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Background Two main methods of quantifying cancer patient survival are
generally used: cancer-specific survival and relative survival. Both
techniques are used to estimate survival in a single population, or
to estimate differences in survival between populations. Arguments
have been made that the relative survival approach is the only valid
choice for population-based cancer survival studies because
cancer-specific survival estimates may be invalid if there is mis-
classification of the cause of death. However, there has been little
discussion, or evidence, as to how strong such biases may be, or of
the potential biases that may result using relative survival
techniques, particularly bias arising from the requirement for an
external comparison group.

Methods In this article we investigate the assumptions underlying both
methods of survival analysis. We provide simulations relating to
the impact of misclassification of death and non-comparability of
expected survival for cause-specific and relative survival approaches,
respectively.

Results For cause-specific analyses, bias through misclassification of cause
of death resulted in error in descriptive analyses particularly of
cancers with moderate or poor survival, but had smaller impact
in analyses involving group comparisons. Relative survival ratio
(RSR) estimations were robust in relation to non-comparability of
comparison populations for single RSR but were less so in group
comparisons where there was large variation in survival.

Conclusions Both cause-specific survival and relative survival are potentially
valid epidemiological methods in population-based cancer survival
studies, and the choice of method is dependent on the likely
magnitude and direction of the biases in the specific analyses to
be conducted.
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Introduction and relative survival. The former uses cancer-specific
Quantifying cancer patient survival is an important deaths as the end-point of interest, and patients who
but challenging task. Two main methods of survival die from other causes are considered to be ‘censored’.
analysis are generally used: cancer-specific survival The latter uses death from any cause as the end-point



2 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

of interest, and compares the observed survival with
that which would have been expected if the cancer
patients had had the same mortality rates as an
external comparison population. A number of authors
have argued that relative survival is the most, and
possibly the only, appropriate measure to use in
population-based cancer survival studies."™ The
basis for this argument is that there is likely to be
misclassification of cancer-specific deaths, resulting
in biased estimates for cancer-specific survival.
However, there has been little discussion, or evidence,
as to how strong such biases may be, or of the pos-
sible other biases that may result from the alternative
approach of using relative survival techniques.

In this article we provide an overview of the two
methods and their assumptions, with a particular
focus on the types of systematic error that may
affect each method.

At the outset, it should be noted that cancer-specific
survival and relative survival approaches are often
used in different situations and contexts. The meth-
odological issues involved will be discussed in more
detail in the rest of the article, but the general issues
should be briefly considered and contrasted here.

First, relative survival analyses are most commonly
used in ‘descriptive’, often population-based studies,
and involve estimating risks (proportions). On the
other hand, cancer-specific analyses are most often
used in etiologic, often clinical studies, and involve
using multiple regression to estimate ratios of mortal-
ity rates (hazard ratios). The aims and approaches in
these two contexts are completely different, and direct
comparisons of the two methods will suggest greater
differences than there actually are. In fact, both
methods can be effectively used in both descriptive
and etiologic studies.

Secondly, although in principle both methods are
aiming to measure the same underlying construct,
i.e. net cancer survival, they are, in fact, measuring
slightly different things. Cancer-specific survival
measures deaths that are identified as due to a
specific type of cancer. Therefore, an explicit decision
has to be made for each death whether it was fully
attributable to the cancer or not. Some deaths are
clearly related to the cancer in question, and assum-
ing correct diagnosis and coding, will be identified as
such. These should include deaths directly related to
treatment for the cancer. We have referred to these as
cancer-specific deaths (Figure 1). For other deaths,
the cancer will be a contributing factor, but may not
be wholly responsible for the death. It is therefore
problematic to identify and assign these deaths to
being (entirely) cancer specific or not. The line
between cancer-specific and cancer-consequent
deaths is a matter of judgement and interpretation.

Relative survival, in contrast, aims to measure
deaths that are in excess of what would be expected
for the study population if it did not have cancer.
There is no need for differentiation between

Cancer-specific deaths
(i.e. coded specifically as due
to the diagnosis cancer)

Cancer-consequent deaths
(e.g. pneumonia following lung
cancer lobectomy; suicide
following cancer diagnosis)

Other deaths

(i.e. unrelated to the cancer
diagnosis, and ‘expected’ in
absence of cancer diagnosis)

Figure 1 Categories of death relevant to cause-specific and
relative survival/excess mortality estimation of survival

cancer-specific  and  cancer-consequent  deaths
(Figure 1). This is the key strength of the relative
survival approach. However, although this approach
obviates the need to categorize individual deaths, it
introduces the important requirement for an external
comparison group, and the resulting assumption
that the comparisons being made are valid. These dis-
tinctions are important for understanding the assump-
tions underlying each method, and the potential biases
that may result as a consequence of them.

Cancer-specific survival (and mortality)

Cancer-specific survival analysis involves using only
deaths identified as being due to a specified cancer
as the outcome of interest. Follow-up typically starts
on the date of cancer diagnosis, and continues until
death, loss-to-follow-up or the end of the study
period. Patients who die of a cause other than the
cancer under study or who are lost to follow-up are
‘censored” at the last date on which they were known
to be alive. The survival for a given time period can be
calculated directly using standard methods such as
Kaplan Meier.>®

Systematic error in single population
cancer-specific analyses

Table 1 summarizes the main possible sources of
systematic error (bias) in cancer-specific analyses
and relative survival analyses in single populations
and in comparisons of populations. Some sources of
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Table 1 Epidemiological characteristics and systematic sources of error of relative survival and cancer-specific survival

analyses

Cancer-specific survival/mortality

Relative survival/excess mortality

Two or more
sub-population
comparison
Cox proportional
hazards modelling

Single population

Cancer-specific

survival estimates (usually)

