
 

 

Public Health Monograph Series 

No.25  

ISSN 1178-7139 
 

 

 

 

MODELLING OPTIONS FOR ABC-CBA 
 

 

 
Burden of Disease Epidemiology, Equity and Cost-Effectiveness 

Programme (BODE
3
) 

 

Technical Report: Number 17 

 
 

 

Giorgi Kvizhinadze 

Tak Ikeda  

Tony Blakely 

 

 

 

 

 

 

 

 

 

 

May 2012 

 

 

 

A technical report published by the Department of Public Health, 

University of Otago, Wellington 

 

ISBN 978-0-473-21124-0 

 

ABC-CBA Team* 
* Contact Professor Tony Blakely (Principal Investigator of the ABC-CBA component of the BODE

3
 

Programme, University of Otago, Wellington, New Zealand) Email: tony.blakely@otago.ac.nz  

mailto:tony.blakely@otago.ac.nz


Modelling Options for ABC-CBA 

I 

 

Acknowledgements 

We thank other BODE
3
 team colleagues for comments on early versions of this work, in 

particular Ken Richardson. We acknowledge Sophie Whyte for communications and 

prototype Metropolis-Hastings spreadsheets.  The BODE
3
 programme receives funding 

support from the Health Research Council of New Zealand (10/248).  

 

Competing Interests 

The authors have no competing interests.  

  



Modelling Options for ABC-CBA 

II 

 

Table of Contents 

Acknowledgements .................................................................................................................... I 

Competing Interests ................................................................................................................... I 

Table of Contents ...................................................................................................................... II 

List of Tables ........................................................................................................................... III 

List of Figures .......................................................................................................................... IV 

Report Objectives....................................................................................................................... 1 

1 Introduction ........................................................................................................................ 2 

2 Simple Markov model ........................................................................................................ 5 

2.1 Simple Markov model implemented in TreeAge ........................................................ 6 

2.2 Example: Colorectal cancer intervention .................................................................... 7 

2.2.1 Calculating HALYs ........................................................................................... 16 

2.2.2 Calculating costs ................................................................................................ 20 

2.2.3 Modelling heterogeneity via clones ................................................................... 25 

2.2.4 Sensitivity and uncertainty analyses .................................................................. 28 

2.2.5 Equity analysis ................................................................................................... 35 

3 More complex Markov models ........................................................................................ 38 

4 Discrete Event Simulation ................................................................................................ 40 

5 Model Calibration ............................................................................................................. 41 

5.1 Methods to solve unknown transition probabilities: Markov models ....................... 41 

5.2 Problem ..................................................................................................................... 41 

5.3 Discrete-time Markov models and calibration .......................................................... 43 

5.4 Continuous-time Markov models and calibration ..................................................... 46 

5.5 Methods to solve unknown time to event distributions: Discrete event simulation 

models .................................................................................................................................. 47 

5.6 Worked example: three-state Markov macrosimulation model ................................ 47 

5.6.1 Discrete time Markov models applied to three-state lung cancer model, using 

Metropolis Hastings and Excel Macro provided by Whyte ............................................. 48 

5.6.2 Continuous time Markov models applied to three-state lung cancer model, 

using Gibbs sampling and Kolmogorov forward equations using WinBUGS ................. 52 

5.7 Model calibration: conclusions and options for BODE
3
 ........................................... 55 

References ................................................................................................................................ 57 

Appendix One: Metropolis-Hastings Algorithm ..................................................................... 60 

Appendix Two: R Code for Metropolis-Hastings Algorithm .................................................. 61 

 

  



Modelling Options for ABC-CBA 

III 

 

List of Tables 

Table 1: The structure of background mortality rates table (numbered columns are as per 

column numbering in lookup table) ......................................................................................... 10 

Table 2: Regression model parameters used in the colorectal cancer example ....................... 16 

Table 3: Model input parameters for the colorectal cancer example ....................................... 17 

Table 4: Results of 1-Way sensitivity analysis, for all population strata combined ................ 29 

Table 5: Costs, HALYs and ICERs (median and 95% uncertainty intervals) for the analysis 

shown in Figure 8..................................................................................................................... 34 

Table 6: ICERs, IncCost and IncHALYS (median and 95% uncertainty intervals) for the 

analysis shown in Figure 8 ....................................................................................................... 34 

Table 7: Net costs, HALYs and cost effectiveness for Māori and non-Māori (Expected 

Values) ..................................................................................................................................... 36 

Table 8: ICERs, Incremental Costs and Incremental HALYs (median and 95% uncertainty 

intervals) for the equity analysis (Intervention 1 Vs Baseline)................................................ 38 

Table 9:  Example of data sets for state occurrences of model shows in Figure 11. ............... 49 

Table 10: Summary of the posterior distributions of transition probabilities p12 and p23 after 

5000 iterations (with 1000 burn-in discarded) ......................................................................... 52 

Table 11: State transition matrix showing the total number of individuals moving from state i 

to state j after 1 year ................................................................................................................. 52 

Table 12: Summary statistics of simulation results for transition rates g12 and g23, and 

transition probabilities P11 and P22 at one year and 0.083 years (one month). This includes the 

mean estimate, standard deviation, Markov chain error, median and 95% credible interval. . 55 

 

  



Modelling Options for ABC-CBA 

IV 

 

List of Figures 

Figure 1: General ABC-CBA cancer disease model, following burden of disease precedents . 3 

Figure 2: Simple ABC-CBA Markov cancer disease model ..................................................... 5 

Figure 3: Generic Markov model ............................................................................................... 9 

Figure 4: CRC model demonstrating clones ............................................................................ 26 

Figure 5: Defining strata specific parameters in nodes ............................................................ 27 

Figure 6: Parameter settings to select population groups ........................................................ 28 

Figure 7: Tornado sensitivity analysis diagram for Baseline Vs Intervention1 ICER for 

selected parameters, for all population strata combined .......................................................... 30 

Figure 8: Cost effectiveness plane scatterplot for hypothetical baseline and interventions, for 

all population strata combined ................................................................................................. 33 

Figure 9: Cost Effectiveness acceptability curve for the analysis shown in Figure 8 ............. 35 

Figure 10: ICER scatterplots for Māori and NZE, (Intervention 1 Vs Baseline) on logarithmic 

scale (cost on y scale and HALYs on x scale) ......................................................................... 37 

Figure 11: Simplified ABC-CBA four-state model. ................................................................ 43 

Figure 12: Three-state lung cancer model. All transition probabilities are time (age) 

dependent. ................................................................................................................................ 48 

Figure 13: Total sum of squared errors for the first 1000 iterations. The right plot is a cropped 

version of the left plot .............................................................................................................. 50 

Figure 14: Markov chains of parameters p12 and p23. .............................................................. 51 

Figure 15: Scatter plot of Markov chains of parameters p12 and p23 both initiated at 0.02 and 

reached convergence at around 700 iterations. ........................................................................ 51 

Figure 16: Simulation of transition rates g12 and g23, and transition probabilities P11 and P22 

based on 40000 iterations with the Gibbs sampler and Kolmogorov’s equations with state-to-

state data at 1 year. ................................................................................................................... 54 

Figure 17: Estimation of transition probabilities P11 and P22 at 1 month based on 40000 

iterations with the Gibbs sampler and Kolmogorov’s equations. ............................................ 54 

 

 



Modelling Options for ABC-CBA 

1 

 

Report Objectives 

The objectives of this report are to outline the modelling options for use in ABC-CBA, 

maintaining alignment with the BODE
3
 imperatives to be able to model population 

heterogeneity (largely for equity analyses) and to retain fidelity with New Zealand data and 

burden of disease study foundations.  This report gives ‘in principle’ options for modelling; 

all models will differ in their structure to some extent due to the nature of the intervention 

and/or research questions.  The key issues addressed include: 

 Markov models, including macro and micro-simulation variants 

 Model calibration, in particular approaches to estimating transition probabilities (or 

time to event for DES) when full data is not available. 
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1 Introduction 

The objectives of this report are to outline the modelling options for use in ABC-CBA, 

maintaining alignment with the BODE
3
 imperatives to be able to model population 

heterogeneity (largely for equity analyses) and to retain fidelity with New Zealand data and 

burden of disease study foundations.  This report gives ‘in principle’ options for modelling; 

all models will differ in their structure to some extent due to the nature of the intervention 

and/or research questions.  The key issues addressed include: 

 Markov models, including macro and micro-simulation variants 

 Model calibration, in particular approaches to estimating transition probabilities (or 

time to event for DES) when full data is not available.  

 

Figure 1 shows a stylised cancer model, building on that used in burden of disease studies 

(BDS) (Begg, Vos et al. 2007; Blakely, Costila et al. 2010).  Each cancer is assumed to have 

various states as depicted, with varying disability weights (DW; and hence quality of life) and 

duration for each state. In a New Zealand BDS, this model was used to estimate “years lived 

in disability” (YLDs) for incident cancers, once time of death was determined by a much 

simpler Markov model with just three states ([alive with cancer], [death from cancer], [death 

from other causes]) (Blakely, Costila et al. 2010). In principle it is possible to use the model 

depicted below in Figure 1 as a Markov model to estimate health adjusted life years 

(HALYs).
1
 The problem is estimating the transition probabilities between each state, in that 

data on the time dependent transition probabilities is not observed.  Rather, it is simply 

assumed retrospectively that if someone died of the cancer, they must have had some time 

prior to death in less than ideal states of terminal and pre-terminal.  There are also a range of 

other models that could be used for estimating HALYs, and the consequences of various 

interventions; this report details some of these options.  But our foremost objective is the 

specification of simple Markov models that are congruent with Figure 1 (Section 2).  

                                                 

1
 Whilst our methods originate from burden of disease methods, and one might therefore use the term ‘DALYs 

averted’, this can be confusing in that the measure is not a ‘classic’ DALY from a burden of disease study.  

Indeed, the only difference conceptually between what we estimate and a QALY from other cost effectiveness 

analyses is the use of disability weights instead of utilities.   
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Regardless of what specific disease model is used to estimate HALYs, an additional aim is to 

use sex-, age-, ethnicity-, deprivation- and stage/sub-type-specific inputs for incidence and 

survival from comprehensive baseline data assembled for BODE
3
 (Costilla, Atkinson et al. 

2011; Kvizhinadze and Blakely 2011; Blakely, Costilla et al. 2012). At a model development 

stage, we focus on monthly cycles – although we anticipate for many interventions in the 

future annual cycles may be sufficient.    

Figure 1: General ABC-CBA cancer disease model, following burden of disease 

precedents 

 

TC= total cancer duration; TDT = time in diagnosis and treatment state; TR= time in remission state; TD = time in 

disseminated state; TPT= time in pre-terminal state; TT= time in terminal state. 

