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Abstract

The evolution of helminth parasites has long been seen as an interplay between host resistance
to infection and the parasite’s capacity to bypass such resistance. However, there has recently
been an increasing appreciation of the role of symbiotic microbes in the interaction of hel-
minth parasites and their hosts. It is now clear that helminths have a different microbiome
from the organisms they parasitize, and sometimes amid large variability, components of
the microbiome are shared among different life stages or among populations of the parasite.
Helminths have been shown to acquire microbes from their parent generations (vertical trans-
mission) and from their surroundings (horizontal transmission). In this latter case, natural
selection has been strongly linked to the fact that helminth-associated microbiota is not sim-
ply a random assemblage of the pool of microbes available from their organismal hosts or
environments. Indeed, some helminth parasites and specific microbial taxa have evolved com-
plex ecological relationships, ranging from obligate mutualism to reproductive manipulation
of the helminth by associated microbes. However, our understanding is still very elementary
regarding the net effect of all microbiome components in the eco-evolution of helminths and
their interaction with hosts. In this non-exhaustible review, we focus on the bacterial micro-
biome associated with helminths (as opposed to the microbiome of their hosts) and highlight
relevant concepts and key findings in bacterial transmission, ecological associations, and taxo-
nomic and functional diversity of the bacteriome. We integrate the microbiome dimension in
a discussion of the evolution of helminth parasites and identify fundamental knowledge gaps,
finally suggesting research avenues for understanding the eco-evolutionary impacts of the
microbiome in host–parasite interactions in light of new technological developments.

Introduction

We have long known that microbes form ecological associations with many different organ-
isms. The first descriptions of bacteria associating with humans were done by Antonie van
Leeuwenhoek in the 17th century (Finegold, 1993). More than 100 years later, microorganisms
interacting with animals and plants were recognized in A fauna and flora within living animals
(Leidy, 1853), which was followed by an increasing number of investigations characterizing
microbial symbionts and their functions, particularly in human health (Savage, 2001).
Fast-forward to 2023, and we are witnessing the ‘microbiome revolution’. We increasingly
understand that symbiotic microbes are present and perform key functions at all levels of bio-
logical organization. For example, the composition of the human microbiome has been linked to
gut health, immunity modulation and disease susceptibility (Wang et al., 2017; Fassarella et al.,
2021); the taste of wine has been linked to microbial communities in the soil (Belda et al., 2017);
and in conservation programmes, the health status of captivity-bred species has been linked to dif-
ferences in the microbiome composition between their natural and artificial habitats (West et al.,
2019). Similarly, symbiotic microbes are also present in helminth parasites and their parasitized
hosts, performing central roles in what was previously seen as a two-player interaction (parasite–
host), with eco-evolutionary implications for all players involved (Morley, 2016; Dheilly et al.,
2019b; Jenkins et al., 2019; Brealey et al., 2022; Hahn et al., 2022; Poulin et al., 2022).

Much of the research involving microbiomes in parasitology has focused on the micro-
biome of the parasitized organism (Hayes et al., 2010; Vicente et al., 2016; Rapin & Harris,
2018; Rosa et al., 2018; Jenkins et al., 2019; Le Clec’h et al., 2022). In this context, microbes
can modulate the immune response against the parasite both indirectly, for example, by help-
ing with the development of the immune system, and directly, for example, by producing toxic
compounds that may kill the parasite (Dheilly et al., 2015, 2017; Hahn et al., 2022). However,
the mere presence of parasites may alter the microbiome of a parasitized organism. This
difference can be either a simple by-product of infection, as well as changes initiated by the
parasitized organism as a response to the parasitic infection, or even changes induced by
the parasite (Dheilly et al., 2015; Hahn et al., 2022).
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Among parasites, helminths are ubiquitous in the terrestrial
and marine environment and are especially interesting from an
evolutionary perspective, with their many different life stages
requiring a combination of invertebrate and vertebrate hosts to
complete a life cycle (Bennett et al., 2021, 2022). Microbes in dir-
ect symbiosis with organisms parasitized by helminths have been
reviewed elsewhere and perform many roles, including resistance
to the parasites, heat tolerance, diet supplementation, develop-
ment and immune defence (Dheilly et al., 2015; Reynolds et al.,
2015; Brealey et al., 2022). Helminths are economically relevant
pathogens to vertebrates, which may be the reason why research
at the parasitized organism level usually focuses on the effect of
specific microbes on the susceptibility, infection, or resistance of
the parasitized organism to the parasite. In short, common
research topics are characterization of the host microbiome,
microbiome variability among individuals hosts, species-
specificity of different microbial taxa and source of microbial
acquisition (Dheilly, 2014; Reynolds et al., 2014, 2015; Dheilly
et al., 2015, 2019a; Hahn & Dheilly, 2016; Midha et al., 2017;
Topalovic & Vestergard, 2021; Le Clec’h et al., 2022).