Two or more
sub-population
comparison
Excess mortality
modelling (or direct
comparison of RSRs)

Single population

Relative survival
estimates

Basic epidemiological characteristics

Comparison NA (internal Two or more
groups comparison) sub-populations with
cancer
Outcome Death due to specified Mortality (hazard) due Probability of survival of

cancer (with other
deaths censored)
censored)

Measure (of
association)

Survival proportion
(or mortality rate/
hazard)

Systematic error®

Sub-population

Selection bias” Competing risks

to specified cancer
(with other deaths

Mortality hazard ratio

Two or more
sub-populations with
cancer, (each of which
is compared with the
external population
comparison group/s)

External comparison with
general population

Excess mortality (or
RSRs) of each
subpopulation

each group

RSR (or excess Excess mortality rate

differences in bias due
to competing risks

Misclassification of
cancer-specific cause
of death

Information bias

subpopulations)

Non-differential and
differential (between

mortality rate) ratios
NA NA
NA NA

misclassification of
cancer-specific cause

of death

Non-comparability NA NA
of external com-

parison group®

The external population The bias from

may be non-comparable
(non-exchangeable) with
the cancer group. This

non-comparability of
the external
population(s) may be

of different strengths
for the sub-populations
being compared

may occur due to:

(i) inherent
non-comparability of
background mortality risk;
(ii) misclassification of
exposure (e.g. ethnicity)
in the external population
mortality rates

RSR, relative survival rate; NA, not applicable.

“The table only lists the potential sources of bias that are relatively unique to the study design under consideration. It does not list
other potential sources of bias (e.g. general selection bias, uncontrolled confounding, misclassification of ‘exposure’ (e.g. ethnicity)
on the cancer registry, etc.) that can occur in all epidemiological studies.

bMay also be thought of as a type of confounding.

error will result in bias regardless of the measure of
survival that is used (cancer-specific or relative
survival) and will not be discussed further here
(e.g. misclassification of whether death occurred, or
misclassification of the main exposure variable).
In this section we will focus on certain key biases
relevant to estimating cancer-specific survival, partic-
ularly competing risks and misclassification of cause
of death.

Competing risks

In addition to the usual possible selection biases
inherent in any observational epidemiological study,
the issue of competing risks is important for
cancer-specific survival estimation. A competing risk
is one whose occurrence either precludes or funda-
mentally alters the probability of another event
under study.” In the case of cancer-specific survival,
death from other (non-cancer) causes precludes the
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possibility of death from cancer. For this reason, those
who experience non-cancer deaths in a cancer-specific
analysis are censored at the time of death. This will
not necessarily cause bias in itself, as those who
died from other causes may have had the same
cancer-specific survival experience as those who did
not, if they had not been censored. However, bias will
occur if those who censored because they died from
other causes would have had different cancer-specific
survival than those who were not censored in this
way.® For substantial bias in cause-specific estimates
of survival to arise from competing risks, the compet-
ing risks have to be common compared with the
outcome of interest (e.g. elderly men with prostate
cancer have a high mortality from causes other than
prostate cancer); and those censored due to compet-
ing risks must have a different counterfactual risk of
the outcome of interest than the non-censored
population (e.g. men who died from other causes
would have a poorer survival from prostate cancer
than those who did not die from other causes).
Obviously, whether these two conditions are met is
highly context-specific, and further methodological
research and empirical examples of the likely magni-
tude of such biases due to competing risks is
required.” "’

Misclassification of cause of death

The most important potential source of bias in
relation to estimating cancer-specific survival is mis-
classification of the underlying cause of death.'''™'*
The underlying cause of death is defined as ‘the
disease or injury which initiated the train of morbid
events leading directly to death’.!” These, then, should
include both deaths from cancer, and from cancer
treatment. Misclassification of deaths can be usefully
considered as two issues. The first is ‘genuine’
misclassification and relates either to deaths that are
clearly due to the specific cancer or cancer treatment
but are misclassified as deaths due to other causes
(lack of sensitivity), or deaths from other causes
that are misclassified as being due to the specific
cancer under study (lack of specificity). This is a
data quality issue that can be minimized with
high-quality data.

The second issue relates to deaths that may be
consequent on the cancer diagnosis, at least in part,
but are not correctly classified as cancer-specific
deaths. For example, a distressed patient who com-
mits suicide after being informed of a diagnosis of
cancer may be appropriately classified as a non-cancer
death despite the fact that the diagnosis of cancer
may have played a role in the death.

Between these two relatively clear extremes is a
spectrum of deaths that may be more or less correctly
classified as cancer specific. Examples might include a
woman on hormone treatment for breast cancer who
dies of a pulmonary embolism or a man who has
a successful curative lobectomy for lung cancer but

who dies 2 years later from pneumonia. In these
intermediate cases the cancer is likely to have contrib-
uted to the death to some extent, but it is impossible
to accurately ascribe such individual deaths as being
wholly cancer specific or not. This is not a data
quality issue, but a conceptual issue, and is repre-
sented by the dashed line separating cancer-specific
and cancer-consequent deaths in Figure 1. Evidence
relating to this issue is reflected in studies which
show that even when all available data are known
to both clinicians and pathologists, there can be dis-
agreements between them as to the underlying cause
of death.'