 

The structure of this Report is as follows.  Section 2 outlines the simple Markov 

macrosimulation model that – with mathematical extensions – can capture the disease model 

shown in Figure 1, and satisfy the heterogeneity requirements of BODE
3
.  It is outlined as 

operationalized in TreeAge.  A generic colorectal cancer intervention is used to demonstrate 

Susceptible / 

Population

Diagnosis & Treatment

• Duration (TDT) 2-14 mth

Remission

• Duration variable: TR = 

TC – (TDT + TD + TPT + TT)

Disseminated (or 

irradically treated)

• Duration (TD)

Pre-terminal

• Duration (TPT) 3-18 mth

Terminal

• Duration (TT) 1 mth

Death from cancer

Cure

Cancer by sex, age and ethnicity (and in 

future income and sub-type/stage)

Duration (Tc) determined by time to death, 

or time to statistical cure (3 to 20 years)

Death from other causes
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the approach.  Section 3 then briefly details more complex Markov options, including 

microsimulation using Markov models.  Section 4 briefly overviews DES options, a 

modelling option we anticipate being commonly used in BODE
3
.  Finally, Section 5 outlines 

options to calibrate models with multiple states that are not fully observed, yet need transition 

probabilities specified that satisfy what is known overall about the disease.  For example, we 

may have good data or estimates on overall cancer incidence and survival (including by 

socio-demographics), but poor data on the disaggregated transition probabilities between 

disease states (e.g. remission to pre-terminal; small adenoma to large adenoma).  
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2 Simple Markov model 

We focus on a Markov model with 3 states, “Alive”, “Death from Cancer” (Dc), “Death from 

other causes” (Doc), the latter two being absorbing states. Equity will be explored initially at 

least by heterogeneity of inputs and findings across sub-populations, e.g. by sex, age and 

ethnicity.  More immediately, many evaluations will require modelling stages of cancer (i.e. 

usually SEER stage from the cancer registry) separately, as each stage has very different 

survival and stage distribution also varies by socio-demographics.  We will model their 

“experience” from the moment of diagnosis till death or the age of 110. Therefore, the 

maximum number of monthly cycles in the Markov model will be equal to 12× (110 – age at 

diagnosis). 

Figure 2: Simple ABC-CBA Markov cancer disease model 

 

 

 are calculated as follows. Suppose   and  are death rates by 

cycle (assumed 1 month) from cancer and from other causes respectively.  Then 

 is the total death rate.  Consequently total death probability is equal to: 

 

 

 



Modelling Options for ABC-CBA 

6 

 

 

 

 

 

 

A limitation of such a simplified Markov model is that it is difficult to attach heterogeneous 

and time varying effectiveness to each state for each cycle (e.g. disability weights, cost to 

health service of being in that state). Time varying effectiveness can be captured with large 

look-up tables that use the cycle number to direct which value is taken.  A more challenging 

issue, however, is estimating the HALYs from a simple Markov model given the desired 

disease model in Figure 1. 

2.1 Simple Markov model implemented in TreeAge 

In the “Cost-effectiveness” calculation mode, TreeAge allows one to assign cost and 

effectiveness to given states. There are three types of costs and effectiveness that can be 

assigned: initial, incremental and final cost and effectiveness.  A state’s initial cost and 

effectiveness (if any) is assigned only in the first cycle and only to the individuals that spend 

the first cycle in that state. The incremental cost and effectiveness is assigned in the 

subsequent cycles during the process. The final cost and effectiveness (if any) is assigned 

after the process is over to individuals ending up in that state.  For example, let the initial cost 

reward be $2000, the incremental cost reward be $1000 and the final reward be $500 for the 

state ‘alive’.  Then all people starting the model in the alive state will receive a $2000 reward 

at the end of the first cycle, and everyone in the alive state in the second cycle and beyond 

will receive $1000 per cycle.  Everyone in the alive state in the final cycle of the model 

(however long that be e.g. on turning 110 years of age in our models) will receive a $500 

reward if still alive.   
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The cohort (individual in case of microsimulation) diagnosed with cancer enters in the state 

“Alive” at “0 stage"
2
.  Everyone is alive in the cycle 1. At the end of cycle 1 (start of cycle 2) 

some portion die of cancer (i.e. jump into “Dc” state), some proportion dies from other causes 

(i.e. jump into “Doc” state), and the rest stay alive (stay in “Alive” state). The model also 

contains the state “Dead” which we use as “dummy” state to simplify calculations. In the 

Cost-Effectiveness mode each state is attributed certain costs and effectiveness of being in 

that state. Note that it is important that no one stays in “Dc” and “Doc” states longer than 1 

cycle to ensure that they generate “effectiveness” only once. This is the reason why we 

introduced the dummy state “Dead”.  

2.2 Example: Colorectal cancer intervention 

To demonstrate the modelling, and presentation of outputs, we specified up a 

macrosimulation model for colorectal cancer, for ages 50-64 years (50-54, 55-59, and 60-64), 

with further stratification by ethnicity, gender and deprivation level. This gives 36 strata in 

total (i.e. the strata over which population heterogeneity can be considered).  Baseline data 

were taken from the expected population distribution at 2011 of new colorectal cancer cases 

(i.e. from projected cancer incidence rates multiplied into projected population distribution in 

2011). Projected lifetables were used for background mortality rates (Kvizhinadze and 

Blakely 2011).  Projected excess mortality rates were used for baseline cancer mortality 

(Blakely, Costilla et al. 2012).  

Two simple interventions were simulated:  

1) Intervention that reduces cancer mortality rate by 20% with direct costs of $1000 per 

month (cycle) in the first six months; 

2) Intervention that reduces cancer mortality rate by 40% with direct costs of $5000 per 

month in first six months. 

 

The Markov node consists of 4 states, “Alive” (person is alive), “Dc” (person died from 

cancer), “Doc” (person died from other causes) and ”Out” (people are taken out of the 

                                                 

2
TreeAge has built-in counter _stage which is equal to 0 before first cycle starts. 

 
2
Different cancers are relevant to different age groups. 
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model). The number of people in each strata depend on the incidence rate and the population 

count, and the number of cycles (months) in the Markov chain depends on the age at 

diagnosis. Everyone enters the “Alive” state and during each cycle they either stay in 

“Alive”, move into “Dc” or move into “Doc”. This movement is governed by the cancer 

excess mortality and background mortality.
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Figure 3: Generic Markov model 

 

Note that there are no (i.e. zero) rewards assigned in this skeletal model.  See text for details of cost and 

effectiveness rewards.
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The background mortality rates were picked up from the lookup table bTable containing 1332 

rows and 6 columns. The first column contains the ‘true’ background mortality rates, the 

second column contains prevalent disability weights (pYLD).
3
 The third column (bmr1) 

contains background mortality rates, assuming Māori and NZE have equal rates (i.e. that of 

NZE). The fourth column (pYLD1) contains pYLDs, assuming Māori and NZE have equal 

prevalent YLDs. The fifth column (pcount) contains the population counts for specific strata. 

The sixth column contains the cancer incidence rates for specific strata. The population 

counts are derived from as follows: NZE and Māori population estimates by gender and age 

for 2011 are obtained from statistics NZ website which is the disaggregated by deprivation 

tertiles assuming proportions by deprivation for 2011 is same as proportions by deprivation in 

2006. Cancer incidence rates are obtained from (Costilla, Atkinson et al. 2011). 

 

The number of rows is derived from the combination ethnicity, gender, deprivation and age: 

1332 = 2(ethnicity) × 2(gender) × 3(deprivation) × 111(age).  The table of background 

mortality rates,  bTable, is arranged as shown in Table 1, with the first column listing 

ethnicity, the second column lists gender within each ethnicity, the third column lists three 

deprivation groupings within each gender group, final column lists age from 0 to 110 within 

each deprivation group.   

Table 1: The structure of background mortality rates table (numbered columns are as 

per column numbering in lookup table) 

Ind Ethn Gen Dep Age 1.bmr 2.pYLD 3.bmr1 4.pYLD1 5.pcount 6.irate 

1 NZE Male Dep I 0 0.003537 0.036115 0.003537 0.036115 38503.43 0 

2 NZE Male Dep I 1 0.000319 0.016217 0.000319 0.016217 38503.43 0 

112 NZE Male Dep II 0 0.004996 0.036115 0.004996 0.036115 44971.91 0 

334 NZE Female Dep I 0 0.002589 0.031375 0.002589 0.031375 36971.92 0 

667 Māori Male Dep I 0 0.003676 0.054173 0.003537 0.036115 6072.701 0 

1161 Māori Female Dep II 50 0.004138 0.128812 0.002033 0.085875 5821.465 36.0218 

1332 Māori Female Dep 

III 

110 

1.110239 0.586897 1.019883 0.391265 139.8305 380.728 

                                                 

3 pYLDs are prevalent YLDs.  They are sourced from a burden of disease study, and are the average morbidity in the 

population, by sex, age (and possibly ethnicity and deprivation).  That is, they are the average DW across all prevalent 

diseases for the given socio-demographic strata.  The reason for including pYLDs in the modelling is that 1 minus pYLD is 

the total envelope of good health that can be enjoyed (on expectation) for any given strata, and as populations age this 

become considerably less than perfect (i.e. < 1). 
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In order to pick up the appropriate background mortality rates (bmr column) from the table 

bTable, we construct the function    First, let us define the following variables: cycle, 

i_ethn, i_gen, i_dep. 

The text in bold italics equates to TreeAge inbuilt functions. e.g. _stage, the text in italics are 

the variables introduced by the modeller. 

 

Where _stage is TreeAge inbuilt stage counter starting from stage 0, hence cycle becomes the 

cycle counter starting from 1.  

 

i_ethn is the increment of the index in the table bTable when ethnicity is Māori. 

 

i_gen is the increment of the index in the table bTable when gender is female. 

 

i_dep is the increment of the index in the table bTable corresponding to deprivation. 

Then, in the Markov nodes we define the function ind which returns index for given 

ethnicity, gender, deprivation, age and cycle. We use TreeAge integrated Python programing 

language to define ind: 

def ind(cycle,age,i_dep,i_gen,i_ethn): 

                          return 1+age+int((cycle-1)/12)+i_dep+i_gen+i_ethn 

(  in TreeAge is an inbuilt function which returns the integer part of number). 

For example, the index of Māori/female/deprivation 4-7/ age=47 in  is calculated as 

follows 
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Note that in Table 1 the age value is 50 which is exactly how old 47 year olds will be after 44 

cycles (months). Also after 44 cycles the calendar year will increase by 3.    

As life expectancy increases into the future, and mortality rates fall, we therefore incorporate 

projected future mortality rate decline in the Doc transition probabilities.  As this reduction is 

assumed to the same percentage by calendar year (1.75% per year for non-Māori, 2.25% for 

Māori, up to 2026; then 1.75% per year for both ethnic groups beyond 2026), it is equivalent 

to discounting the background mortality rates. Therefore, the background mortality rates for a 

given ethnicity, gender, deprivation, age and cycle is equal to:   

.  

In other words, the value from the table bTable row equals to  and the column equals to 1 

is reduced by  over the time equal to  The calendar year of 

diagnosis is incorporated in the following equation : The background mortality rate in the 

given calendar year of diagnosis for the given ethnicity, gender, deprivation, age and cycle is 

equal to: 

 

(  is the way to call Python defined function`s, 

, value for arguments  ). 

Again  is defined in the Markov nodes,  is a yearly reduction in background 

mortality rate equal to 1.75% for NZE and 2.25% for Māori respectively.  Note that from 

2026 we assume the Māori rate reduction switches to that of non-Māori. 

 

 

 is a TreeAge function that returns the discounted value of  with a 

discount rate over time . Inner  in the formula assures that after every 12 

cycles, the background mortality rate is reduced by , regardless of the calendar year 

of diagnosis. Outer  takes into account the effect of calendar year of diagnosis. 
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So  returns the background monthly mortality rate for a given calendar year, ethnicity, 

gender, deprivation, age and cycle. 

Other important variables that use the function  are  and . The function 

, population count for specific strata, is defined as follows: 

 

The function , the cancer incidence rate for specific strata, is defined as follows: 

 

Finally we define the function , which calculates the number of cancer cases in the 

given strata. 