With the advances and increasing accessibility of metage-
nomics and sequencing technologies, we can target the micro-
biome associated with parasites and begin to understand the
eco-evolutionary significance of this deeper layer of ecological
interactions. Aiming to provide guidelines and advance research

on the roles and implications of symbiotic microbes living within
parasites, an international consortium of researchers was formed:
the Parasite Microbiome Project (Dheilly et al., 2017, 2019b).
Recent work has revealed that the microbiome within different
helminths can range from very simple (with only a few conserved
taxa associated with multiple individual helminths of the same
population) to highly complex (with several different taxa and sig-
nificant variability in community composition among indivi-
duals) (Hahn et al., 2022; Jorge et al., 2022a). Helminth
microbiomes can influence infection success and susceptibility
to the host’s immune responses (Dheilly et al., 2015; Martinson
et al., 2020; Brealey et al., 2022), and may play a role in the ability
of some manipulative parasites to alter the phenotype of their ani-
mal hosts (Poulin et al., 2022). A helminth species may have a
geographically variable microbiome (Jorge et al., 2022b), but spe-
cific microbiome components may be consistent over the many
life stages of the parasite’s life cycle (Jorge et al., 2020).
However, our understanding of these complex and dynamic
microbe–helminth associations still have a long way to go, as
does our knowledge about the eco-evolutionary implications of
such relationships, both for helminths and for the different com-
ponents of the microbiome. This is highlighted by the slowly
growing body of research on helminth microbiomes compared
to the rapidly growing knowledge about microbiomes in general
(fig. 1). Here, we will consider the bacterial microbiome

Fig. 1. Articles per year (non-cumulative) in a Web of Science search for different microbiome research areas. The search included years 2002 to 2021 and was
refined to include only articles. Keywords per area: Microbiome, ‘microbiome’; Human Microbiome, ‘microbiome AND human’; Parasite Microbiome, ‘microbiome
AND parasit*’; and Helminth Microbiome, ‘microbiome AND (nematod* OR cestod* OR trematod* OR monogene* OR digene* OR acanthocephal*).
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associated with helminths (excluding free living forms such as
planarians) and review concepts relevant to microbial transmis-
sion, the nature of helminth–bacteria ecological interactions, the
diversity in helminth bacteriomes and the eco-evolutionary
impacts of such interactions. We will finish by suggesting poten-
tial avenues for future research in light of recent technological
innovations.

Due to the nested nature of the ecological relationships treated
in this review, we have attempted to improve clarity by hereafter
referring to hosts with the meaning of a multicellular organism
(animal or plant) that is parasitized by a helminth. We refer to
helminths as organisms that depend on plant or animal hosts
to complete their life cycle. We note that this review focuses on
the bacterial community harboured by the helminths (i.e. hel-
minth bacteriomes), for which enough literature is available to
build a conceptual framework. However, the concepts discussed
here likely apply to the many other microbiome components.
Extremely little is known about the archaea, protozoa and fungi
components of helminth microbiomes, and even though there is
a growing body of work on the virome of parasites in general
(Dheilly et al., 2022), and unicellular eukaryotes such as micro-
sporidians have occasionally been reported within helminths
(e.g. Sokolova et al., 2021), they will not be further considered
in this review.

The sources: where do helminths get their bacteria from?

General research on microbial communities has reported great
variability in the taxa associated with plants/animals/environment
and described interesting phenomena, such as the ‘founder
hypothesis’ (i.e. pre-existing microbial lineages that dominate
recolonization), ultimately highlighting the dynamic nature of
microbial symbiosis in diverse systems (Litvak & Baumler,
2019). The same seems to apply to the bacteriome of helminths. In
many instances, bacterial taxa composing microbial communities
are variable even among helminths parasitizing the same individual
host (Jorge et al., 2020, 2022b;Hahn et al., 2022), and,whendisrupted
with antibiotics, increased abundance of founder bacteria post-
disturbancemay follow (Jorge et al., 2022c). In othercases, there is lit-
tle diversity in the bacteria composing helminth microbiomes
(Brealey et al., 2022). The impact of these phenomena on the fitness
and evolution of helminths is still unclear.

The extensive range of variability in the bacteriome of hel-
minths leads to questioning the microbial sources of individual
helminths in a population (Rosenberg & Zilber-Rosenberg,
2021): helminths may horizontally acquire bacteria, from their
habitat, be it the external environment when they are in the infec-
tious larval stages, or their surroundings within their host, and
their diet, whatever they feed on (host tissue, or even other
co-infecting parasites) (Jorge et al., 2020, 2022b). Helminths may
also vertically acquire bacteria, which means bacteria are transmit-
ted among parasite generations (Jorge et al., 2020, 2022b).

In cases of horizontal transmission, different generations do
not share bacteria, but there is consistency in the bacteriome,
for example, in populations across different geographical local-
ities, implying a potential role of natural selection in determining
the bacteria that colonize the parasite (Hahn et al., 2022; Jorge
et al., 2022b). For example, there is geographical stability in the
bacteriome of the trematode Philophthalmus attenuatus: parasites
in different localities but at the same life stage share more bacteria
than parasites of different life stages in the same locality (Jorge
et al., 2022b). This suggests that specific bacteria are important

in each life stage, but that they are not transmitted from one gen-
eration to the other, and rather they are acquired horizontally
(from the environment or the parasite’s surroundings).
Supporting this is the association between different bacteriomes
and different genetic lineages of the cestode Schistocephalus sol-
idus (Hahn et al., 2022). Thus, a parasite’s bacteriome is not sim-
ply a random assemblage of the pool of bacteria available in the
parasite’s habitat, as natural selection may restrict which bacteria
will successfully colonize the helminth, although it may also
depend on which bacteria were settled in before (Hahn et al.,
2022; Jorge et al., 2022b, 2022c). Interestingly, Eubothrium ces-
todes parasitizing salmon were shown to associate with different
Mycoplasma lineages than those found in the salmon`s micro-
biome, suggesting a role of divergent selection for specific
Mycoplasma lineages in the cestode parasite and its salmon host
(Brealey et al., 2022). Yet, the Mycoplasma lineages associated
with the cestode and the salmon are phylogenetically very close,
suggesting shared ancestry of the specific bacterial lineages
between the salmon and cestode (Brealey et al., 2022).
Fundamentally, in addition to consequences to the parasitized
organism (and its bacteriome), the parasite also has a role in
the evolution of the bacteria composing its own microbiome,
which in turn may interact with the evolution of the parasite
(and that of its hosts and their microbiome).