Several studies have attempted to estimate the
extent to which deaths directly attributable to
cancer therapy have been misclassified as non-cancer
related. For example, Welch and Black'” argued that
up to 41% of cancer deaths that occurred within the
immediate post-treatment period were not counted as
such. Nevertheless, the impact of this issue on 5-year
survival estimates may not be that great, with studies
suggesting a 2-7% underestimate of cancer mortality
as a result.'”'®

Potential biases introduced by misclassification of
cause of death will be affected both by data quality,
and by the conceptual issue of ‘cancer-consequent’
deaths. However, the empirical evidence relates to
the former, and so in the rest of this section, we
will leave aside the latter issue of ‘cancer-consequent’
deaths.

It is also noteworthy that some cancer registries may
not have access to data on specific cause of death, and
therefore cancer-specific survival cannot be calculated.
Nevertheless even registries that do have such data
are dependent on the quality of the death data
available to them. A few studies have attempted to
determine the sensitivity and specificity of routine
death data. However, this is complicated by the fact
that accuracy of death data varies depending on a
range of factors such as the level of diagnostic
detail, the ‘gold standard’ against which death certif-
icate data are measured and hence cancer-specific
death defined (e.g. autopsy or medical notes
review), and the level of clinical certainty underlying
specific diagnoses. The quality of data is also likely to
vary over time, place and possibly social grouping.'*'®
Several authors have shown that death certificate
classification of cause of death may be more accurate
for cancer than for some other causes of death, at
least at a major diagnostic grouping level.'®'*?° For
example, Goldacre?® found that cancer fell into a
category of conditions that when present at death
were usually entered as the underlying cause of
death.

Although the quality of mortality data is invariably
cited as the main reason for the preference of relative
survival over cancer-specific survival in population
level studies, the impact of the quality of these data
on cancer-specific survival is rarely (if ever) assessed.



Table 2 Estimated 5-year cancer-specific survival rates for
varying levels of misclassification of cancer, and non-cancer
deaths for cancers with good, moderate and poor survival,
assuming a fixed mortality rate (2.3% per year) from
non-cancer causes over the follow-up period

Sensitivity (%) _ Specificity (%)
100 90 80

5-year cancer-specific survival

Good survival 100 0.79 0.78 0.77
90 0.81 0.80 0.79
80 0.83 0.82 0.81
Moderate survival 100 048 048 047
90 0.52 051 0.51
80 0.56 0.55 0.55
Poor survival 100 0.16 0.15 0.15
90 0.19 0.19 0.19
80 0.23 0.23 0.22

The bold estimates are the true 5-year cancer-specific survival
rate.

Table 2 shows estimated 5-year cancer-specific
survival rates for rates of misclassification of cause
of death of up to 20% for cancers with good (79%),
moderate (48%) and poor (16%) 5-year survival. We
have assumed that all deaths are reported, but that
there is a variable level of misclassification of cause of
deaths, i.e. that misclassification occurs for cause of
death, but not for the occurrence of death itself.
Sensitivity and specificity refer to the proportion of
cancer and non-cancer deaths, respectively, that are
recorded as such. Thus, for example, a sensitivity of
90% means that 10% of cancer deaths are counted as
deaths from other causes, whereas a specificity of 90%
means that 10% of deaths from other causes are
misclassified as cancer deaths. We have also assumed
the majority of cancer deaths occur in the first 2 years
of follow-up and that there is a constant rate of death
from other causes (2.3% per year) over the follow-up
period. The ‘true’ estimate is shown in bold.

Misclassification of cause of death had little impact
on estimates of survival for a cancer with good
survival with estimates ranging from 0.77 to 0.83
for a cancer with a true 5-year survival rate of 0.79.
The effect of misclassification was stronger for cancers
with moderate or poor survival. In the former
situation, the range of estimates was 0.47-0.56 for a
cancer with a survival rate of 0.48, and in the latter
the estimates ranged from 0.15 to 0.23 with the true
survival rate being 0.16.

The biased estimates in Table 2 were 1.3-19%
different from the true estimates, depending most
importantly on the underlying survival rate of the
cancer. For a cancer type with good 5-year survival,
even with 20% misclassification of cause of death, the
biased estimate was <4% different than the true
estimate. Currently, there is very little information
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available on the extent of misclassification of cause
of death. In countries with good cancer registration
and death registration systems, it might be reasonable
to expect that the sensitivity and specificity of
cancer-specific cause of death on death certificates
to be >90%—especially for aggregated groupings
(e.g. studying colorectal cancer rather than studying
colon and rectal cancer separately).'* In this situation,
the bias from misclassification of cause of death
would be less than the estimates shown in Table 2.

Systematic error in comparing sub-population
cancer-specific mortality rates

Cancer-specific mortality rates are usually compared
using maximum likelihood techniques that are used
to estimate the hazard ratio (i.e. the mortality rate
ratio) for an ‘exposed’ group (e.g. patients with
late-stage disease, or patients in a particular ethnic
group) compared with an ‘un-exposed” group
(e.g. patients with early-stage disease, or patients in
other ethnic groups) while adjusting for potential
confounders (e.g. age, gender, socio-economic status,
smoking). In this context, the most commonly used
method is the Cox proportional hazards model, which
is directly related to other maximum likelihood
methods such as Poisson regression, and will yield
the same findings when applied in the same
manner to the same data set.’’ Note that when
patient survival is modelled using multiple regression
it is wusually mortality (hazard) rates that are
modelled—not survival itself.