 

 The functions , , and   are defined in the Markov nodes,   is 

assigned as a transition probability from the Markov node to the state “Alive”.   

The variable  is the excess mortality rate as a function of strata defining socio-economic 

indicators. Poisson and Negative Binomial regression models were used (Atkinson, Blakely 

et al. 2012; Blakely, Costilla et al. 2012) to predict cancer excess mortality rate for given 

calendar year, ethnicity, gender, deprivation, age and cycle (follow up time).  Cubic splines 

were used to obtain predictions for continuous follow up time. The reference strata in the 

regression models is NZE/Male/Deprivation1-3/Age group 40-45/calendar year 2011. We 

used the regression equations within TreeAge rather than using large lookup tables. These 

calculations require introduction of regression model parameters from the excess rate 

modelling, defined in the Markov node.  They are, main effects: r_Māori, r_female, 

r_dep4_7, r_dep8_10, r_diagnyear, r_ag45_54, r_ag55_64, r_ag65_74, r_ag75_110, 

interactions: r_int_65_74_firstyear, r_int_65_74_secondyear, r_int_75_110_firstyear, 

r_int_75_110_secondyear. We use 3 interior knots for cubic splines, (5 including exterior 

knots), r_k1 (lower exterior knot, always corresponds to one month after diagnosis), 

r_k2,r_k3,r_k4, r_k5 (upper exterior knot, always corresponds to statistical cure time). Three 

interior knots requires 5 coefficients (including the slope, constant) r_const, r_endb1,  

r_endb2,  r_endb3, and  r_endb4. 
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The cubic spline also require 4 basis functions r_z1, r_z2,  r_z3,  r_z4.  They are defined in 

the root node CRC as follows: 

 

 

 

 

 

We then introduced auxiliary parameters     in the Markov node, 

defined as follows: 
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In the Markov nodes we define the function which calculates the predicted excess mortality 

rate for given strata. Suppose  is a statistical cure time, that is the time after which, by our 

assumption, excess mortality rate becomes 0, then:  

  

 

The next step is to define transition probabilities from “Alive” state to “Dc” and “Doc” states 

in the Markov nodes, denote these probabilities with  and  respectively. 

 

 

 

Where  is TreeAge function that returns probability over time  when the 

rate is equal to  and  is parameter which incorporates an effect size for the intervention. 

(We discuss these parameters later).  The parameters, variables and functions described above 

are equivalent to parameters used to populate multistate life tables. In the following 

paragraph we introduce parameters, variables and functions that are used to calculate 

effectiveness (HALYs).  

  



Modelling Options for ABC-CBA 

16 

 

  Table 2: Regression model parameters used in the colorectal cancer example 

Parameter Description Value 

r_const Coefficient  -1.086 

r_endb1 Coefficient  -1.199 

r_endb2 Coefficient  -0.218 

r_endb3 Coefficient  0.198 

r_endb4 Coefficient  -0.074 

r_k1 Position of first knot 1/12 

r_k2 Position of second knot 1.6666 

r_k3 Position of third knot 3.3333 

r_k4 Position of fourth knot 5.4166 

r_k5 Position of fifth knot 8 

r_diagnyear Year of diagnosis effect -0.009 

r_Māori Ethnicity effect 0.435 

r_female Sex effect -0.067 

r_ag45_54 Age group 45-54 effect 0.183 

r_ag55_64 Age group 55-64 effect 0.171 

r_ag65_74 Age group 65-74 effect 0.124 

r_ag75_110 Age group 75+ effect -0.025 

r_dep4_7 Deprivation 4-7 effect 0.059 

r_dep8_10 Deprivation 8-10 effect 0.071 

r_int_65_74_firstyear 

 

Interaction of age group 65-74 

with 1st  year of diagnosis 

0.071 

r_int_65_74_secondyear 

 

Interaction of age group 65-74   

with 2nd year of diagnosis 

0.215 

r_int_75_110_firstdyear 

 

Interaction of age group 75+ 

with 1st year of diagnosis 

0.586 

r_int_75_110_secondyear 

 

Interaction of age group 75+ 

with 2nd year of diagnosis 

0.359 

 

2.2.1 Calculating HALYs 

The first set of parameters we introduce in this section are disease model parameters or model 

structure parameters (Table 3).  Times spent in health states: T_T, T_PT, T_DT and T 



Modelling Options for ABC-CBA 

17 

 

(already introduced in the previous section) times in terminal, pre-terminal, diagnosis & 

treatment, statistical cure time respectively.  Disability weights associated with these health 

states DW_T, DW_PT, DW_DT, DW_R, are disability weights in terminal, pre-terminal, 

diagnosis & treatment and remission states respectively.  All these parameters are defined in 

the CRC node.  In calculating HALYs we assume that everyone is awarded HALYs by cycle 

as if they are going to survive the cancer.  That is we assume that they get utilities 

corresponding to the diagnosis & treatment state within T_DT months after diagnosis, then 

they get utilities corresponding remission state for all following months until statistical cure 

time T (or death from another cause). If they die from cancer, however, we modify the 

HALYs given. Namely we add HALYs assuming the last month was spent in the terminal 

state and T_PT months were spent in pre-terminal state before terminal state and subtract 

HALYs for previous T_T+T_PT months while assuming that they were going to survive. 

Those who die from background mortality we award survivors HALYs truncated at the 

moment of death, that is, we disregard possible higher background morbidity for those dying 

of another cause (assuming it is captured ‘on average’ in the pYLDs). 

Table 3: Model input parameters for the colorectal cancer example 

Parameter Description Values, Range, Distribution  

DW_DT Disability weight of DT 0.43 

DW_R Disability weight of RT 0.25 

DW_PT Disability weight of PT 0.83 

DW_T Disability weight of T 0.93 

t_T Time in T 1 month 

t_PT Time in PT 3 months 

t_DT Time in DT 9 months 

T Statistical cure time 8 years, 96 months 

Rdisc Remission DW discount rate 

(annual) 

0.20% 

redrateM Background mortality yearly 

reduction rate for Māori  

0.0225 (before 2026) 

0.0175 (after (2026) 

redrateNZE  Background mortality yearly 

reduction rate for Non-Māori  

0.0175 

discrateC Discount rate for costs 0.03 

discrateH Discount rate for HALYs 0.03 
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Parameter Description Values, Range, Distribution  

cos_within_first year Monthly cost within first year of 

diagnosis 

1000 

cos_after_first year Monthly cost after first year of 

diagnosis 

200 

cos_sur Monthly cost (to health sector) 

after statistical cure time 

100 

cos_Dc_last year Monthly cost within last year of 

life if died from cancer 

500 

cos_Doc_last year Monthly cost within last year of 

life if died from other causes 

400 

cos_dir_1 Monthly direct cost of intervention 

1, applied to only first 6 months 

after diagnosis 

Gamma(mean=1000, SD=200)  

cos_dir_2 Monthly direct cost of intervention 

2, applied to only first 6 months 

after diagnosis 

Gamma(mean=5000, SD=500) 

es_1 Effect size of intervention 1 Normal(0.8, 0.05) 

es_2 Effect size of intervention 2 Normal(0.6, 0.04) 

 

2.2.1.1 Effectiveness for state “Alive” 

Beside disease disability weights each individual experiences background disability weight 

mainly due to age, but it may also vary by gender, ethnicity, deprivation level or other socio-

economic factors, this is called prevalent disability weight (pYLD). This is another strata 

dependent parameter of the model which we already included in bTable (Table 1) in the final 

column. 

Now we define variable DW-disease related disability weight that individual experiences 

cycle by cycle (month by month), assuming that he/she is going to survive cancer and while 

in remission state his/her disability weight is reducing by roughly by 1.85% monthly. To 

define DW, we again use TreeAge integrated Python programing language to define DW as a 

function of cycle, T_DT, DW_DT, DW_R and Rdisc, this is done as follows: 
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DW=def DW(cycle,T_DT,T,DW_DT,DW_R,Rdisc): 

if cycle<=T_DT: 

return DW_DT 

elif T_DT<cycle<=T: 

return Discount(DW_R;Rdisc;cycle- T_DT-1) 

else: 

return 0 

 

Where  is monthly reduction of remission disability weight. The variable  is 

defined in the Markov node.  Then we calculate HALYs generated by individual as follows: 

 

Where   is the . 

 is defined in each Markov node and will be assigned as an incremental and 

final effectiveness in the Markov state “Alive”. 

2.2.1.2 Effectiveness for state “Dc” 

As described above, if an individual dies from cancer, we assume that the last month was 

spent in the terminal state and T_PT months were spent in pre-terminal state before terminal 

state. In these states we have already awarded HALY_ALIVE assuming that they were going 

to survive. This HALY_ALIVE needs to be adjusted to what it would have been due to 

terminal and pre-terminal states. The effectiveness awarded in the state “Dc” as incremental 

effectiveness are defined in the “Dc” node. 
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2.2.1.3 Effectiveness for state “Doc” 

HALYs for individuals who die from other causes is calculated based on the assumption that 

he/she was going to survive cancer.  Therefore, we just award   in the last cycle 

of life. The rest of the HALYs generated by this individual were already awarded in the 

“Alive” state in the previous cycles.  So  already defined in the CRC node will 

be assigned as incremental and final effectiveness in the Markov state “Doc”. 

2.2.2 Calculating costs 

We now define parameters, variables and functions that are used to calculate the costs 

associated with baseline and intervention scenarios.  

In ABC-CBA we distinguish two types of costs: direct cost of intervention and cost offsets.  

Direct costs may be incurred at the outset, or by month alive, etc, and they may or may not 

vary in amount by cycle or other criteria.  In this simple example, they are assumed to occur 

monthly in first six months only.   

 – direct costs of intervention,  
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Cost offsets will be sourced from Health Tracker (Atkinson, Blakely et al. 2012).  As 

described elsewhere, they will vary by socio-demographics, time since diagnosis, and 

whether in the last six or 12 months of life (final decision not made at time of this Report; 

differentiated by whether death from cancer of interest, or other causes).  As described above, 

and detailed below, we use as simple specification in this colorectal cancer example:  

 – cost offsets generated within first year of diagnosis, defined in the 

node CRC, 

– cost offsets generated after first year of diagnosis, but before 

statistical cure time, defined in the node CRC, and  

 – cost offsets generated by someone within a year of death from the 

cancer in question – namely CRC in this example.  Note that we do not assign such costs 

retrospectively before the date of diagnosis for someone dying within 12 cycles of diagnosis.  

Rather, if someone died at the end of the 7
th

 cycle, their cost-offsets are ‘corrected’ to be that 

for 7 cycles in the last year of life before cancer death, over-writing those already assigned by 

cycle assuming they were a survivor.  Likewise, for people dying of cancer beyond the 12
th

 

cycle (but before the statistical cure time of course), their total cost offsets are retrospectively 

corrected to have 12 months in the last year of life rather than the assumed survival cost 

offsets.  This is defined in the node CRC.  

 – cost offsets generated by someone within a year of death from any 

cause other than the cancer in question.  As with the above cancer death cost-offsets, a 

retrospective correction is applied at the cycle of death, to inflate the cost offsets accrued in 

the 11 previous cycles to now represent those for someone in the last year of life.  Unlike 

cancer death cost-offsets, though, these death from other causes cost offsets apply after the 

statistical cure time.  This cost is denoted with and defined in the node CRC. 

 –  cost offsets generated after the statistical cure time. These three costs are assumed 

to be incurred by individuals that survive cancer and they will be applied to everyone alive 

(in the “Alive” state of Markov model).  As stated above, we modify this cost if they die from 

other causes after the statistical cure time.  

