larly valuable for comparisons of aggregation across studies. As
mentioned, the absence of any correlation between k and mean
abundance in our analyses will seem unanticipated to some read-
ers, as expectations for such an unavoidable relationship have been
discussed (e.g. Scott, 1987; Lester and Blomberg, 2021; although
see Gregory and Woolhouse, 1993). We expect that previously
identified relationships with mean abundance were largely due
to the relationship of k with prevalence. Such an occurrence could
arise from the frequent correlation between the mean and preva-
lence, and thereby result in a spurious correlation between mean
abundance and k. Also, if parasite distributions deviated from
approximating negative binomials, poorly fitted values of k would
result. Those poorly fitted k values may demonstrate unexpected
behaviours, even suggesting a false relationship with mean abun-
dance. Alternatively, confusion may have arisen from the fact that
distributions with different mean abundances but the same values
of k can have very different shapes (for example, prevalence esti-
mates may be dissimilar). Here, distributions clearly differ but this
is not reflected in values of k; the interpretation of kwith respect to
aggregation in those varying conditions does not change, as its
reciprocal still represents the proportion of the mean abundance
by which the mean crowding exceeds the mean abundance (e.g.
if k = ¼, then mean crowding is four times in excess of the mean
abundance, i.e. equal to five times the mean abundance).

A few other points regarding k are worth highlighting. Several
studies state that k does not have a direct biological interpretation
(Taylor, 1984; McVinish and Lester, 2020), but as demonstrated by
Lloyd (1967), k does possess a clear interpretation in terms of mean
crowding, i.e. as aggregation interpreted from the parasite’s per-
spective. Returning to the previous purported relationship
between k and mean abundance, aggregation as measured by k
on average did not change following random removals of parasites
in our simulations. We thus reaffirm k’s value as an interpretable
aggregation measure that is not constrained to relate to mean
abundance. k may also prove useful as a response or explanatory
variable in models exploring correlates of aggregation. Compar-
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isons of aggregation between groups of interest may also now be
accomplished using modern implementations of generalized linear
model-fitting procedures with a negative binomial response
whereby different k parameters can be fit to each of the focal
groups. This desirable approach was identified as impossible in
previous decades due to technological limitations (Shaw et al.,
1998; Morrill et al., 2022). The disadvantage of k as a measure of
aggregation, on the other hand, remains that its relevance, ability
to be meaningfully converted to other measures, and its biological
interpretation are lost as soon as the distribution of parasite abun-
dances is no longer well approximated by a negative binomial.

Patchiness arises as a potentially underappreciated measure of
aggregation. Despite its infrequent use in the parasitological liter-
ature, patchiness has the advantages that it is not correlated with
mean abundance, it does not require that the distribution of para-
site loads fits well to a negative binomial, and it boasts a clear bio-
logical interpretation. Between these qualities and its ease of
calculation, we submit patchiness as a measure to (re)consider.
Several of its useful properties, and the calculation for its associ-
ated standard error, are presented in Lloyd (1967). Patchiness
may also be appropriate as either an outcome variable or predictor
in models testing relationships between aggregation and other
ecological variables across collections of separate samples of hosts.
When choosing between patchiness and k, the latter may be
preferable when one wishes to generate simulated parasite abun-
dance data (from a negative binomial distribution) based on obser-
vations, or where direct comparisons with previously reported
levels of k are desired; otherwise, and certainly whenever the
observed abundance data is not well-approximated by a negative
binomial, patchiness may be preferred.

In light of the three contrasting groups of measures identified in
our analyses, we add the recommendation that authors include at
least one measure from each of the three groups (e.g. VMR or mean
crowding, combined with k or patchiness, and D or Hoover’s
index). The expected mathematical relationships between some
of the measures, at least when the distribution is satisfactorily
approximated by a negative binomial, ensure that the values of still
other indices may be calculated even if they are not listed. This
may be beneficial for quantitative reviews and meta-analyses, for
instance analyses seeking to uncover general epidemiological pro-
cesses shaping the emergent distributions of parasites among
hosts.

Regardless of which measures researchers select for their anal-
yses, we repeat the recommendation of Reiczigel et al. (2019), that
these aggregation values always be reported with some degree of
the associated error, as this is not a common enough practice
(e.g. bias-corrected and accelerated bootstrap confidence intervals
for D; maximum likelihood estimation confidence intervals for k).
Finally, we remind the reader that, due to the relative rarity of lar-
ger infrapopulations among hosts when abundances are positively
skewed, aggregation measures tend to be biased towards underes-
timations at low host sample sizes (Gregory and Woolhouse, 1993;
Poulin, 2007b).
6. Conclusions

Whether it is to quantify the distribution of parasites among
hosts, or more generally that of individual organisms among dis-
crete sampling units (e.g. quadrats, core samples, etc.), different
measures of aggregation are commonly used. We considered six
measures (VMR, k, mean crowing, patchiness, Poulin’s D, and
Hoover’s Index) all purported to measure parasite aggregation,
but shown to differ in what they depict relative to one another
and relative to sample prevalence and mean abundance of para-
sites, based on simulations. These different measures are straight-
775
forward to calculate, and can be used to address various
determinants of aggregation and its consequences to parasite and
host populations (what is observable in nature).

The six measures are better characterized as three groups of
paired measures (k and patchiness, VMR and mean crowding, Pou-
lin’s D and Hoover’s index) with similarities between correlated
members of a pair in terms of their response to random parasite
removal and, relatedly, their relations to mean abundance and/or
prevalence. We provide a list of advantages and disadvantages of
each aggregation measure based on results of simulations and
the range of variation to be explained (or used to explain), the past
use of each measure, their ease of calculation and conversion to
other measures, and their biological interpretability. This informa-
tion is meant to guide researchers in the choice of aggregation
measures best suited to their study questions while also encourag-
ing researchers to provide information on other measures (perhaps
as supplementary information) to allow across-study tests of
determinants and consequences of parasite aggregation.
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