Selection bias

In the previous section we discussed the issue of
competing risks for cancer-specific survival analyses.
We now consider the same issue for comparisons
of cancer-specific mortality between two sub-
populations. If sub-populations are defined by a
factor, for example, ethnicity, that is related to
death from other causes, and if those who die from
other causes would have had a different risk of
cancer-specific death than those who did not die
from other causes, then the censoring on deaths
from other causes introduces bias. This is illustrated
in Figure 2, a directed acyclic graph (DAG),** showing
an example of competing risks whereby some third
factor ‘U’ is a cause of both other mortality (D,)
and cancer-specific mortality (D.). The subgroups
being compared are ethnic groups (E), and ethnicity
has no direct causal association with cancer-specific
death but is a cause of deaths from other causes
(other mortality). These deaths from other causes
are censored, i.e. the analysis is censored on D,;
however, D, is a collider with both ethnicity and the
unknown third factor (U) as parents. Conditioning on
D, will therefore cause a spurious association of E and
D.. In other words, if ethnicity is a cause of deaths
from other causes, and people who die of other causes
would have had a different cancer-specific mortality
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U

Figure 2 Directed acyclic graph showing potential bias due
competing mortality risks when comparing cancer-specific
mortality rates between ethnic sub-populations.

E, ethnicity; D¢, cancer-specific mortality; Do, other
mortality; U, unknown common causes of Dy and

D¢; conditioning on censoring (because of other mortality)
introduces a spurious association between ethnicity and
cancer-specific mortality, because those who are censored
have different cancer-specific mortality compared with those
who are not, and ethnicity is a risk factor for mortality from
other causes, which results in censoring

rate, then the censoring on deaths from other causes
introduces bias due to competing risks. Further meth-
odological research is required to assess the likely
magnitude of such bias under plausible scenarios.

Information bias

When cancer-specific mortality rates are compared
using multiple regression techniques such as Cox
proportional hazards modelling, the bias due to
misclassification of cause of death may not be partic-
ularly strong provided that misclassification is
non-differential. Furthermore, when exposure is
dichotomous, the bias in the estimated hazard ratio
will always be towards the null value of 1.0.

Table 3 presents simulations comparing the hazard
ratios of the poor, moderate and good survival groups,
where the mortality hazard of each of these three
separate groups has been back-calculated to be
consistent with 5-year survival reported in Table 2
(using the exponential formula linking rates and
survival proportions).”* The simulated hazard ratios
are presented for non-differential misclassification
only (i.e. with the same sensitivity and specificity
between poor, moderate and good survival groups).
Under the scenarios shown, the hazard ratio was, at
most, biased by 11% to the null when comparing
moderate with good survival with 80% sensitivity
and specificity (i.e. a shift from the true
moderate:good hazard ratio of 3.12 to 2.88).

The greater concern in cancer-specific analyses is
bias resulting from differential misclassification of
cause of death. This situation is illustrated in
Figure 3, where ethnicity is a cause of misclassifica-
tion of cause of death; thus, in this hypothetical
example, ethnicity is not associated with true
cancer-specific mortality (provided that the analysis
is adjusted for confounders such as age, gender and
stage at diagnosis), but it is associated with
‘measured’ cancer-specific mortality.

Table 3 Hazard ratios assuming non-differential
misclassification bias of cause of death

Specificity (%)
100 20 80

Sensitivity (%)

Moderate® vs good® 100 3.12  3.02 292
survival 90 3.11  3.00 2.90
80 3.11 299 2388

Poor vs moderate 100 255 253 251
survival 90 254 252 249
80 253 250 248

Poor® vs good 100 7.96 7.63 7.33
survival 90 7.92 756 723
80 7.88 748 7.13

“Five-year survival proportions of 0.79, 0.48 and 0.16 for
good, moderate and poor survival, respectively, as shown in
Table 2, but with back-estimated mortality hazard rates for
the simulation (see text).

The bold estimates are the true hazard ratios.

E\

Dc*

Dc

Figure 3 Directed acyclic graph showing potential bias due
to differential misclassification of cancer-specific mortality
when comparing between ethnic sub-populations. E, ethni-
city; D¢, cancer-specific mortality; Dc*, measured
cancer-specific mortality. There is a spurious association
between ethnicity and measured cancer-specific mortality,
because measurement error of cancer-specific mortality is
associated with ethnicity, and affects the measured
cancer-specific mortality

There is some evidence that this may occur, for
example, it has been suggested that quality of death
certificate data may vary systematically between
socio-economic groups.'® In this situation, the bias
can be either towards or away from the null value.
Table 4 shows simulated hazard ratios for the most
extreme combinations of 80 or 100% sensitivity
and specificity, and using the moderate and good
survival groups as comparison groups. There is now
a considerably larger range of observed hazard ratios
from 2.26 to 4.02 given the true hazard ratio of 3.12,
and these can be biased either towards or away from
the null value.

In summary, provided that it can be reasonably
assumed that misclassification of cause of death is
non-differential, such misclassification is a relatively
minor concern in cancer-specific analyses comparing
subgroups, when compared with all of the other
sources of bias such as uncontrolled confounding
and misclassification of exposure (which apply to



Table 4 Hazard ratios assuming differential
misclassification bias of cause of death

nffé?r)a(t)za Se/Sp of good® survival groups (%)
survival

group (%)  100/100  100/80  80/100  80/80

100/100 3.12 2.83 3.89 3.12

100/80 3.22 2.92 4.02 3.22

80/100 2.49 2.26 3.11 2.49

80/80 2.59 2.35 3.24 2.59

“Five-year survival proportions of 0.79 and 0.48 for good and
moderate survival, respectively, as shown in Table 2, but
with back-estimated mortality hazard rates for the simulation
(see text). The bold estimate is the true hazard ratio, and the
estimate in italics shows the hazard ratios under non-
differential misclassification bias as shown in Table 3.

both sets of techniques). However, if there is reason
to suspect that there is considerable differential mis-
classification of cause of death, the estimated hazard
ratios should be interpreted with caution, and ideally
the likely extent and direction of information bias
should be estimated.