We now give more details on the exact mathematical calculations. 
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2.2.2.1 Costs for state “Alive” 

The individual in the Markov state “Alive”, by our assumption, is going to survive cancer. 

That is, he/she incurs monthly cost   during first 12 cycles of the 

Markov model,  from cycle 13 up to statistical cure time and  

after statistical cure time.  

First we introduce some auxiliary parameters and functions, - discount rate for 

costs, defined in the CRC node. We specify a Python defined function  that calculates the 

cost associated with each cycle given that individual is going to survive. (This is equivalent to 

function  which was used in the effectiveness section 2.2.1.1). 

def cos(cycle,cos_within_first_year,T,cos_after_first_year,cos_sur): 

if cycle<=12: 

return cos_within_first_year 

elif 12<cycle<=T: 

return cos_after_first_year 

else: 

return cos_sur 

 

Now we can define  which will be assigned into “Alive” state as incremental and 

final costs: 

 

 

2.2.2.2 Costs for state “Dc” 

To assign cost to the “Dc” state we again use an approach similar to the effectiveness 

approach in section 2.2.1.2. We adjust costs assigned by means of  into “Alive” 

state for previous 11 cycles. 
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= Discount(if(cycle-

1<=12;max(cos_within_first_year;cos_Dc_last_year);cos_Dc_last_year);discrateC;(cycle-

1)/12)+Discount(if(cycle<=7;cos_dir;0);discrateC;(cycle-

1)/12)+if(cycle>=15;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

2;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

2)/12)+if(cycle>=16;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

3;cos_within_first_year;T;cos_after_first_year;cos_sur));discrate;(cycle-

3)/12)+if(cycle>=17;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

4;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

4)/12)+if(cycle>=18;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

5;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

5)/12)+if(cycle>=19;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

6;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

6)/12)+if(cycle>=20;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

7;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

7)/12)+if(cycle>=21;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

8;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

8)/12)+if(cycle>=22;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

9;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

9)/12)+if(cycle>=23;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

10;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

10)/12)+if(cycle>=24;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

11;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

11)/12)+if(cycle>=25;1;0)*Discount((cos_Dc_last_year-user("cos";cycle-

12;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-12)/12) 

 will be assigned into “Dc” state as an incremental cost. 
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2.2.2.3 Costs for state “Doc” 

Costs for “Doc” state are calculated in the same way as costs in “Dc”, only it is adjusted to 

: 

Discount(if(cycle-

1<=12;max(cos_within_first_year;cos_Doc_last_year);cos_Doc_last_year);discrateC;(cycl

e-1)/12)+Discount(if(cycle<=7;cos_dir;0);discrateC;(cycle-

1)/12)+if(cycle>=15;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

2;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

2)/12)+if(cycle>=16;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

3;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

3)/12)+if(cycle>=17;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

4;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

4)/12)+if(cycle>=18;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

5;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

5)/12)+if(cycle>=19;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

6;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

6)/12)+if(cycle>=20;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

7;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

7)/12)+if(cycle>=21;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

8;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

8)/12)+if(cycle>=22;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

9;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

9)/12)+if(cycle>=23;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

10;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

10)/12)+if(cycle>=24;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

11;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-

11)/12)+if(cycle>=25;1;0)*Discount((cos_Doc_last_year-user("cos";cycle-

12;cos_within_first_year;T;cos_after_first_year;cos_sur));discrateC;(cycle-12)/12) 

 will be assigned into “Doc” state as incremental cost, and to account for people 

surviving to 110 years also as a final cost.  
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2.2.3 Modelling heterogeneity via clones 

In order to model evaluate cost and effectiveness for any sub-population, we need to run a 

sequence of cost-effectiveness analyses. For example, if we want to evaluate results for the 

Māori population versus the non-Māori population, we can create a sequence of analyses for 

all Māori sub-groups and another sequence of analyses for all non-Māori subgroups. Next, 

we have to merge results of subgroups and compare with each other. 

In this section we will discuss another, more efficient way to incorporate heterogeneity in the 

model, as well as effectively run cost-effectiveness, sensitivity and uncertainty analysis for 

any given sub-population. This is achieved by using clones in TreeAge.     

Let us again consider the following sub population: ages 50-64 years (50-54, 55-59, and 60-

64), with further stratification by ethnicity, gender and deprivation level, and two intervention 

scenarios:  

1) Intervention that reduces cancer mortality rate by 20% with direct costs of $1000 per 

month (cycle) in first six months; 

2) Intervention that reduces cancer mortality rate by 40% with direct costs of $5000 per 

month in first six months 

 

The model starts with a decision node CRC with alternative pathways Baseline, 

Intervention1 or Intervention2. The Intervention nodes are clones of the Baseline node, 

so that the tree structure developed after the Baseline node will be copied into the 

Intervention nodes.  

The Baseline node is a chance node with two possible paths NZE and Māori, the latter 

being a clone of NZE.  The NZE node is a chance node with two possible paths Male 

and Female – again the Male node is cloned into the Female node.  The Male node is a 

chance node with three possible paths Deprivation 1-3, Deprivation 4-7 and 

Deprivation 8-10, where Deprivation 4-7 and Deprivation 8-10 are clones of 

Deprivation 1-3.  Deprivation 1-3 is a chance node with several possible pathways (let 

us for simplicity assume 2 possible alternatives) Year 2011 and Year 2012.  Again, Year 

2011 is cloned into Year 2012.  Finally the Year 2011 node is a chance node with 3 

possible destinations, Age group 1 (50-54), Age group 2 (55-59), Age group 3 (60-64).  
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All these nodes are clones of the node Age group 1. The node Age group 1 is a Markov 

node with the generic Markov model shown on Figure 4.  

 

Figure 4: CRC model demonstrating clones 

 

Under this structure it is very easy to run any kind of analysis for any specified strata or 

group. For example, our strata is NZE/Male/Deprivation 1-3/Year 2011/Age group 1. By 

setting appropriate transition probabilities (on Figure 1 all transition probabilities are equal to 

1, which means that the model includes all strata) we can “switch on” that particular strata 

and “switch off” all the remaining strata.  

For strata described above we will set transition probabilities Baseline → NZE, NZE → 

Male, Male → Deprivation 1-3, Deprivation 1-3 → Year 2011, Year 2011→Age group 1  

equal to 1 and the rest of the transition probabilities equal to 0. 
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As we see transition probabilities in this tree become model parameters which are used for 

choosing specific strata or group. This model capability is particularly convenient in the 

context of equity analysis. We also define all strata specific parameters in the corresponding 

nodes.  

Figure 5: Defining strata specific parameters in nodes 
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Defining parameters as shown on Figure 5 guarantees that all the strata dependent functions, 

, ,  defined in the Markov nodes will get assigned appropriate values. Altering 

strata defining parameters,  , , , , , , , , , 

, ,  we can include or exclude any sub-population group into 

analysis.  

Figure 6: Parameter settings to select population groups 

For example, Figure 6 shows the following population group: 

all non-Māori between 50 to 64, all deprivation tertiles, and 

diagnosed in 2011. To include all Māori into analysis we just 

change the value of  from 0 to 1. 

 

2.2.4 Sensitivity and uncertainty analyses 

Sensitivity and uncertainty analysis is a tool to investigate uncertainty in results due to 

uncertainty in the model input parameters.  Model input parameter uncertainty can be 

specified in two ways: 1) Deterministic uncertainty – when we know the range of values the 

parameter can take, and specific (say) a best, low and high estimate; and 2) probabilistic 

uncertainty – more informative, when we know the distribution of parameter and specify it 

accordingly (e.g. as a normal distribution with a given mean and standard deviation).  

Sensitivity analysis usually is a scenario analysis performed to obtain the results for different 

values of model parameters; we specify the range around the parameter and perform cost-

effectiveness analysis for different values of parameter.  If we want to investigate an impact 

of only one parameter then we will perform a so called 1-way sensitivity analysis. If we want 

to investigate an impact of two parameters then we will perform 2-way sensitivity analysis, 

when the different values of two parameters are obtained from their corresponding ranges. 
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Let us for simplicity consider 1-way sensitivity analysis for parameter discrateC- the discount 

rate for costs. Let us assume that the range for discount rate is (0.01;0.05). We specify the 

range and number of values from that range we want to apply. TreeAge automatically obtains 

these values based on uniform partition. For example, if the number of values is equal to 5 

then TreeAge will perform the cost-effectiveness analysis for 

, as shown in Table 4.   

Table 4: Results of 1-Way sensitivity analysis, for all population strata combined 

discrateC Strategy Cost HALYs CE IncCost IncHALYs ICER 

0.01 Baseline 22148661 5396.9 4104.0 0.0 0.0 0.0 

Intervention 1 27215093 5876.9 4630.8 5066431 480.0 10554.4 

Intervention 2 43307819 6401.8 6765.0 16092726 524.8 30662.7 

0.02 Baseline 20215127 5396.9 3745.7 0.0 0.0 0.0 

Intervention 1 25091903 5876.9 4269.6 4876775 480.0 10159.3 

Intervention 2 40946839 6401.8 6396.2 15854935 524.8 30209.6 

0.03 Baseline 18656996 5396.9 3457.0 0.0 0.0 0.0 

Intervention 1 23379968 5876.9 3978.3 4722971 480.0 9838.9 

Intervention 2 39036840 6401.8 6097.8 15656872 524.8 29832.2 

0.04 Baseline 17382579 5396.9 3220.8 0.0 0.0 0.0 

Intervention 1 21978845 5876.9 3739.8 4596266 480.0 9574.9 

Intervention 2 37467774 6401.8 5852.7 15488928 524.8 29512.2 

0.05 Baseline 16325506 5396.9 3025.0 0.0 0.0 0.0 

Intervention 1 20815835 5876.9 3542.0 4490328 480.0 9354.2 

Intervention 2 36159982 6401.8 5648.4 15344147 524.8 29236.4 

 

Another common tool for sensitivity analysis is so called Tornado diagram which represents 

the impacts of several parameters on results on the same graph. Figure 7 shows a Tornado 

diagram for Baseline vs Intervention1 ICER for the following parameters:  

(discount rate for HALYs), (discount rate for costs),  (reduction rate in 

remission state),  (reduction rate for NZE),  (reduction rate for NZE).  

These figures show that the chosen values about the discount rate of HALYs had the largest 

impact on the ICER, whereas the chosen values for sensitivity analysis about the annual 

mortality rate reduction in background mortality (i.e. that from lifetables) rate had the 

smallest impact.  It must be emphasised that the outcome of this sensitivity analysis is 

determined by, first, the parameters we select for sensitivity analysis, and second the degree 
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of parameter uncertainty we specify about each parameter.  These considerations will be 

canvassed in much greater depth in future substantive work.   

Figure 7: Tornado sensitivity analysis diagram for Baseline Vs Intervention1 ICER for 

selected parameters, for all population strata combined 

 

disrateH = the discount rate applied to HALYs; best estimate 3%, low 1% and high 5%. 

disrateC = the discount rate applied to costs; best estimate 3%, low 1% and high 5%. 

Rdisc = the monthly reduction  rate applied to remission disability weight; best estimate 1.84%, low 1% and 

high 3%. 

redrateNZE = the annual reduction  rate applied to NZE background mortality rate; best estimate 1.75%, low 

1% and high 2%. 

redrateM = the annual reduction  rate applied to Māori background mortality rate; best estimate 2.25%, low 1% 

and high 3%. 