In cases of vertical transmission, if a helminth is associated
with a core set of bacteria (or a core microbiome, Neu et al.,
2021) persistent in different habitats (e.g. different host species)
and across different life stages of the helminth, then the core bac-
teriome and the helminth are likely responding to changes as an
evolutionary unit (Jorge et al., 2020). For example, Coitocaecum
parvum trematodes have a core bacteriome that persists over dif-
ferent life stages through different animal hosts and environ-
ments, and the main source of these bacteria is the previous life
stage (Jorge et al., 2020). However, vertical transmission is imper-
fect, that is, only a proportion of parasite offspring inherit certain
bacteria from the parent parasite (Greiman et al., 2013).

From a microbial evolution perspective, the transmission
mode must contribute to each bacterial lineage’s persistence
over evolutionary time, avoiding dead ends (Ebert, 2013; Dheilly
et al., 2015). Thus, there is an important correlation between
the mode of bacterial transmission and the ecology of the hel-
minth, including factors such as the helminth population density,
fecundity, different life stages and habitats. Horizontal transmis-
sion is an effective transmission strategy for the bacteriome of hel-
minths with a large population density, or that have large
numbers parasitizing a single individual host, or large numbers
in the same environment. In contrast, vertical transmission is a
suitable strategy for bacteria persisting over patchy geographical
distribution and across different life stages of the parasite. Thus,
vertical bacterial transmission is tightly linked to the helminth’s
reproductive success (Ebert, 2013). Vertical transmission enables
bacteria to persist over discrete generations of the parasite and
overcome constraints such as helminths with small numbers of
offspring and low success in transitioning to the next life stage
in a different host species. Clearly, a strategy combining horizon-
tal and vertical transmission enables the exploitation of a larger
breadth of possibilities for bacterial persistence (Ebert, 2013)
and could contribute to the large variability in the bacteriome
composition of helminths. Lastly, the helminth habitat may also
play a role in determining bacterial transmission strategies,
given that higher vertical transmission rates are more common
in terrestrial than aquatic symbiotic microbes (Russell, 2019).
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The genetic diversity of bacterial lineages and inter-specific
association in allele frequencies among the helminth and bacterial
alleles may help define the source of specific bacteria in
helminths. In horizontal bacterial transmission, high lineage
diversity in the bacteriota of a single individual is expected, as dif-
ferent bacterial lineages may colonize an individual helminth over
several founding events (Ebert, 2013). Contrastingly, in cases of
vertical transmission, specific bacterial genotypes become asso-
ciated with the genotype of the individuals they inhabit, leading
to inter-specific linkage disequilibrium (Ebert, 2013; Hayward
et al., 2021; Hahn et al., 2022). Ultimately, microbes with strict
vertical transmission across many helminth generations may pre-
sent congruent phylogenies with the parasite (Hayward et al.,
2021). However, other factors unrelated to the mode of transmis-
sion can lead to interspecific linkage disequilibrium (e.g. selection
and spatial structure), and for microbes with mixed transmission
modes (vertical and horizontal transmission), inter-specific allelic
correlation is expected to be weaker (Brandvain et al., 2011;
Fitzpatrick, 2014).

The nature of ecological interactions among helminths and
bacteria

The variability and dynamic composition of the bacteriome of
helminths reflect the complexity of the symbiotic interactions
among helminths and bacteria, and broad generalizations are
hardly possible. However, to better understand the ecological
impacts of such interactions, it can be helpful to identify shared
patterns among case studies. Following Moran et al.’s (2008) sym-
bioses’ classifications among microbes and insects, below we pro-
pose a system to identify characteristics of obligatory and
facultative interactions among bacteria and helminths.

Obligatory mutualism: bacteria that present obligatory mutual-
ism with helminths (also called primary symbionts) are essential
to the development of the helminth, which in turn is essential to
the microbe’s transmission. Obligatory mutualistic bacteria are
genus-specific or species-specific, meaning they are only success-
ful in one helminth genus or species and are strictly vertically
transmitted. For example, bacteria from the group Candidatus
Symbiopectobacterium are strictly maternally transmitted
among generations of the nematode Howardula aoronymphium,
which has low success in parasitizing its Drosophila host when
the association with the bacterium is absent (Martinson et al.,
2020). Some Candidatus Symbiopectobacterium lineages show
genomic degradation, a footprint of obligatory symbiotic
association due to accumulating deleterious mutations, and are
phylogenetically closely related to obligate symbionts of other
invertebrates (Martinson et al., 2020). Few other examples of bac-
teria–helminth obligatory mutualism are known at present, and
their ‘obligatory’ nature has been questioned, such as the case
of Xenorhabdus and Photorhabdus gram-negative bacteria associ-
ating with Steinernematidae and Heterorhabditidae nematodes
(Poinar & Thomas, 1966). These bacteria kill the nematode’s
insect host so that the nematode can feed on the dead insect as
it reproduces and grows. The bacteria then infect the nematode
juveniles, which are subsequently released to the soil in search
of the next insect host (Forst & Clarke, 2002). However, even
though Xenorhabdus and Photorhabdus bacteria are species-
specific and vertically transmitted among the nematodes, the
bacteria can be cultured in laboratory conditions free of the nema-
todes, which has led authors to classify the symbiotic relationship
as non-obligatory mutualism (Forst & Clarke, 2002).