Relative survival (excess mortality)

In relative survival analysis the survival of a cohort
with cancer is compared with that of an external
comparison group without cancer (usually the general
population).”> The difference between the two is
assumed to be due to cancer-related deaths in the
first group, that is the sum of the ‘cancer-specific’
and ‘cancer-consequent” deaths in Figure 1.

Survival probabilities (risks) in the cancer and
comparison groups are compared for regular time
intervals from the point of origin (the date of diag-
nosis in the cancer group). Cumulative expected
survival is calculated using population life tables
usually matched to the cancer cohort by age, sex
and calendar year, to estimate the probability of
survival for the comparison group. There are several
approaches to estimating expected survival, the most
common of which are the Ederer I and 11**** and the
Hakulinen methods.?* The difference in estimations of
cumulative expected survival using these approaches
is minimal in many situations, and will not be
discussed further here. For each time interval an
RSR (strictly speaking, a ratio of two proportions) is
calculated. The probability of surviving until the end
of that interval in the cancer group is divided by the
probability of surviving until the end of that interval
for the external comparison group. The (usually)
lower survival in the cancer group is assumed to
reflect cancer-specific deaths in this group.
Alternatively, rather than taking the ratio of the two
survival proportions, the risk of death (cumulative
mortality) in the cancer group can be compared
with that in the general population group, and the
excess mortality in the cancer group can be estimated.
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Systematic error in single population relative
survival estimates

The main sources of systematic error in the calcula-
tion of relative survival and excess mortality are
summarized in Table 1. For relative survival analyses
we do not have to differentiate between cancer-
specific mortality and cancer-consequent mortality.
The most important source of bias specific to relative
survival analysis is the potential for lack of compar-
ability between the cancer group, for whom observed
survival is calculated, and the external comparison
group, which is used to calculate expected survival.

Non-comparability between observed and expected
mortality

The assumption of comparability will be invalid if a
factor that influences mortality from other causes is
distributed differently between the cancer and the
external comparison group, i.e. if the external com-
parison group does not provide a valid estimate of the
expected mortality (in the absence of cancer) in the
cancer group. For example, Baade et al. found that
patients with melanoma had a reduced risk of
non-cancer death. They postulated that this might
be because melanoma is more common among
more-affluent people, who tend to have better
health.?® If this is correct, then using general popula-
tion background mortality rates to estimate relative
survival among melanoma patients will underestimate
their expected survival and therefore overestimate
their relative survival.

Patients with smoking-related cancers such as lung
cancer will have a notably higher tobacco exposure
compared with the general population, so their risk
of death from other tobacco-related conditions will be
considerably greater."?” There are a number of other
factors that are associated with cancer and also
increase the risk of other diseases including obesity,
physical activity and diet,”*>? and might potentially
cause bias in the RSR calculation in the absence of
comparable life tables.

There are few studies that have investigated the
issue of non-cancer deaths among cancer patients.
Brown et al.'® found that cancer patients had consid-
erably higher mortality rates from non-cancer causes,
but were unable to establish whether this was due to
miscoding of deaths or to a higher risk of other
deaths among cancer patients. More recently, Baade
et al*® found that cancer patients in Australia had
50% higher background mortality than the general
population, but that this varied considerably by
cancer type. So, for example, melanoma patients actu-
ally had significantly reduced background mortality,
whereas lung cancer patients had 400% higher
background mortality than the general population.
Of note is that in order to make these estimations,
the authors were dependent on accurate cause of
death data. It is likely that there was some misclassi-
fication of cancer-related deaths as non-cancer
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Table 5 Estimated 5-year RSRs and excess mortality rate ratios for varying ratios of background mortality rates for ‘cancer’
compared with ‘non-cancer’ cohort for cancers with good, moderate and poor survival, assuming cohorts with identical
age structure and a fixed mortality rate from non-cancer causes over the follow-up period

Background mortality Ratio of background
mortality in ‘cancer’
cf ‘non-cancer’

rate in ‘non-cancer’
and ‘cancer’ cohorts

Excess mortality
rate ratio compared
with ‘moderate

Excess mortality
rate ratio
Relative compared with

per year cohorts survival ‘good survival’ survival’
Good survival 0.023; 0.023 1.0 0.79 - -
0.023; 0.025 1.1 0.78 - -
0.023; 0.027 1.2 0.77 - -
0.023; 0.034 1.5 0.75 - -
0.023; 0. 046 2.0 0.70 - -
Moderate survival 0.023; 0.023 1.0 0.48 3.12 -
0.023; 0.025 1.1 0.48 3.02 -
0.023; 0.027 1.2 0.47 2.90 -
0.023; 0.034 1.5 0.45 2.69 -
0.023; 0.046 2.0 0.43 2.42 -
Poor survival 0.023; 0.023 1.0 0.16 7.98 2.56
0.023; 0.025 1.1 0.15 7.62 2.53
0.023; 0.027 1.2 0.15 7.30 2.52
0.023; 0.034 1.5 0.15 6.57 2.44
0.023; 0.046 2.0 0.14 5.61 2.32

The bold estimates are the true RSRs and excess mortality rate ratios.

deaths, so the latter may have been inflated. However,
the authors proposed that only a small proportion of
the excess mortality was likely to be related to treat-
ment, and the remainder was likely to be due to
cancer patients having different demographic charac-
teristics (such as socio-economic and ethnic differ-
ences) and a higher prevalence of risk factors (such
as smoking) associated with both cancer and other
causes of death than the general population.