 

We now consider some hypothetical probabilistic uncertainty analyses. The parameters that 

carry probabilistic uncertainty around them are cos_dir_1, cos_dir_2, es_1, es_2. These 

parameters are effect sizes, so we will observe uncertainty only in intervention arms. To 

create uncertainty, artificially for demonstrative purposes, in the baseline arm let us define 
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distribution .
4
 That is, we assumed that the EMR in the baseline model 

was variable about its best estimate. 

As outlined above, in our case example we assume that Intervention 1 and Intervention 2 

reduce excess mortality rate by 20% and 40% respectively. This will be captured by 

introducing parameter   which takes values ,  and  in Baseline, Intervention 

1 and Intervention 2 nodes respectively. Let us now define two distributions  

, . Next we define  and  as: 

 

 

 

 

That is, for intervention 1 the reduction in the EMR has a best estimate of 0.20 (or ratio 

multiplier of 0.80), with a normal distribution with standard deviation of 0.05.
5
  And values 

are sampled probabilistically from this distribution. 

Another effect of intervention is direct costs. Define two distributions 

 and 

, Then define parameter  as: 

 

and  

 

 

The  as ,  and  were specified in the Baseline, 

Intervention 1 and Intervention 2 nodes, respectively. 

                                                 

4
 In future evaluations, such uncertainty – if necessary – will probably be captured in the EMR itself, not a 

contrived effectiveness rate ratio for the comparator.   
5 
In future evaluations, a log normal distribution will be used for any ratio measure.   
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The main conceptual difference between uncertainty analysis and sensitivity analysis is that 

the uncertainty analysis is evaluated for different values of the input parameters sampled 

from their respective distributions using a Monte Carlo technique – not discrete or 

deterministic values. Also, the number of iterations should be reasonably large to fully 

capture the distributions, meaning that uncertainty analysis is more time consuming than 

sensitivity analysis.  (However, except for complex models this is a trivial issue with modern 

computers).   As discussed above, the model uses six parameters that carry probabilistic 

uncertainty (distributions) around them. Figure 8 shows the result of probabilistic uncertainty 

analysis (PSA) for 500 iterations. That is, the cost and effectiveness of baseline, intervention 

1 and intervention 2 is evaluated for 500 values randomly sampled from six distributions.  

Note that this modeling was done with the following process.  At the outer most level, a 

parameter value was sampled independently for each of the five parameters.  Then these 

sample values were held constant for all cycles of the Markov model (i.e. whatever ratio was 

sampled for the treatment effectiveness (that was then multiplied by the EMR at each cycle) 

was held constant across all cycles of the model).  Second, all of the heterogeneous strata 

were run in parallel (with the same sampled input parameters), for all of the baseline, and 

intervention 1 and 2 clones.  This whole process was then repeated another 499 times for a 

new set of input parameters.  (Note that one could conduct this process differently.  For 

example, one could specify correlations between the sampled values of the input parameters.  

One could also allow the input parameters to be resampled at each cycle).   
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Figure 8: Cost effectiveness plane scatterplot for hypothetical baseline and 

interventions, for all population strata combined 

 

 

Regarding Figure 8, note that there are 500 ICER estimates for each of intervention 1 vs 

baseline, intervention 2 vs baseline, and intervention 2 vs intervention 1.  These could be 

derived by joining the ‘dots’ for the same iteration.  However, this is clumsy to plot.  Rather, 

one usually presents the median ICER for each relevant comparison, and the 2.5
th

 and 97.5
th

 

percentile value. This is shown in Table 5. 

 

Table 6 below shows the incremental costs, HALYs and ICER between intervention 1 and 

baseline (all three), and between intervention 2 and baseline and intervention 1 (just ICERs).  

Of note, because of non-linearity in the model the mean ICER ($11,581 for intervention 1 

compared to baseline) is not actually the same as the mean incremental cost divided by the 

mean HALYs ($9781).  However, the using the medians in such a way results in a smaller 

difference ($9880 compared to $9568). 
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Table 5: Costs, HALYs and ICERs (median and 95% uncertainty intervals) for the 

analysis shown in Figure 8 

 Baseline Intervention 1 Intervention2 

 Cost HALYs Cost HALYs Cost HALYs 

Mean  $18,655,854  5397  $ 23,379,956  5880  $ 38,987,849  6406 

SD  $     289,934  116  $      807,658  124  $   1,798,627  132 

Minimum  $17,658,714  4999  $ 21,393,193  5512  $ 33,793,942  5992 

2.50%  $18,140,236 5191  $ 21,945,693  5643  $ 35,752,906  6149 

10%  $18,276,338  5245  $ 22,471,199  5717  $ 36,692,089 6237 

Median  $18,647,856  5393  $ 23,300,247  5878  $ 38,901,733 6404 

90%  $19,051,285  5555  $ 24,463,992  6047  $ 41,199,459  6588 

97.50%  $19,226,381  5625  $ 25,131,421  6116  $ 42,852,355  6636 

Maximum  $19,434,646  5709  $ 26,607,023  6234  $ 45,194,434  6881 

 

Table 6: ICERs, IncCost and IncHALYS (median and 95% uncertainty intervals) for 

the analysis shown in Figure 8 

 

Intervention 1 vs baseline 

Intervention 2 

vs baseline 

Intervention 

2 vs 1 

 Incremental 

Cost 

Incremental 

HALYs ICER ICER ICER 

Mean  $  4,724,101  483  $ 11,581   $  20,740   $  36,868  

SD  $     853,422  173  $   7,645   $   4,075   $  44,772  

Minimum  $  2,505,501  33  $   4,697   $  11,791   $  13,786  

2.50%  $  3,085,557  131  $   6,147   $  14,954   $  16,977  

10%  $  3,697,820  263  $   7,054   $  16,393   $  20,647  

Median  $  4,640,395  485  $   9,880   $  20,188   $  29,333  

90%  $  5,823,994  703  $  16,335   $  26,067   $  52,523  

97.50%  $  6,468,849  847  $  32,539   $  29,92  $  78,762  

Maximum  $  7,598,192  953  $  96,951   $  44,823   $720,475  

 

In addition to presenting ICERs, it is convenient (and now conventional) to also present 

results using a net monetary benefit approach, and in particular using cost effectiveness 

acceptability curves (CEAC).  One can see from this figure that for a willingness to pay of 

less than $10,000 per HALY gained, the baseline scenario has the highest probability of 
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being preferred.  For a willingness to pay of $10,000 to $30,000 per HALY gained, 

intervention 1 is preferred, and above $30,000 intervention 2 is preferred.  (Note that it is 

possible to present such graphs by ethnicity, say, to further understand equity implications of 

proposed interventions). 

 

Figure 9: Cost Effectiveness acceptability curve for the analysis shown in Figure 8 

 

 

2.2.5 Equity analysis 

Equity often is a significant aspect of cost-effectiveness analysis. How the potential “gain” 

from interventions, and costs, are distributed across different population groups will be 

investigated in what we call equity analysis.  This section presents a brief first-cut of how 

such analyses may be undertaken and presented, and explores the impact of various 

parameters to Māori non-Māori differences. 
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Table 7: Net costs, HALYs and cost effectiveness for Māori and non-Māori (Expected 

Values)  

 Cost HALYs Incremental 

Costs 

Incremental 

HALYs 

ICER 

Māori 

Scen  0 

Baseline $1,318,900 298.3 $0 0 $0 

Intervention 1 $1,740,717 338.9 $421,817 40.5 $10,394 

Intervention 2 $3,110,067 385.2 $1,369,350 46.3 $29,556 

NZE Baseline $17,338,095  5098.5 $0 0 $0 

Intervention 1 $21,639,249  5538 $4,301,153 439.4 $9,787  

Intervention 2 $35,926,772  6016.5 $14,287,522  478.5  $29,858 

Māori 

Scen 1 

Baseline $1,415,562 341.9 $0 0 $0 

Intervention 1 $1,851,982 389.0 $436,419. 47.0 $9,267 

Intervention 2 $3,239,642 442.8 $1,387,660 53.8 $25,784 

Māori 

Scen 2 

Baseline $1,318,900 338.6 $0 0 $0 

Intervention 1 $1,740,717 384.9 $421,817 46.3 $9,106 

Intervention 2 $3,110,067 437.8 $1,369,350 52.9 $25,880 

Māori 

Scen 3 

Baseline $1,415,562 392.7 $0 0 $0 

Intervention 1 $1,851,982 447.1 $436,419 54.4 $8,018 

Intervention 2 $3,239,642 509.4 $1,387,660 62.2 $22,297 

Scenario 0 – Māori have their “own” background mortality and pYLDs 

Scenario 1 – Māori have NZE background mortality but “own” pYLDs 

Scenario 2 – Māori have NZE pYLDs but “own” background mortality 

Scenario 3 – Māori have NZE pYLDs and background mortality 

 

Table 7 above shows a ‘prototypical’ equity analysis.  For the above colorectal cancer, the results are 

presented by Māori and NZE.  Not that within each of Māori and NZE the final output is weighted by 

the actual estimated number of people within each sex by age by deprivation category within each 

ethnic group – that is, it is representative of these two populations.  Thus the first thing we can 

compare is the total HALYs gained – it is substantially larger for NZE, reflecting the much greater 

population size (and hence number of incident cases). Likewise the costs.  The ICER, however, 

indirectly takes into account the varying population sizes, and we see that there is little difference – 

the ICER for intervention 1 versus baseline is better among NZE, but for intervention 2 versus 

baseline is better for Māori (just). 

There are good reasons why the ICER will vary by ethnicity, including ethnic variation in differing 

excess mortality rates, background mortality rates and pYLDs.  So whilst scenario 0 is our best 

estimate of the actually ICER for both ethnic groups, it is interesting to explore what impact the 
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variation in these parameters has.  We use the 1-way sensitivity analysis tool to run four scenarios 

described above. We introduce new variable   which takes values from 0 to 3 in such a way 

that  in case of Scenario 0, Scenario 1, Scenario 2 and Scenario 3 respectively. Then 

we simply run 1-way sensitivity analysis on parameter  , specifying lower value equals to 0, 

high value equals to 3 and . That will return the results for scenarios 0 to 3.  Doing so, we see that 

making the Māori background mortality rate the same as NZE makes the ICERs more favourable for 

Māori -  Māori now have a longer life expectancy, and therefore ‘more to gain’ by being cured of 

cancer. Likewise, substituting the NZE pYLD for the Māori pYLD also increases the envelope of 

possible gains in HALYs for Māori, given the assumptions and structure of the model.  These simple 

comparisons offer insights into possible equity impacts of modeled interventions, and will be pursued 

elsewhere in publications.    

 

Figure 10: ICER scatterplots for Māori and NZE, (Intervention 1 Vs Baseline) on 

logarithmic scale (cost on y scale and HALYs on x scale)   
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Table 8: ICERs, Incremental Costs and Incremental HALYs (median and 95% 

uncertainty intervals) for the equity analysis (Intervention 1 Vs Baseline) 

 Māori NZE 

 IncCost IncHALYs ICER IncCost IncHALYs ICER 

Mean  $ 422,071  40.8  $12,145   $ 4,302,030  442.3  $11,529  

SD  $ 76,835  14.7  $  7,682   $    776,891  158.6  $  7,642  

Minimum  $ 229,516  2.8  $  5,204   $ 2,275,985  30.4  $  4,650  

2.50%  $ 276,499  11.1  $  6,709   $ 2,806,288  119.8  $   6,096  

10%  $ 328,935  22.1  $  7,574   $ 3,373,234  240.7  $   7,004  

Median  $ 413,733  40.8  $10,440   $ 4,226,505  444.7  $   9,828  

90%  $ 519,984  59.7  $16,886   $ 5,296,649  643.3  $16,291  

97.50%  $ 579,046  71.3  $33,217   $ 5,897,245  776.1  $ 32,477  

Maximum  $ 678,992  80.6  $ 98,049   $ 6,921,666  872.7  $ 96,850  

Note: These results are different from results in Table 7, which calculates HALYs and Costs 

using central estimates of input parameters. 