Facultative symbiosis: bacteria that facultatively associate with
helminths (also called secondary symbionts) are not essential to
the reproduction or development of the helminth and may asso-
ciate with various helminth species. Thus, there is an important
role for horizontal bacterial transmission. These bacteria modu-
late the phenotype/behaviour of the helminth in order to increase
the prevalence and spread of helminth lines containing the sym-
biotic bacterial lineages. For example, the bacteriome of repro-
ductive morphs of the trematode Philophthalmus attenuatus has
been shown to differ from the bacteriome of morphs that do
not reproduce (soldiers). When both morphs were treated with
antibiotics within the snail host, the development of reproductives
was favoured over the development of soldiers, supporting a role
of the bacteriome in the formation of different morphs and indi-
cating a potential bacteriome manipulation of the trematode
reproductive strategy (increase in lines bearing the reproductive
bacteriome) (Jorge et al., 2022a).

There are two subcategories of facultative symbiosis:

Facultative mutualism: the phenotypic modulation induced by
the bacteria causes a direct benefit to the helminth, in terms
of longer life spans or protection from stress, ultimately leading
to higher reproductive success. Facultative mutualism may
include cases in which the bacteria help protect the helminth
against their host’s immune response or against other microor-
ganisms that could compete or attack the helminth, as well as
benefits in terms of dietary supplementation. For example,
electron microscopy has revealed a homogeneous composition
of bacteria located within cavities on the surface of two differ-
ent species of tapeworm, likely providing an increase in food
absorption by the worms (Caira & Jensen, 2021). Moreover,
the only known function of these cavities is housing bacteria,
suggesting that these structures evolved specifically because
the tapeworm benefits from such relationships (Caira &
Jensen, 2021).
Reproductive manipulation: the phenotypic modulation
induced by the bacteria interferes with the helminth’s repro-
duction, favouring helminth lines harbouring the bacteria. In
such cases, vertical transmission is possible and would lead
to increasing fecundity or reproductive success of helminth
lines bearing the bacteria, as opposed to lines free from the bac-
teria. For example, Neorickettsia bacteria infecting the digenean
trematode Plagiorchis elegans have mixed transmission (vertical
and horizontal transmission) and are pathogenic to horses
(Greiman et al., 2013). Even though the trematode is the vector
of Neorickettsia to the horse, the trematode cannot reproduce
in the horse, thus ruling out a mutualistic relationship
(Pusterla et al., 2003; Greiman et al., 2013). Neorickettsia rate
of transmission during the asexual multiplication phase of P.
elegans varies from 11–90%, confirming its imperfect vertical
transmission (Greiman et al., 2013). However, the effect of
Neorickettsia on the trematode’s reproductive success in its
intermediate hosts (a snail and an arthropod) remains
unknown.

From a bacterial evolutionary perspective, selection favouring
bacteria with higher fitness does not necessarily incur benefits
to the helminth with which they associate (Dheilly et al., 2015;
Speer et al., 2020). Indeed, there are cases in which an increase
in bacterial fitness may decrease the parasite’s fitness, in an antag-
onistic dynamic. An example is Salmonella bacteria that are
shielded from antibiotics when attached to schistosome parasites,
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however the number of trematodes in a parasitized animal is
smaller in co-occurrence with Salmonella than when the bacteria
are not associated with the schistosomes (Barnhill et al., 2011;
Zhu et al., 2017).

Characterizing interactions among bacteria and helminths can
help understand the ecological impact of the absence of certain
interactions or their removal by, for example, antibiotics treat-
ment. If obligatory mutualism is impeded, then both the bacteria
and the helminth parasite in question are expected to perish or
achieve greatly reduced fitness; in contrast, if an antagonist rela-
tionship is impeded, the chances of survival and success of the
helminth may increase. Nevertheless, in most bacteria–helminth
associations, the nature of the symbiotic relationship is fluid
and can be strongly context-dependent. Microbe–microbe inter-
actions are important in microbial communities (Proal et al.,
2017). There is nothing to suggest that, under different circum-
stances, certain bacterial lineages cannot act as beneficial agents
and pathogens to the same helminth species, just as it happens
in the human gut microbiome (Schubert et al., 2015; Sharpton
& Gaulkeb, 2015). In addition, mutualism and parasitism are
but the ends of an evolutionary continuum (Drew et al., 2021),
and defining interactions anywhere along a continuum can be
highly subjective (Leung & Poulin, 2008). Even so, identifying
shared patterns among different contexts can be helpful to
improve our understanding of the significance of some of these
interactions for the evolution of both microbes and helminths,
and this is what the aforementioned classification system can be
used for.

The diversity of the bacteriome in helminths

Large variability in microbiomes is universally recognized. In
humans, increasing sampling efforts inevitably correlate with a
decrease in the percentage of common taxa among all people,
and currently, fewer than 20 genera are shared by more than
95% of the sampled human populations (Sanna et al., 2022).
There is an influence of external factors on the composition of
the microbiome (e.g. environment and diet), but surprisingly,
the heritability of some components of the human microbiome
is around 20%, suggesting a role of the genetic makeup of the
individual in the composition of its microbiome (Sanna et al.,
2022). In helminths, both the genotype and the bacteriome
of the cestode Schistocephalus solidus correlate with changes
in the bacteriome and phenotype of its fish host (Hahn
et al., 2022). Further research associating the genotype of hel-
minths and their hosts with the diversity of their bacteriome is
needed to shed light on the factors underlying bacteriome
variability.