Conversely, in the calculation of RSRs, the external
comparison population is assumed to be free from
cancer, allowing the assumption that any excess
mortality among the cancer patients is, in fact, due
to cancer. In practice, the comparison group is usually
a population that includes some patients with the
cancer in question. However, because cancer is a
rare outcome in the general population, this effect is
very small, and of little practical importance.®

There is relatively little quantitative information on
the actual size of this non-comparability bias in
specific studies. We have calculated 5-year relative
survival estimates for hypothetical cancer cohorts
using the same scenarios as for the cancer-specific
survival simulations (Table 5). We have assumed the
cancer and comparison groups are identical in all
respects apart from the excess mortality due to
cancer in the former group. Non-cancer mortality is,
as previously, constant throughout the follow-up
period for the initial calculation of RSRs, with the
timing of the deaths being identical to the previous
example. In our simulations we have then assumed

that the non-cancer mortality rate among those with
cancer is, in fact, higher than those without by
specified ratios (1.1, 1.2, 1.5, 2.0). We have then
recalculated the RSR using the observed survival,
including the higher mortality rate from other
causes among the cancer group, and the original
expected survival from the comparison group, as
would occur in real-life situations. Table 5 shows
the results. When the background mortality for the
cancer and comparison groups is identical, we
obtain precisely the same findings as for the unbiased
cancer-specific survival estimates (Table 2). As the
background mortality increases among those with
cancer, the relative survival estimates are progres-
sively underestimated (Table 5). If we assume that
the background mortality for cancer patients is 50%
higher than that of the general population,?® the
relative survival estimates are biased downwards by
~5%. However, given that Baade et al.*® found that
there is considerable variability in background mortal-
ity rates among patients with different cancer types,
this bias may vary in importance with cancer type.

Systematic error in comparing

sub-population relative survival

Relative survival estimates are often used to monitor
population survival rates, and so direct comparisons
between relative survival in different populations
may be made. Although such comparisons are also
theoretically possible with cancer-specific survival



rates, it is less commonly done. This is partly because,
particularly in cross country comparisons, it is likely
that cause-of-death data will vary systematically
between regions and countries introducing differential
misclassification bias. For this reason we will first
discuss computational issues relating to direct
comparisons of RSRs and to excess mortality rate

modelling, before returning to the consideration
of potential sources of bias relevant to both
approaches.

Computational issues: direct standardization and
excess cancer mortality analyses

When comparing relative survival in two populations,
or sub-populations, two potential methods are
available to control for potential confounders: direct
standardization and excess mortality modelling.

When direct comparisons are made between
RSRs, age (and possibly sex) standardization is
likely to be required because survival rates may
differ by such factors, and they may also vary
between the comparison populations. Standardi-
zation enables a comparison of RSRs, which is
unbiased with regards to the factors that have been
standardized on. There are various approaches
used to age standardize RSRs and these are summar-
ized elsewhere *>?*

The techniques used in standardization of RSRs are
analogous to those used for direct standardization of
cancer incidence rates, and therefore carry the same
advantages and disadvantages. In particular, directly
standardized incidence or survival rates have the
advantage that they can be compared across popula-
tions provided that the same standard population
distribution has been wused in each instance.
However, directly standardized incidence or survival
rates have the disadvantage that they are highly
unstable when there are small numbers in particular
strata (e.g. an age—gender—stage strata).*? This prob-
lem is overcome by using excess mortality modelling
with maximum likelihood methods of estimation.

Excess mortality is the difference between the
observed all-cause mortality of the cancer patients
and the expected mortality estimated from the com-
parison group. Excess mortality models subtract the
latter estimates from the former to estimate the
excess mortality rate. Modelling excess mortality
allows assessment of the effect of multiple variables
on excess mortality (and therefore survival).
Cox regression used in cause-specific survival and
Poisson regression used in excess mortality modelling
are very similar, with the only difference being that
follow-up time is treated as a continuous variable in
the former, in the latter it is categorized into discreet
time units (e.g. person-years or person-months).>>’
Both methods are statistically robust and not subject
to the same problems of instability as standardized
RSRs.
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Non-comparability between observed and expected
mortality

Whichever computational methods are used, bias
may occur in comparisons of relative survival in
sub-populations if the observed and expected mortal-
ity for each sub-population are not comparable. This
situation is shown in Figure 4. This differs from
Figures 2 and 3 in which the outcome under study
was cancer-specific mortality. In Figure 4 the outcome
is excess total mortality (i.e. the observed mortality in
the cancer patient group minus the mortality expected
on the basis of the mortality rates in the external
comparison group). In this hypothetical example,
ethnicity is not a cause of excess mortality from any
cause (cancer-specific, cancer-consequence or other
mortality), but is associated with measured
excess other mortality. In this situation, exposure
(e.g. ethnicity) will show a spurious association with
measured excess total mortality. This problem of
measurement error for expected mortality can occur
for two main reasons: (i) the external comparison
group is non-comparable (non-exchangeable) and is
therefore not appropriate for estimating expected
mortality in the cancer group; or (ii) exposure
(e.g. ethnicity) is not classified in the same way in
cancer registrations and national mortality rates, and
the external comparison mortality rates are therefore
invalid. We will consider each of these two issues
in turn.