  

3 More complex Markov models 

The above Markov model was a simple three-state model, albeit with highly time and strata 

dependent parameters and reasonably sophisticated calculations of cost and effectiveness 

rewards.  There are two main ways in which we may extend the Markov models.  First, we 

may increase the number of states.  For example, we may add in a remission state, or directly 

model as a Markov process the disease states shown in Figure 1 (page 3).  However, this will 

often require the specification of transition probabilities that we do not have exact data for – 

so called model calibration, and the focus of Section 5 below.  Second, we may use the same 

Markov process, but use microsimulation.  Here one samples many individual trials within 

each iteration, which may have advantages when: 

 There is marked heterogeneity.  For example, by socio-demographic strata as above; 

here one can just sample individuals based on their probability distribution in the total 

population.  But also heterogeneity for (say) a transition probability that is highly 

skewed in the population such as growth rates of a tumour; this may confer poor 
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model performance for macro-simulation model that uses population average 

transition probabilities. 

 One particularly wants to quantify and understand individual-level stochastic 

variability (in addition to uncertainty due to input parameters, and heterogeneity). 

 

We will not pursue Markov microsimulation further in this Report, other than to note it is 

relatively straight forward to swap from macro to micro simulation of a Markov model in 

TreeAge, and to emphasise that exactly how one conducts the microsimulation will be highly 

dependent on the intervention, disease model and research question at hand. 
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4 Discrete Event Simulation 

Discrete event simulation (DES) is a form of microsimulation.  Compared to Markov 

modelling, it approaches the issue from a different perspective with time to event rather than 

fixed duration cycle lengths being the key building block for the modelling.  Thus, rather than 

having time dependant transition probabilities from ‘alive’ to ‘death from cancer’ states, one 

rather specifies a cumulative distribution function of the probability of death from cancer by 

time.  For cancer, this will tend to be an S-shaped curve asymptoting at some probability less 

than 1.0 (unless everyone eventually dies from the cancer in question).  So for a cancer such 

as colon cancer with approximately 50% survival, the curve will asymptote at about 0.5.  One 

then draws a random number from a uniform distribution from 0 to 1.  For any draw above 

0.5, the person is a survivor.  For a draw close to 0, they would have died within months of 

diagnosis. For a draw just beneath 0.5, they would have been a person who dies just before 

the 8 year statistical cure time.  And so on.  One then also creates cumulative distribution 

function of the probability of death from all other causes – which will now asymptote at 1.0 

as we all eventually die. Now, by drawing two random numbers for the death from cancer 

and the death from other causes curves, one then just determines which event occurs first (or 

at all), and this is the first transition in the model. 

DES is an extremely flexible modelling strategy.  It does require more data on time to event, 

although often this can be simply derived from empirical observations of mortality rates – 

which we have.  If one wishes, say, to model other transitions (such as time to surgery), then 

one needs data on the distribution of times in the population of interest – or at least plausible 

distributions (e.g. gamma for waiting times). 

We will not pursue DES further in this Report, other than to note it is possible to undertake in 

TreeAge or by coding in standalone statistical software.  A framework for use of DES in 

ABC-CBA is being developed in parallel work on care coordinators.  
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5 Model Calibration 

Model calibration involves the identification of input parameter values that produce model 

output parameters that best predict the observed data (Karnon and Vanni 2011). Models that 

are not calibrated properly can lead to misleading results and conclusions. Given that much of 

the ABC-CBA model is built on national data on incidence, survival and stage distribution, 

much of the models are already ‘highly calibrated’.  Model calibration becomes an issue 

when there are additional states added to models for which we do not have directly observed 

data. An example might be where an intervention prolongs the time in a ‘progression-free’ 

state (i.e. equivalent to DT and R states), but does not alter the duration of the ‘progressed 

state’ (i.e. equivalent to PT and T states).  Thus, we need to extend our basic Markov models 

(or DES) to accommodate this extra state (or time to event), but ensure that for the baseline 

model at least the overall survival equates to that we have observed (or predicted) data.  This 

is the main calibration issue we consider in this report. 

5.1 Methods to solve unknown transition probabilities: Markov models  

It will often be the case that we have input parameter information for some, but not all, 

transition probabilities in Markov models.  In these instances, we need a method to generate a 

coherent set of model parameters, namely the unknown transition probabilities (or rates).  

This is more formally called model calibration. In this Section, we present: 

 Stylised examples of missing transition probabilities (or time to event functions) that 

we are likely to encounter in ABC-CBA models, i.e. problem definition.  

 A brief overview of model calibration options used for these types of problems in 

economic decision modelling – and modelling more generally. 

 A couple/few worked basic examples using likely preferred options (i.e.  Metropolis-

Hastings algorithm and Kolmogorov’s Forward Equations). 

 Options to use in ABC-CBA. 

5.2 Problem 

We have rich baseline data on incidence rates, excess cancer mortality rates (i.e. survival), 

and death rates from other causes by age.  We also have hypotheses about the structure of 

likely cancer disease models, e.g.: 

 The generic cancer model shown above in Figure 1. 
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 Information from the literature on average time from diagnosis to disease progression 

(i.e. progression free survival) and then time in a progressing disease state leading to 

death from cancer. 

 

In terms of Markov models, both these instances are more complex than the simple three state 

model in Section 2.  The generic cancer model (Figure 1), if conceptualised as a full Markov 

model, requires solving for the (highly) time dependent transition probabilities from: 

 DT to any of Doc, Dc (i.e. skipping PT and T for rapidly progressing disease),), 

Remission, PT, T 

 R to either DoC or PT   

 PT to either DoC or T 

 T to either DoC or Dc 

 

Yet, we only have ‘prior’ information on the rate to death from cancer and death from other 

causes once diagnosed, and hypotheses about model structure. 

A simpler example is the creation of a four state system, with the diagnosed state split into 

‘progression free [or DT and R]’ and ‘progressing [or PT and T]’ states (Figure 11). 
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Figure 11: Simplified ABC-CBA four-state model. 

 

States 3 and 4 in Figure 11 are absorbing states. Transition probability p13(t) and  p23(t) are 

known from background mortality rates. The number or proportion of individuals who die 

from cancer per strata is also known (T14), but we wish to force the transitions state 2 rather 

than going straight from state 1 to 4.  Therefore, p12(t) and p24(t) need to be estimated from 

(any) existing data or expert opinion, coherently within the envelope or limits set by all other 

transition probabilities.  This is the model calibration task.  

5.3 Discrete-time Markov models and calibration 

Markov models are used for random processes that evolve through discrete time steps or in a 

time interval, in which the transition from one state to the next in a discrete state space is 

governed by a transition probability. The transition to the next state only depends on the 

current state and none of the previous states, thus making the system “memory-less”.  

Discrete-time Markov chain models are ideal when observing patients that progress from one 

health state to another at fixed points in time. The models are maintained by a transition 

matrix representing the transition probabilities from one state to another in which the rows 

and columns indicate the current and future states, respectively. The sum of each row is equal 

to one. In a discrete-time Markov chain, residence times in specific states obey a geometric 
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distribution, which is known to be the only discrete distribution that exhibits the memory-less 

property. 

Markov models can also be homogeneous or non-homogenous meaning that there is a time 

dependency in the state transitions. A non-homogeneous model has transition probabilities 

that are time (e.g. age) dependent and thus more realistic for dealing with observations that 

can occur at any moment in time and transition probabilities that can vary by time. Although 

this makes the model more complex and difficult to estimate transition probabilities, there are 

methods that can handle time dependency by separately solving for age-specific transition 

probabilities, such as piecewise continuous linear approximations (Whyte, Walsh et al. 2011).  

In many cases, we may have access to only the starting state and the final state reached after 

n years, however the path taken to reach this state might be unknown (e.g. example in Figure 

11). These data are referred to as partially observed data. There are several ways to estimate 

(or calibrate) the missing transition probabilities or rates, including maximum likelihood and 

Bayesian approaches.  

Calibration approaches in the past have mostly been carried out in the maximum likelihood 

context, in which, given empirical data, a set of parameters is chosen to be calibrated for a 

model based on a strategic method for searching the parameter space, a measure of goodness 

of fit (such as maximizing likelihood function), and criteria for convergence and termination 

of the search (Vanni, Karnon et al. 2011).  Simple calibration approaches involve some form 

of random grid search of the parameter space such as the Latin hypercube design (Blower, 

Koelle et al. 2001) but such methods lack in efficiency due to wasteful parameter space 

searching and inability to distinguish local and global maxima. Although these methods are 

simpler to comprehend, they immediately become computationally intensive when the 

parameter space becomes larger in dimension and grid intervals become finer.  

There are also a set of simulation based maximum likelihood parameter estimations. (Chia, 

Salzman et al. 2004) compared three maximum likelihood methods; the Nelder–Mead 

simplex algorithm (Nelder and Mead 1965), the Kiefer–Wolfowitz algorithm (Kiefer and 

Wolfowitz 1956), and the Robbins–Monro algorithm (Robbins and Monro 1951), to calibrate 

their breast cancer tumor growth model.  Each method resulted in the estimated parameter 

values to be within the range of the analytically computed solution, however all methods 

similarly fail to converge with increasing model complexity. More recently, the EM 

algorithm has been applied to parameter estimation in multistate progressive models with 
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heterogeneous transition probabilities at an individual or cohort level, however longitudinal 

data are required and transition probabilities are required to be in one direction only (Chen, 

Yi et al. 2010).  

On the other hand, methods in the Bayesian framework have been seen as a more convenient 

and natural way to combine evidence from observed data and expert opinion (Spiegelhalter 

2004). Bayesian methods have also been adopted in microsimulation studies (Rutter, 

Miglioretti et al. 2009), which are known to be highly detailed and thus more computationally 

intense.  An example of an efficient Bayesian method is the Metropolis-Hasting algorithm, 

which is a Markov chain simulation method for sampling from a Bayesian posterior 

distribution.   

Bayesian calibration methods of a natural history model were used to model a state transition 

structure for progression of colorectal cancer (Whyte, Walsh et al. 2011). Data were available 

from several sources, including cancer incidence categorized by age and stage, autopsy data 

on polyp prevalence, cancer and polyp detection rates, results from screening interventions, 

cancer survival rates per age, cancer stage at diagnosis and time since diagnosis.  However 

not all states were directly observed and so unknown transition probabilities were estimated 

by the Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm estimated the 

parameters of the natural history model by sampling multiple sets of parameters from a joint 

posterior distribution (a distribution that jointly depends on two or more parameters) that is 

compatible with the observed data. Prior distribution functions for the unknown parameters 

can be set based on expert opinion.  If no prior evidence is available, a non-informative 

Beta(1,1) distribution can be used.   

The Metropolis-Hastings algorithm is known to be computationally more efficient than other 

methods, such as the Latin Hypercube and Monte Carlo sampling techniques, even in a high 

dimension parameter space. It also provides a general approach for producing a sequence of 

samples for a parameter with any probability distribution that may be difficult to sample by 

classical independence methods by creating a Markov chain in which the current sample 

depends only on the previous sample. However one must achieve model convergence to 

ensure a meaningful result, which is true for both Bayesian and maximum likelihood models. 