There is an important distinction between the core bacteriome
and the transient bacteriome in helminths. The core bacteriome
refers to specific bacterial lineages present throughout the hel-
minth’s life cycle, in which bacterial acquisition via vertical trans-
mission is key (Formenti et al., 2020; Jorge et al., 2020; Neu et al.,
2021). Stable bacterial lineages across different geographical
localities may also represent a core bacteriome, but in this case,
horizontal transmission may tightly interact with natural selection
towards keeping specific bacterial lineages associated with specific
life stages of the helminth (Jorge et al., 2022b; Sheehy et al., 2022).
For example, different lineages of Phasmarhabditis nematodes
have a core set of bacteria even when originating from different
localities and being cultured under different conditions for vary-
ing lengths of time (Sheehy et al., 2022). The composition of the

core bacteriome is, thus, expected to be relatively stable, probably
indicating that either such bacterial lineages play a role in the
helminth’s ecology and evolution, or they depend on the hel-
minth for their own transmission and survival, or both
(Formenti et al., 2020; Jorge et al., 2020, 2022b; Sheehy et al.,
2022).

In comparison, transient bacteriome refers to bacterial lineages
that are only present in specific life stages of the helminth, or in
specific geographical localities, and can be greatly variable among
individual helminths (Formenti et al., 2020; Jorge et al., 2020,
2022b; Hahn et al., 2022). However, the transient bacteriome
can still impact the helminth’s biology. For example, transient
bacterial lineages could correlate with differences in the pathology
of virulence of helminths, or even with variability in
parasite-induced manipulations of host phenotype and behaviour
(Dheilly et al., 2015; Poulin et al., 2022). Transient bacterial
lineages depend on horizontal transmission (Formenti et al.,
2020). However, as mentioned above, horizontally acquired bac-
teria do not necessarily represent a random assemblage of the bac-
terial pool in the helminth’s environment, and host-based
selective forces are relevant to determining the composition and
diversity of the parasite bacteriome (Hahn et al., 2022).

Many examples in the literature describe single bacterial taxa
interacting with helminths and their hosts (table 1). However,
conceptual complexities arise when considering the net effect of
many microbial genotypes (i.e. the microbiome), involving inter-
actions among themselves, with the helminths and with the para-
sitized host (and its microbiome) (Dheilly, 2014; Theis et al.,
2016). The great taxonomic variability in the bacteriome has led
to functional investigations of individual bacterial lineages, with
findings converging to the realization that the functions of
many lineages are redundant (Speer et al., 2020). In fact, metabo-
lomics research has shown that microbiomes composed of differ-
ent taxa may produce similar metabolites (Litvak & Baumler,
2019). Furthermore, the many microbial lineages may have a dif-
ferential contribution to the microbiome (Reynolds et al., 2015): a
few isolated lineages could have a strong effect, and many individ-
ual lineages could have a small effect that results in a stronger
combined impact on the ecology and evolution of helminths.
Such considerations create a clear distinction in how microbial
diversity is defined and studied: taxonomic diversity is concerned
with the diversity of lineages composing the microbiome, while
functional diversity characterizes the pool of functional traits in
a microbiome, regardless of taxonomic diversity (Escalas et al.,
2019).

If knowledge about the microbiome’s taxonomy in helminths
is still in its infancy, the study of the microbiome’s functional
diversity in parasitology is even more so. However, the potential
of this type of study can already be seen. For example, upon find-
ing differences in lineages of Mycoplasma composing the micro-
biome of the cestode Eubothrium and its salmon host, Brealey
et al. (2022) generated metagenome-assembled-genomes
(MAGs) and performed functional annotation by comparison
with previously available Mycoplasma genomes. Functional gen-
omic regions coding for different metabolic pathways were pre-
sent in cestode-associated Mycoplasma vs. salmon-associated
Mycoplasma, suggesting adaptations of Mycoplasma to the differ-
ent environments (i.e. adaptation to the cestode or to live within
the fish gut). Nevertheless, the study was limited by the lack of
available Mycoplasma genome assemblies in non-mammalian
hosts, highlighting the need for further studies to fill this funda-
mental gap.
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Table 1. Selected examples of association between bacteria and helminth parasites.

Parasite Bacteria Short description Relationship Reference

NEMATODA Filarial nematodes
(Onchocercinae and
Dirofilariinae)

Wolbachia bacteria are maternally
transmitted among parasite
generations. Treatment with
antibiotics affect the worms
by delaying moulting,
reducing growth rates,
embryonic failure and death.
Wolbachia produce essential
metabolites for the
nematodes (riboflavin,
haeme, glutathione and
glycolytic enzymes). There is
phylogenetic congruence
among Wolbachia lineages
and nematodes

obligate
mutualism

Comandatore et al.
(2013), Landmann
et al. (2011), Sironi
et al. (1995), Slatko
et al. (2010), and
Taylor et al. (2005)

Trichuris sp. Escherichia coli and
Salmonella typhimurium;
clostridia
(Preptostreptococcaceaea);
lactobacilli

bacteria are required for egg
hatching, but different
bacterial lineages are
required for different
Trichuris species (Trichuris
muris vs Trichuris suis),
suggesting adaptation to
different bacterial lineages
that are specific to their
animal host.
Preptostreptococcaceaeamay
promote egg hatching of T.
muris and Trichuris trichiura
in humans.
Trichuris suis infection is
associated with changes in
the microbiome of the
parasitized host, with
increase in lactobacilli and
mucolytic bacteria.

unknown Hayes et al. (2010),
Holm et al. (2015),
Sargsian et al.,
(2022), Vejzagić
et al. (2015), and
White et al. (2018)