Non-comparability of the cancer group and the
external comparison group

As noted above, for comparisons of RSRs in sub-
populations, it is important to ensure that the

E EM

EMcc EM*

EMy

l

EMo*

Figure 4 Directed acyclic graph showing potential bias due
to measurement error of expected mortality after comparing
ethnic sub-populations. E, ethnicity; EM*, measured excess
total mortality; EMc, excess cancer-specific mortality; EMcc,
excess mortality that is a consequence of cancer, but is not
cancer specific; EMg, excess other mortality; EMg*,
measured excess other mortality. Ethnicity is associated
with measurement error for excess other mortality (which
occurs because the national death rates are not appropriate
for estimating excess mortality in the cancer patients, or
because ethnicity is not classified in the same way in cancer
registrations and national mortality rates); this biases the
association of ethnicity with measured excess mortality.
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appropriate life tables have been used, otherwise
the RSRs (the outcomes being compared) are
mismeasured—and often differentially so. For
example, Maori New Zealanders have a lower life
expectancy than non-Maori. If general population
life tables are used to calculate expected survival of
Maori patients with cancer, their expected survival is
over estimated, leading to an under-estimation of net
cancer survival and exaggerating disparities in cancer
survival between Maori and non-Maori. The most
common way of dealing with this issue is to use
sub-population specific, in this case, ethnic-specific
life tables. Examples of this approach include a
study by Dickman ef al.,> who stratified both can-
cer and comparison populations to calculate RSRs
by social class, and Jeffreys et al, who used
ethnic-specific life tables to calculate RSRs for differ-
ent ethnic groups in New Zealand.*® Table 6 shows an
example using New Zealand data for colon cancer.
The 5-year RSR was 0.42 for Maori when using
general population life tables, but it increased to
0.45 when using a Maori-specific life table. Of
course, this approach may be limited by the availabil-
ity of appropriate life tables, and may become
problematic if multiple strata are required.

Even having used the correct socio-demographic life
tables, as described above, people who develop cancer
may also have higher (or lower) background mortality
rates than the same demographic group from the
general population. Table 5 illustrates this bias for
RSRs. The last two columns of Table 5 show the
excess mortality rate ratios for the moderate and
poor survival groups compared with the good and
moderate survival groups, using the underlying
excess mortality rates for each given scenario that
are consistent with the RSRs. The simulated excess
mortality rate ratios are for scenarios where the
ratios of background mortality in the cancer and
comparison groups are the same for the compared
good, moderate and poor survival groups (i.e. non-
differential misclassification bias). This might be the
case if, for example, we were calculating mortality
ratios for regional (moderate survival) and distant
(poor survival) stage of disease at diagnosis compared
with localized stage (good survival). In this scenario,
there is notable underestimation of the excess mortal-
ity rate ratios. For example, if even after using the
correct subpopulation population mortality rates the
‘other’” mortality among the cancer patients was
actually 2-fold greater than that in the equivalent
subgroup in the general population, the excess
mortality rate ratio was underestimated by 33% for
the moderate compared with good survival groups
(i.e. a shift in excess rate ratio from 3.12 to 2.42).

In excess mortality models, variables that are
associated with excess mortality only through their
association with the observed survival among the
cancer patients, particularly cancer-related variables
such as grade of cancer, can be adjusted for fully

Table 6 Five-year survival data by age for Maori and non-Maori patients with colon cancer diagnosed between 1994 and 2002

Non-Maori

Cumulative Cumulative Cumulative

All

Maori

Cumulative Cumulative Cumulative

of
cases

No.

b
(RSR)
0.64
0.60
0.61
0.60
0.60

0.61

So/Se

(RSR)

expected Cumulative Cumulative
So/Se®

survival
(Se)®

expected
survival
(Se)®

observed
survival
(So)

of
cases

No.

b

(RSR)
0.58
0.40

So/Se
0

(RSR)

expected Cumulative Cumulative
So/Se®

survival
(Se)®

expected
survival
(Se)*

observed
survival
(So)

of

No.
(years) cases

Age
group
1544
45-54
55-64
65-74
75-99

426
1105
2927
4684

0.64
0.60
0.62
0.61
0.61
0.61

0.99
0.98
0.95
0.86
0.61
0.80

0.99
0.98
0.94
0.85
0.60
0.79

0.63
0.

375
1045
2799
4586
5353

14 158

0.58
0.39
0.48
0.28
0.28
0.42

0.99
0.95
0.87
0.74
0.56
0.82

0.99
0.98
0.94
0.84
0.64
0.89

0.58
0.38
0.45
0.24
0.18
0.37

51

59

60
128

0.58

52

0.52
0.

0.32
0.32

0.

98
54
391

5407
14 549

37

0.48

45

All ages

4Using general population life tables.
bUsing ethnic-specific life tables.



(assuming no measurement error) by including them
directly in the model, just as in proportional hazards
modelling. However, factors that are associated with
both survival of the cancer patients and background
estimated survival are more challenging.

For example, suppose that an analysis involves
comparing excess mortality in patients from two
ethnic groups. Suppose also that national mortality
rates are available by age, gender and ethnicity, but
not by smoking. An excess mortality rate model
would estimate the excess mortality separately for
each age—gender—ethnicity group, and then addition-
ally adjust for smoking in a multiple regression
model. For example, we may wish to investigate
survival disparities between Maori and non-Maori
patients with lung cancer. Because smoking rates
are higher among Maori, and cancer survival may
be lower among smokers, we would include smoking
as a covariate in an excess mortality model comparing
excess mortality between Maori and non-Maori lung
cancer patients. In doing so we would aim to adjust
for any difference in prevalence of smoking among
Maori and non-Maori lung cancer patients, and the
impact of that on excess mortality. However, given
that a higher proportion of Maori smoke in the gen-
eral population, and that smokers have a lower life
expectancy from causes other than lung cancer, the
smoking variable will capture both the impact of
smoking on survival from the given cancer and
the misclassification bias in background estimated
mortality arising from not have smoking specific life
tables. Thus, although factors such as smoking can be
included directly in the excess mortality rate model,
full adjustment and correct interpretation of the
variable’s coefficient will only be possible if
stratum-specific life tables are also used to generate
stratum-specific excess mortality. Once again, the
likely magnitude of such potential biases is context
specific, and there are relatively few quantitative esti-
mates; we will be exploring this further in subsequent
publications wusing linked census-mortality data,
which includes information on smoking.