A Microsoft Excel macro was supplied by Whyte et al. and currently works with a simple 

three-state model. One could translate this code to another programming language (e.g. 
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WinBUGS) and extend it to handle higher state models with two-way transition probabilities.  

The above example was done in R and the code is available in the Appendix.   

5.4 Continuous-time Markov models and calibration 

Continuous-time Markov processes handle state transitions that can occur at any time. These 

are more applicable to real world problems, however in practice the additional model 

complexity may not be worth the effort. Examples include (Beck and Pauker 1983), (Hazen 

2000) and (Hazen and Pellissier 1996).  

Continuous Markov processes consist of transition rates (or intensities) which are the number 

of transitions per unit time or in other words the instantaneous risk of moving from a state to 

a different state (Jackson 2011). Transitions are represented by a transition intensity matrix 

(with components aij) in which the rows and columns indicate the current and future states, 

respectively, with the requirement that the sum of transition rates in any row of the transition 

intensity matrix is zero.  

In a homogeneous continuous-time Markov process, each time the process enters state i, the 

amount of time (residence or sojourn time) spent in that state before making a transition to a 

different state is exponentially distributed with mean -1/aii,. The probability of a move from 

state i to state j is –aij/aii.  

The calibration of continuous-time Markov processes has been recently done in the maximum 

likelihood framework with the expectation-maximization algorithm (Chen, Yi et al. 2010). 

Non-homogenous transition probabilities are represented as functions of time, in which the 

use of piece-wise constant transition intensities provide a framework for efficiently robust 

estimates for numerous applications in survival and even history analysis (He and Lawless 

2003).  

In turn, under the Bayesian context, (Welton and Ades 2005) have shown that the use of 

Markov chain Monte Carlo methods can be used to achieve unknown transition rates from 

partially observed data. They make use of the Gibbs sampler, which is a special case of the 

Metropolis-Hastings algorithm, except each iteration updates one parameter at a time, 

keeping all others constant, thus moving in the parameter space orthogonally. Furthermore, 

Kolmogorov's forward equations are an advantageous method to estimate transition 

probabilities from transition rates. Similar to how (Chen, Yi et al. 2010) have shown, multi-

state models can be solved without the limitation of the direction of the transition 
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probabilities being only in one direction. Forward equations are also able to combine 

information from different studies to solve for unknown transition rates. In addition, the 

method handles fully and partially observed data, in which solutions are given for two-, three- 

and four-state models with one- and two-way transitions for both kinds of data. Fully 

observed data are when we know all the destination states and exact times of all transitions in 

a continuous time frame. Although this is most ideal for a Markov model, it is usually 

difficult to achieve in practice, and thus, partially observed data are more common. This is 

when only a snapshot of state occupancy is known at two points in time.   

One crucial advantage to the Bayesian method is the availability of WinBUGS and WBDiff 

code from (Welton and Ades 2005) and (Welton 2007), which can be used and extended to 

solve for more complicated models in higher dimensions. The software is also free, very fast 

and not computationally intensive to run. There are however some drawbacks such as 

guaranteed model complexity with an increasing number of states and thus even though a 

solution is achievable it might be computationally intense. Another issue is that all examples 

are focused on the homogeneous Markov scenario, however extensions to a non-

homogeneous problem can be attempted with a piecewise constant approximation within 

each time or age stratum and estimated separately (e.g. Whyte et al. 2011). 

5.5 Methods to solve unknown time to event distributions: Discrete event simulation 

models 

There are also similar parameter calibration and model validation methods for DES, 

including maximum likelihood (Erenay, Alagoz et al. 2011) and Bayesian approaches (Rios 

Insua, Ruggeri et al. 2012).  They will not be pursued further in this report, but will likely be 

used in future BODE
3
 outputs. 

5.6 Worked example: three-state Markov macrosimulation model  

We introduce a simple three-state lung cancer model involving progression-free, progressed 

cancer and death states for patients in a specific age group. We shall use the Metropolis-

Hastings algorithm (Whyte, Walsh et al. 2011) to solve for unknown transition probabilities 

and also Gibbs sampling together with the Kolmogorov equations (Welton and Ades 2005) to 

solve for unknown transition rates, which will be used to estimate transition probabilities. 

The three-state model is as follows:  
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Figure 12: Three-state lung cancer model. All transition probabilities are time (age) 

dependent. 

 

 

5.6.1 Discrete time Markov models applied to three-state lung cancer model, 

using Metropolis Hastings and Excel Macro provided by Whyte 

As an example, we have the following two data sets of occurrences (Table 8). The first set 

contains occurrences of progressed lung cancer (state 2) and the total number of individuals 

in that age group. The second data set is the number of occurrences of individuals who died 

from cancer (state 1 to state 3).  Information from multiple sources can be combined to 

calibrate the model. 
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Table 9:  Example of data sets for state occurrences of model shows in Figure 11. 

 Data set 1: 

Occurrence of 

progressed lung 

cancer 

Data set 2: Occurrences 

of individuals who died 

from cancer 

Age Occurrences Total Occurrences Total 

27 - - 8 141241 

32 - - 7 124151 

37 - - 15 134112 

42 - - 32 345342 

47 - - 45 636223 

52 - - 109 738712 

57 86 1787 211 891411 

62 159 2714 239 1010921 

67 147 2225 340 1249109 

72 77 1026 430 1230112 

77 39 486 480 1467090 

 

The model in Figure 12 has a transition probability matrix of:  

 

 

in which the parameters p12 and p23 have a non-informative prior distribution Beta(1,1).  

To start the Markov chain for θ=(p12, p23), we first choose a random set of initial values. Say 

this is θ0=(0.02, 0.02). The next step is to choose a candidate parameter set θ’ which is 

obtained by adding the current set θ0 to a random sample from a uniform distribution 

spanning [-ε,ε], say ε =0.001 for both parameters (however ε can take different values for 

each parameter). The candidate set is accepted based on a criterion comparing the total sum 

of squared errors (SSE), such that its total SSE is lower than that of the current set. Then the 

candidate set is renamed as the new current set, and another candidate set is created at 
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random. This is repeated for a high number of iterations (say 5000) and the first 1000 

iterations are treated as a burn-in set, resulting in a chain of 4000 candidate sets.    

Before calibrating the model, an estimate of the variance of the observed data set is calculated 

with a small number of iterations (say 1000). A good estimate of the variance is obtained by 

achieving an acceptance rate between 0.2 and 0.3. The acceptance rate is the number of times 

a set of candidate values is accepted based on the above criterion divided by the total number 

of iterations (i.e. 200 to 300 jumps out of the 1000 iterations in a parameter space is 

considered satisfactory (Whyte, Walsh et al. 2011)).   

Convergence of a model can be verified by plotting the SSE versus iteration number. The 

smaller the SSE, the better calibrated the model is to the data. We can see in Figure 13 that 

this is achieved at around iteration number 600. 

Figure 13: Total sum of squared errors for the first 1000 iterations. The right plot is a 

cropped version of the left plot 

  

 

The chain of parameter values can be seen in the Figure 14 below. Both chains start at 0.02, 

however p12 reaches its best estimate quicker (around iteration 200) compared to p23. Plotting 

the two parameters against each other shows that the Metropolis-Hastings algorithm 

converges after about 600 iterations (Figure 15).  
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Figure 14: Markov chains of parameters p12 and p23. 

 

 

Figure 15: Scatter plot of Markov chains of parameters p12 and p23 both initiated at 

0.02 and reached convergence at around 700 iterations. 

 

Finally, we can summarize the Markov chains of the two parameters: 
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Table 10: Summary of the posterior distributions of transition probabilities p12 and p23 

after 5000 iterations (with 1000 burn-in discarded) 

 Minimum Median Mean 95% Credible Interval Maximum 

p12 0 0.0010 0.0013 (0.0009, 0.0012) 0.021 

p23 0.0029 0.0047 0.0058 (0.0032, 0.0055 0.024 

 

The Excel macro (provided by Sophie Whyte) makes the above modelling with the 

Metropolis-Hastings algorithm straight forward for this simple example.  However, the macro 

requires some tweaking of the parameters in order to ensure a satisfactory acceptance rate. 

This step might be tedious depending on the data to be calibrated.  Also, in order to extend 

this method for more complex models, it would be required to recode the macro and create a 

new spread sheet. A more ideal approach would be to reprogram the method to another 

language such as R or WinBUGS and allow for options to more complicated models (more 

states, more time dependency, better selection of prior distributions, etc). Other limitations 

include the operating system and platform dependency (Windows with MS Office, or Mac 

with Office for Mac 2011), its inability to run on low-spec computers (e.g. low processing 

speed or RAM) and it being impossible to interrupt the macro once initiated.  

5.6.2 Continuous time Markov models applied to three-state lung cancer 

model, using Gibbs sampling and Kolmogorov forward equations using 

WinBUGS 

The following example will focus on an alternative case of partially observed data. Say we 

have the model shown in Figure 11 with the following data for one specific age 

group/gender/ethnicity at one year after the start of the study: 

Table 11: State transition matrix showing the total number of individuals moving from 

state i to state j after 1 year 

 State j 

State i 1 2 3 

1 1250 521 0 

2 0 3021 710 

3 0 0 0 
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For each state transition matrix, we have a transition intensity matrix of: 

 

 

The corresponding transition probability matrix (as a function of time t), P(t) can be obtained 

from Kolmogorov’s forward equation in (Welton 2007) but further simplified to the 

following: 

 

 

 

 

 

since  and  

Calibration of the model was done with 50000 iterations (with burn-in of 10000) and random 

initialization. We can then obtain density curves for g12 and g23, and likewise for P11 and P22 

(Figure 16). 
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Figure 16: Simulation of transition rates g12 and g23, and transition probabilities P11 and 

P22 based on 40000 iterations with the Gibbs sampler and Kolmogorov’s equations with 

state-to-state data at 1 year.  

    

 

Since the calibration of the model is done with respect to a time variable, we can estimate 

transition probabilities at specific times (Figure 17). Table 12 presents summary statistics of 

the results from the simulation for transition rates g12 and g23, and transition probabilities P11 

and P22 at one year and 0.083 years i.e. one month. 

 

Figure 17: Estimation of transition probabilities P11 and P22 at 1 month based on 40000 

iterations with the Gibbs sampler and Kolmogorov’s equations. 
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Table 12: Summary statistics of simulation results for transition rates g12 and g23, and 

transition probabilities P11 and P22 at one year and 0.083 years (one month). This 

includes the mean estimate, standard deviation, Markov chain error, median and 95% 

credible interval. 

t (year) Parameter  Mean SD 

 MC 

error 

2.5% 

Q Median 

97.5% 

Q 

 

g12 0.349 0.0154 7.43E-05 0.319 0.348 0.380 

 

g23 0.211 0.00788 3.70E-05 0.196 0.211 0.227 

1 P11 0.706 0.0109 5.24E-05 0.684 0.706 0.727 

 

P22 0.810 0.00638 3.00E-05 0.797 0.8100 0.822 

0.083 P11 0.972 0.00125 5.99E-06 0.969 0.972 0.974 

 

P22 0.983 6.43E-04 3.02E-06 0.981 0.983 0.984 

 

 

One of the main advantages of this method is that, based on what we know about the states at 

one point in time, we can calculate transition probabilities for any given time. Another 

advantage is that the WinBUGS/WBDiff programming language is straight forward and the 

available code is easily changeable to calibrate more complex models (Welton and Ades 

2005). There is less tweaking of parameters compared to the Excel macro for the Metropolis-

Hastings algorithm and models can be easily be run with a low-end computer.  