Ascaris sp. Pseudomonas pyocyanea and
other gram-negative bacteria

in pigs and horses,
gram-negative bacteria help
reduce the abundance of
gram-positive bacteria that
have an anti-helminthic
effect, protecting Ascaris sp.
against threatening
conditions

unknown
suggestion:
facultative
mutualism*

Emanuiloff, 1958,
as cited in Morley
(2016)

Pseudocapillaria
tomentosa

undefined taxa changes in the alpha and
beta diversity of the
microbiome of zebrafish can
be used to diagnose infection
with the nematode, and are
related to worm burden and
infection success

unknown Gaulke et al. (2019)

Steinernematidae
and
Heterorhabditidae

Xenorhabdus and
Photorhabdus

bacteria from the gut of
juvenile worms are released
to the parasitized insect host
and kill the insect with
toxins. The dead insect is a
source of nutrition for the
reproductive stages of the
nematodes, and once
juveniles are formed again,
their guts are colonized by
the bacteria before they
disseminate in the ground.
A specific case is that of
Photorhabdus luminescens
bacteria within
Heterorhabditis bacteriophora
nematodes that lead the

obligate
mutualism (but
see Forst &
Clarke, 2002)

Fenton et al. (2011),
Forst & Clarke
(2002), Poinar &
Thomas (1966), and
Singh et al. (2012)

(Continued )
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Table 1. (Continued.)

Parasite Bacteria Short description Relationship Reference

parasitized insect host
changing colour, which
deters avian predators

Ascaris suum undefined taxa bacteria supplement the
limited serotonin levels of
the worm

unknown
suggestion:
facultative
mutualism*

Shahkolahi &
Donahue (1993)

Heligmosomoides
polygyrus

Lactobacillacea increase in Lactobacillus
taiwanensis in mice is
associated with susceptibility
to infection by the nematode
(increased abundance of
Lactobacillacea bacteria
promote infection by the
nematode)

unknown Reynolds et al.
(2014)

Xiphinema
americanum

Veruccomicrobia and
Xiphinemobacter

strictly vertically transmitted,
maternally inherited bacteria
have been proposed to
reduce the number of males
in the nematode
populations. There is
phylogenetic congruence
among bacteria and
nematodes

obligate
mutualism

Coomans et al.
(2000),
Palomares-Rius
et al. (2016), and
Vandekerckhove
et al. (2000)

Elicilacunosus
dharmadii and
Caulobothrium
multispelaeum

coccoid-like and bacillus-like
bacteria (undefined taxa)

bacteria are associated with
folds of the nematode body
(fillitriches) and
hypothesized to participate
in diet supplementation

facultative
mutualism

Caira & Jensen
(2021)

TREMATODA Opisthorchis
viverrini

Helicobacter pylori and other
host gut bacteria

oncogenic bacteria vectored
by the parasite, in addition
to alteration of the animal
host microbiome, may
contribute to cancer
development

unknown Deenonpoe et al.
(2017) and
Itthitaetrakool et al.
(2016)

Digenean
trematodes (e.g.
Nanophyetes,
Echinostoma and
Fasciola)

Neorickettsia bacteria trematodes acquire bacteria
vertically from previous
generations, but functioning
as disease vectors, they
horizontally transfer
Neorickettsia to mammalian
hosts. Neorickettsia is always
associated with digenean
trematodes, but there is
large variability in
trematodes species bearing
the bacteria (including
among individuals of the
same population)

unknown.
suggestion:
facultative
mutualism*

Lawrence & Poulin
(2016), McNulty
et al. (2017),
Pusterla et al.
(2003), and
Vaughan et al.
(2012)

Clinostomum
marginatum

gram-negative bacteria
(Achromobacter sp.,
Edwardsiella tarda and
Enterobacter agglomerans)

bacteria provide active
transport of glucose to the
trematode, but trematodes
developing in the absence of
the bacteria can transport
glucose via facilitated
diffusion

unknown
suggestion:
facultative
mutualism*

Aho et al. (1991)
and Uglem et al.
(1991)

Schistosoma
japonicum

schistosome-specific
microbiome

bacteria were found
associated with the
tegument and gastrodermis
of female schistosomes, but
only with the gastrodermis of
male schistosomes,
suggesting that females may
use the microbiome in a

unknown
suggestion:
reproductive
manipulation*

Gobert et al. (2022)

(Continued )
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Eco-evolutionary impacts: helminths and bacteria
associate, but what of it?

The evolution of parasites and their hosts has been much
described within the ‘evolutionary arms race’ framework: indivi-
duals resistant to a parasitic infection will have better survival
compared to susceptible individuals, but as natural selection ben-
efits resistant individuals on the one hand, on the other hand it
will also favour parasites with a capacity to bypass the resistance
of their hosts (Buckling & Rainey, 2002). However, to incorporate
the multi-dimensional nature of microbiome–parasite–host inter-
actions, the ‘evolutionary arms race’ framework needs to be
expanded (Rafaluk-Mohr et al., 2022). In short, microbial sym-
bionts have been described as a low-cost source of evolutionary
innovation for the organism they associate with, an extra pool
of genes providing diversity and a basis over which natural selec-
tion may lead to adaptation (Dheilly et al., 2015; Martinson et al.,
2020; Poulin et al., 2022). Symbiotic microbes may provide novel

functions to the organisms they associate with, enabling the con-
quest of different niches and environments (in parasite evolution,
this could translate into an increase in the diversity of hosts that
can be exploited), but microbes may also manipulate the organ-
isms they associate with (e.g. reproductive manipulation) and
become essential to a helminth via evolved dependency (De
Mazancourt et al., 2005; Martinson et al., 2020).