Misclassification of exposure

Two lesser, but potentially non-trivial, other misclas-
sification biases include numerator—-denominator bias
in the subpopulation life tables and misclassification
of exposure (subpopulation membership) in the
external population mortality rates. Regarding the
former, national (or regional) life tables used in
the calculation of expected mortality (or survival)
may suffer from numerator-denominator bias because
the classification of factors such as ethnicity and
socio-economic status may differ between the numer-
ator data (usually obtained from death certificates),
and the denominator data (usually obtained from
the census). For example, in the New Zealand
Census-Mortality Study, census data were linked to
mortality data allowing the extent of the
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undercounting of Maori deaths to be assessed. In
that setting, during the 1980s and early 1990s there
was undercounting of Maori deaths by about a quar-
ter.’” This means that over that time, if appropriate
adjustments were not made, expected mortality would
be underestimated and excess mortality overestimated
for Maori. This bias can be eliminated by using
mortality rates from population-based cohort studies
in which the numerator data are the same as the
denominator data, but this approach depends on
the availability of such linked cohort data, and there
are currently few examples internationally of such
data being routinely available.

Secondly, even when numerator-denominator bias
has been eliminated, bias may occur because the
classification of the ‘exposure’ of interest (e.g. ethnic
subpopulation group membership) is different in the
cancer group and the comparison group. This is likely
to be of much smaller magnitude than numerator—
denominator bias, but nevertheless is a potential
bias that should be considered. It may occur, for
example, if the quality of data on factors such as
ethnicity or socio-economic status differs between
the cancer registry and the source of the comparison
mortality rates, or simply if the questions on ethnicity
are asked in different ways in the two data sets. For
example, if socio-economic status can be measured
more accurately using information (e.g. occupation
or address) from the Cancer registry than when
using information from the Census, then the compar-
ison population mortality rates will show smaller
socio-economic differences in mortality than would
have been obtained if more accurate data had been
available. As a result, the estimates of excess mortal-
ity for a particular socio-economic group, and the
comparisons of excess mortality (or survival) between
socio-economic groups, may be biased.

Both of these potential biases resulting from
misclassification will only occur in excess mortality
(or relative survival comparisons), and cannot occur
in cancer-specific survival analyses because the latter
involve a single data set with each person having
a single classification for factors such as ethnicity.

Summary and conclusions

In summary, the main concern in cancer-specific
analyses, in addition to the wusual concerns that
apply to all observational studies, is the potential for
bias due to misclassification of cancer-specific cause
of death on death certificates. The likelihood that this
will occur will be specific to particular countries, pop-
ulations, comparisons (e.g. rates of misclassification
may differ by ethnicity but not by socio-economic
status, or vice versa), and the cancer site under
study. Thus, it is not possible to draw general conclu-
sions about how strong such biases may be, or even
in what direction they may be. However, assuming a
range of plausible values for sensitivity and specificity
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of the cause of death indicates that although this bias
might be of some concern in descriptive studies for
cancers with poor or moderate survival, its impact is
likely to be relatively small in etiological studies
where hazard ratios are calculated, unless there is
considerable differential misclassification of death
between comparison groups. Beyond issues of valid
classification of cancer-specific deaths, however,
cause-specific methods are likely to have poor validity
for analyses of cancer-consequent mortality where it
may simply be impossible to assign each death as
‘cancer-consequent’ or not.

For relative survival analyses, the main potential for
bias is in lack of comparability in ‘background’
mortality between the cancer group and the external
general population comparison group. Again, it is
difficult to draw general conclusions about the
strength and direction of these biases, but they are
more likely to be problematic for cancers for which
there are risk factors strongly associated with other
causes of death (e.g. smoking-related cancers). Our
simulations suggest that, although relative survival
estimates are reasonably robust in relation to this
bias, lack of comparability in background mortality
can result in quite considerable bias in the RSRs
when two groups with very different survival
(e.g. localized compared with regional extent of
disease) are compared.

The choice of method therefore depends on the
study objectives, the type of data available and the
appropriateness of the assumptions underlying
the two methods, particularly the availability of
accurate cause of death data for cancer-specific
analyses and the availability of an appropriate com-
parison group for relative survival analyses. In some
situations, it may be possible and desirable to apply

both methods, compare results and attempt to explain
any differences in study findings. Of note is when
such comparisons are made, the differences in
findings between different analytic approaches are
not large, but tend to vary by cancer site, stage and
underlying mortality.>®>5>°

We therefore conclude that both cause-specific
survival and relative survival are potentially valid
epidemiological methods in population-based cancer
survival studies, and that the choice of method is
specific to the population and cancer type under
study, and whether the proposed analyses are descrip-
tive or analytic. A comprehensive understanding
of the likely biases arising from each of the two
methods is necessary for appropriate study design
and interpretation of study findings.
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KEY MESSAGES

There are two main methods of quantifying cancer patient survival: cancer-specific survival and
relative survival.

The main source of bias for cancer-specific survival approaches relates to potential misclassification of
cause of death.

Our simulations for cancer-specific survival suggest that misclassification bias is likely to be
particularly of concern in descriptive studies of cancers with poor or moderate survival, but has
relatively small impact in etiological studies comparing 2 or more groups if biases are assumed to
be of similar magnitude across groups.

The main source of bias for relative survival and excess mortality approaches relates to the potential
for lack of comparability in background mortality between the cancer group and the external
comparison group/s.

Our simulations suggest that this non-comparability bias has a relatively small impact on descriptive
RSR estimations for single populations unless there are risk factors strongly associated with other
causes of death.
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