To better understand host–parasite evolution, two main fam-
ilies of models have been employed, with differences in their
underlying assumptions: the matching alleles model, which
assumes that a lock-key specificity in alleles of parasite and host
is required for infection; and the gene for gene model, which
assumes that infection occurs when parasites have more virulence
alleles than hosts have resistance alleles (Hamilton et al., 1990;
Sasaki, 2000). Natural systems do not always comply with these
assumptions, and as mentioned above, more complex models
are required when considering microbiomes. In particular,

Table 1. (Continued.)

Parasite Bacteria Short description Relationship Reference

different way from males,
potentially to meet
egg-producing demands

Schistosoma
mansoni

Salmonella in humans, Salmonella
bacteria attached to the
worms’ surface are shielded
from antibiotic treatments;
mice have a smaller number
of worms when Salmonella
are present

unknown Barnhill et al. (2011)
and Zhu et al.
(2017)

Philophthalmus
attenuatus

Rhodobacteraceae this family of bacteria was
found in high prevalence in
all life stages of the
trematode

unknown Jorge et al. (2022b)

Coitocaecum
parvum

Streptococcus sp. Streptococcus sp. were found
associated with all life stages
of the trematode. The
bacteria are known to
perform functions related to
nutrient metabolism
(fermentation) and immune
response

suggestion:
facultative
mutualism*

Jorge et al. (2020)

CESTODA Pseudophyllidean
and
caryophyllidean

nanobacteria and bacteria
(undefined taxa)

bacteria help with digestive
processes of the cestodes by
producing digestive enzymes,
which depend on the diet of
the parasitized host

unknown
suggestion:
facultative
mutualism*

Izvekova & Komova
(2005) and Korneva
(2008)

Eubothrium Mycoplasma specific mycoplasma
lineages have specific
adaptations for survival in
the cestode and have been
hypothesized to be
pathogenic to salmon (Salmo
solar), the cestode’s host

unknown
suggestion:
facultative
mutualism*

Brealey et al. (2022)

Shistocephalus
solidus

Chloroflexi family of bacteria bacteria are prevalent in the
microbiome of the cestode,
and were correlated with
increase in expression of
proinflammatory genes
(genes foxp3, tnfr1, cd97,
stat6 and marco)

unknown
suggestion:
facultative
mutualism*

Hahn et al. (2022)

When the nature of the symbiotic relationship was not found in the literature, a suggestion was made based on the current descriptions in the literature, and marked with * to denote that
evidence is lacking and that more studies are required.
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Kwiatkowski et al. (2012) developed a model incorporating one
microbial symbiotic species that may be antagonistic or mutualis-
tic with the parasitized host (not a component of the parasite
microbiome). The model revealed that the specificity of the alleles
was essential in determining the evolution of the host–symbiont–
parasite system, especially for antagonistic species. While such
studies are very informative, the models are highly deterministic
and consider microbial transmission mostly via perfect maternal
inheritance, with limited rates of horizontal transfer and genetic
drift (Kwiatkowski et al., 2012). Given the highly variable bacter-
iome of helminths, models with perfect maternal inheritance are
restricted to obligate mutualistic relationships, which may have an
obvious evolutionary impact, but largely exclude the dynamic
nature of the bacteriome and the role it may play in host–parasite
co-evolution.

The evolution of each bacterial lineage in the helminth’s
microbiome depends on its interactions with all other
co-occurring lineages, in addition to factors such as the life-
history traits of the helminth and the individual bacterium trans-
mission strategies. The combination of all these elements in the
parasite will interact with the same level of complexity in the para-
sitized host, creating eco-evolutionary interdependency.
Ultimately, these multi-level interactions represent a paradigm
shift in parasitology: the evolutionary arms race of parasites and
their hosts needs to incorporate the holobiome dimension, that
is, the unit formed by microbiomes and the organisms that they
inhabit (Dheilly, 2014; Theis et al., 2016).

Where to next?

Currently, partial 16S rRNA metagenomics is the most used
approach to characterize the bacteriome of helminths; it has con-
tributed to revealing that the composition of the bacteriome asso-
ciated with helminths is different from that associated with the
organisms that they parasitize (White et al., 2018; Hogan et al.,
2019; Jorge et al., 2020, 2022b, 2022c; Gobert et al., 2022; Hahn
et al., 2022), identifying vertical and horizontal transmission of
bacterial lineages among helminths (Vandekerckhove et al.,
2000; Vaughan et al., 2012; Greiman et al., 2013; Jorge et al.,
2020, 2022b; Hahn et al., 2022), and discovering pathogenic bac-
teria that use helminths as vectors (Pusterla et al., 2003; Greiman
et al., 2013; Dheilly et al., 2019a). Partial 16S sequencing has been
useful in finding bacteria that are strictly vertically transmitted
and in mutualistic associations with helminths (Greiman et al.,
2013; Martinson et al., 2020), defining a core bacteriome in a
few helminths (Sinnathamby et al., 2018; Jorge et al., 2020,
2022b), and revealing great diversity in the composition and
abundance of specific bacterial taxa (Palomares-Rius et al.,
2016; Mafuna et al., 2021). However, this approach ignores the
other components of the microbiome (e.g. viruses, protozoa and
fungi). Even for the bacteriome, there are recognized constraints
to partial 16S rRNA sequencing that mainly derive from the
short size of the DNA fragment.

The development of long-range sequencing technologies such
as Nanopore and PacBio has promoted and simplified full-length
16S rRNA gene sequencing (Callahan et al., 2019; Johnson et al.,
2019). These longer DNA fragments provide improved resolution
for bacterial taxonomic classification down to lineage levels, open-
ing possibilities such as identifying lineages on the lower side of
the divergence and abundance scale and undertaking phylogen-
etic assessments of more closely related lineages (Frank et al.,
2016; Johnson et al., 2019; Brealey et al., 2022; Luo et al.,

2022). However, microbiomes are composed of a number of non-
bacterial organisms that are excluded by 16S amplicon-based
technologies.

Amplicon-based sequencing of the internal transcribed spacer
or the 18S rRNA genes can be useful to characterize the eukary-
otic members of the microbiome, but is also limited in terms of
taxonomic resolution, is targeted to specific components of the
microbiome, and has significant challenges given the evolutionary
proximity of the eukaryotic components of the microbiome with
the organisms harbouring the microbiome (Hu et al., 2015;
Popovic et al., 2018; Campo et al., 2019). In the case of RNA
and DNA viruses, non-amplicon-based metatranscriptomics and
metagenomics are necessary, in particular for the genomic discov-
ery and characterization of highly variable viruses in the micro-
biome (Dheilly et al., 2022; Lee et al., 2022).

Moving away from targeted sequencing, long-range sequen-
cing methods have been facilitating the generation of
lineage-resolved MAGs in complex microbial communities, with
potential functional annotation of such metagenomes
(Zimmermann et al., 2020; Bickhart et al., 2022; Jin et al.,
2022). Methods such as high-fidelity sequencing can result in
continuous reads that are 10,000 base-pairs long, potentially span-
ning the full length of shorter microbial genomes (Bickhart et al.,
2022; Feng et al., 2022), and accelerating approaches such as shot-
gun metagenome profiling and the generation of MAGs.
However, metagenome profiling and functional characterization
of helminth microbiomes are currently capped by the lack of
information in databases that are directly applicable to microbial
lineages in helminths (Brealey et al., 2022), stressing the import-
ance of increasing the number of studies on this specific subject.
Given the potential redundant functions of different bacterial
lineages (Speer et al., 2020), increasing microbiome functional
characterizations will lead to a better understanding of the funda-
mental contribution of the whole microbiome to the interaction
with the parasite and with the host (fig. 2).

In parallel to functional profiling based on MAGs, metabolo-
mics approaches can provide a snapshot of the small molecules
in a system, helping characterize function and responses to experi-
mental manipulations of the microbiome (Whitman et al., 2021;
Bauermeister et al., 2022). Metabolomics combined with the
sequencing-based characterization of the components of the
microbiome can provide powerful insights into the ecological
function of microbes in association with helminths and their host.

In addition to microbiome functional descriptions, differential
abundances of individual taxa within microbial communities are
relevant to the net effect of the microbiome in the parasite–host
interaction (Reynolds et al., 2015; Gaulke et al., 2019; Poulin
et al., 2022). Increasing the number of quantitative microbiome
characterizations with techniques such as quantitative polymerase
chain reaction, flow cytometry and microbiome profiling poses its
own challenges (Galazzo et al., 2020), but is essential to advancing
our understanding of the differential prevalence and contribution
of microbial lineages to the eco-evolutionary dynamics of para-
site–host interactions. The use of fluorescence in situ hybridiza-
tion, immunofluorescence and electron microscopy to visualize
and localize larger microbial symbionts associated with helminths
is also very informative, leading to a better understanding of the
nature of the microbe–parasite association and mode of transmis-
sion (Plotnikov & Korneva, 2008; Tropini et al., 2017; Jenkins
et al., 2019; Caira & Jensen, 2021).

As sequencing costs decrease and bioinformatic resources are
further developed, a considerable methodological challenge to
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advancing research in the microbiome of helminths lies in the
input DNA requirements, in terms of quality and quantity of
DNA per sample (Petrone et al., 2022). Most new approaches
do not rely on polymerase chain reactions, which eliminates the
issue of amplification bias (McLaren et al., 2019; Petrone et al.,
2022), and facilitates the inclusion of non-bacterial components
of the microbiome. However, due to the nature of the samples
and the fact that not all microbial lineages can be cultured,
obtaining large volumes of biological material may not be viable.
Thus, for research on the microbiomes of helminths to benefit
from deeper sequencing methods and MAGs, it will be necessary
to optimize and benchmark laboratory protocols to improve the

DNA/RNA quality and quantity retained. Developing and
following best-practice guidelines, such as the recommendations
of the Parasite Microbiome Project (Dheilly et al., 2017, 2019b;
Formenti et al., 2020), will be essential to both be able to
embark on these extraordinary research avenues and to form an
active community to share experiences and move the field
forward.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0022149X23000056
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Fig. 2. Circular plot representing the diversity of functional domains and microbial taxa associated with different individual helminths of the same species in a
population. From the centre out: first layer represents data associated with the helminths (e.g. phenotypic data, here represented by arbitrary letters – A and
B); second layer represents the relative abundance of major functional domains (or gene ontology terms, such as in Ugarte et al., 2018), with different domains
represented by bars with different colours (from F1 to F7), and arbitrary functional domains named in the bottom left legend. Not all domains are necessarily
present/detected in all individual helminths, and their relative effect in each individual can be different (different height of bars); third layer represents the relative
abundance of microbial taxa (different coloured sections within a bar, arbitrarily represented in the bottom right legend) associated with each functional domain in
each individual (from F1 to F7). There is diversity in the taxa associated with each functional domain among helminth individuals, due to functional redundancy.
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