5.7 Model calibration: conclusions and options for BODE
3
 

Above we have demonstrated model calibration methodologies for a simple three state 

model, for both transition probabilities and continuous-time transition rates.  We used an 

Excel macro approach, and script written in WinBUGS.  We did not, however, specifically 

address DES model calibration.  Also, we analysed only a very simple model (i.e. Figure 12 
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with transitions to death from cancer, but no transitions to death from other causes as per 

Figure 11).  Our recommendations for future model calibration in BODE
3 

are: 

 The Excel macro using the Metropolis-Hasting algorithm is a reasonable for 

understanding the method and visualising the step-by-step process in an easy three-

state model with limited  

 The macro should be reprogrammed in R and/or WinBUGS for increased flexibility 

and model complexity, such as a greater number of states (e.g. death from other 

diseases states, or more disease progression states).   

 Extensions to the reprogrammed algorithm can be considered, such as supplying 

options for prior distribution and handling different input data 

 Kolmogorov equation solutions are provided up to a four-state model (Welton 2007) 

but solving a model greater than four states would be easier to make use of WinBUGS 

Differential Interface (WBDiff) rather than solving it analytically. This is done by 

providing a differential equation system that describes the model. 

   

 



Modelling Options for ABC-CBA 

57 

 

References 

1. Atkinson, J., T. Blakely, et al. (2012). Health Tracker Technical Report. Burden of 

Disease Epidemiology, Equity and Cost-Effectiveness Programme - Technical Report 

No.11. Wellington, Department of Public Health, University of Otago, Wellington  

2. Beck, J. R. and S. G. Pauker (1983). "The Markov Process in Medical Prognosis." 

Medical Decision Making 3(4): 419-458. 

3. Begg, S., T. Vos, et al. (2007). "The burden of disease and injury in Australia 2003." 

AIHW. 

4. Blakely, T., R. Costila, et al. (2010). "The Burden of Cancer: New Zealand 2006." 

5. Blakely, T., R. Costilla, et al. (2012). Cancer excess mortality rates over 2006-2026 

for ABC-CBA. Burden of Disease Epidemiology, Equity and Cost-Effectiveness 

Programme - Technical Report No.10. Wellington, Department of Public Health, 

University of Otago, Wellington  

6. Blower, S. M., K. Koelle, et al. (2001). "Live attenuated HIV vaccines: predicting the 

tradeoff between efficacy and safety." Proceedings of the National Academy of 

Sciences of the United States of America 98(6): 3618-3623. 

7. Chen, B., G. Y. Yi, et al. (2010). "Analysis of interval-censored disease progression 

data via multi-state models under a nonignorable inspection process." Statistics in 

Medicine 29(11): 1175-1189. 

8. Chia, Y. L., P. Salzman, et al. (2004). "Simulation-based parameter estimation for 

complex models: a breast cancer natural history modelling illustration." Stat Methods 

Med Res 13(6): 507-524. 

9. Costilla, R., J. Atkinson, et al. (2011). Incorporating Ethnic and Deprivation Variation 

to Cancer Incidence Estimates over 2006-2026 for ABC-CBA. Burden of Disease 

Epidemiology, Equity and Cost-Effectiveness Programme - Technical Report No.5. 

Wellington, Department of Public Health, University of Otago, Wellington  

10. Erenay, F. S., O. Alagoz, et al. (2011). "Estimating the Unknown Parameters of the 

Natural History of Metachronous Colorectal Cancer Using Discrete-Event 

Simulation." Medical Decision Making 31(4): 611-624. 

11. Hazen, G. (2000). "Preference Factoring for Stochastic Trees." Management Science 

46(3): 389-403. 

12. Hazen, G. and J. Pellissier (1996). "Recursive utility for stochastic trees." Operations 

Research 44. 



Modelling Options for ABC-CBA 

58 

 

13. He, W. and J. F. Lawless (2003). "Flexible Maximum Likelihood Methods for 

Bivariate Proportional Hazards Models." Biometrics 59(4): 837-848. 

14. Jackson, C. (2011). "Multi-State Models for Panel Data: The msm Package for R." 

Journal of Statistical Software 38(8): 1-28. 

15. Karnon, J. and T. Vanni (2011). "Calibrating models in economic evaluation: a 

comparison of alternative measures of goodness of fit, parameter search strategies and 

convergence criteria." Pharmacoeconomics 29(1): 51-62. 

16. Kiefer, J. and J. Wolfowitz (1956). "Consistency of the Maximum Likelihood 

Estimator in the Presence of Infinitely Many Incidental Parameters." The Annals of 

Mathematical Statistics 27(4): 887-906. 

17. Kvizhinadze, G. and T. Blakely (2011). Projected NZ Life Tables. Burden of Disease 

Epidemiology, Equity and Cost-Effectiveness Programme - Technical Report No.4. 

Wellington, Department of Public Health, University of Otago, Wellington  

18. Nelder, J. A. and R. Mead (1965). "A Simplex Method for Function Minimization." 

The Computer Journal 7(4): 308-313. 

19. Rios Insua, D., F. Ruggeri, et al. (2012). Discrete Event Simulation. Bayesian 

Analysis of Stochastic Process Models, John Wiley & Sons, Ltd: 226-242. 

20. Robbins, H. and S. Monro (1951). "A Stochastic Approximation Method." The 

Annals of Mathematical Statistics 22(3): 400-407. 

21. Rutter, C. M., D. L. Miglioretti, et al. (2009). "Bayesian Calibration of 

Microsimulation Models." Journal of the American Statistical Association 104(488): 

1338-1350. 

22. Spiegelhalter, D. J. (2004). "Incorporating Bayesian Ideas into Health-Care 

Evaluation." Statistical Science 19(1): 156-174. 

23. Vanni, T., J. Karnon, et al. (2011). "Calibrating models in economic evaluation: a 

seven-step approach." Pharmacoeconomics 29(1): 35-49. 

24. Welton, N. J. (2007). "Solution to Kolmogorov’s equations for some common 

Markov models ". 

25. Welton, N. J. and A. E. Ades (2005). "Estimation of markov chain transition 

probabilities and rates from fully and partially observed data: uncertainty propagation, 

evidence synthesis, and model calibration." Medical decision making : an 

international journal of the Society for Medical Decision Making 25(6): 633-645. 



Modelling Options for ABC-CBA 

59 

 

26. Whyte, S., C. Walsh, et al. (2011). "Bayesian calibration of a natural history model 

with application to a population model for colorectal cancer." Medical decision 

making : an international journal of the Society for Medical Decision Making 31(4): 

625-641. 

 

  

  



Modelling Options for ABC-CBA 

60 

 

Appendix One: Metropolis-Hastings Algorithm  

The following explains the iterative steps of a Metropolis-Hastings sampler. Suppose we 

would like to create a Markov chain of parameter sets that obey a target distribution p.  

(1) Start with some initial set, x0 

(2) Draw a random candidate set x' which comes from a proposal probability distribution, q, 

which only depends on x0. This is usually a distribution that is easy to sample (commonly 

used choices are normal, binomial, beta or gamma). The closer q is to p, the better the 

algorithm works. 

 

(3) Compute the ratio  

 

in which p and q are probability density functions for the target and proposal distributions, 

respectively. 

(4) Define an acceptance probability as the minimum of R and 1. 

(5) Let u be randomly selected from a uniform distribution ranging from 0 to 1.  

(6) If u < R, accept the candidate set x’ and assign x1 = x'. Otherwise, x1=x0.  

(7) Return to step (2) and repeat for xj, for which j=2,..,M. 

(8) Discard a burn-in set j=0,..,B for which B<M.  

(9) (xb+1, xb+2, .., xB) is the Metropolis-Hastings sample of parameter sets that comes from the 

posterior distribution p(x).  
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Appendix Two: R Code for Metropolis-Hastings Algorithm 

# Define true values of model parameters 

trueA <- 5 

trueB <- 1 

trueSd <- 10 

sampleSize <- 101         

   

# Create independent values x 

x <- -50:50 

 

# Create dependent values according to ax + b + N(0,sd) 

y <- trueB + trueA * x + rnorm(n=sampleSize, mean=0, sd=trueSd) 

 

# Plot the sample data 

plot(x,y, main="") 

 

# Specify prior (uniform) distributions for parameters 

a.prior <- c(2,10) 

b.prior <- c(-10,10) 

s.prior <- c(5,20) 

 

logPrior <- function(a, b, std){ 

   tmp <- dunif(x=a, a.prior[1], a.prior[2], log=T) + 

          dunif(x=b, b.prior[1], b.prior[2], log=T) + 

          dunif(x=std, s.prior[1], s.prior[2], log=T) 

   return(tmp) 

} 

 

# Specify likelihood function 

 

logLik <- function(a, b, std){ 

    out <- a*x + b 

    if(std<0) std = 0 

    tmp <- sum(dnorm(x=y, mean=out, sd=std, log=T)) 

    return(tmp) 

 } 

 

# Plot the likelihood profile (for a only) 

LL <- function(x){return(logLik(x, trueB, trueSd))} 

LLVal <- lapply(seq(2, 10, by=.05), LL) 

plot (seq(2, 10, by=.05), LLVal, type="l", xlab = "a",  

ylab = "Log Likelihood")  

 

## Metropolis-Hastings algorithm to sample from posterior density ## 

    

# Initial settings for algorithm 

chain.length <- 50000 

proposal.width <- c(0.078,0.5,0.5)  
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# Initial values (a, b, s), its logLik value and whether it is  

# accepted based on the decision criterion below  

last <- c(mean(a.prior), mean(b.prior), mean(s.prior),  

logLik(mean(a.prior),mean(b.prior),mean(s.prior)), 1) 

 

# Set up storage output for candidate values 

current <- rep(NA, 5)  

chain <- array(NA, dim=c(chain.length, 5)) 

 

# Assign first candidate as initial values 

chain[1,] <- last 

 

# Iterate for entire chain.length 

for (i in 1:(chain.length-1)){ 

  # Propose new values and calculate LL 

  current[1:3] <- rnorm(3, mean=last[1:3], sd = proposal.width) 

current[4] <- logLik(current[1],current[2],current[3]) + 

 logPrior(current[1],current[2],current[3]) 

  current[5] <- 1 

   

  # Calculate decision criterion 

  R <- exp(current[4] - last[4]) 

 

# Decide whether to accept or not 

alpha <- runif(1, 0, 1) 

 

 

if (alpha <= R) { 

chain[i+1,] <- current 

 last <- current 

 }  

  else { 

     last[5] <- 0 

     chain[i+1,] <- last 

} 

} 

   

# Calculate acceptance rate 

burnIn <- 10000 

AR <- mean(chain[-(1:burnIn),5]) 

 

# Summarize results, and calculate 95% credible interval (for a only) 

summary(chain[-(1:burnIn),1]) 

quantile(chain[-(1:burnIn),1],probs=c(0.025,0.975)) 

 

# Plot the results (for a only) 

par(mfrow = c(2,1)) 

hist(chain[-(1:burnIn),1], nclass=30, , main="Posterior of a",  

 xlab="True value = red line" , xlim=a.prior) 

abline(v = mean(chain[-(1:burnIn),1])) 
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abline(v = trueA, col="red" ) 

plot(chain[-(1:burnIn),1], type = "l", xlab="True value = red line" ,  

 ylab="", main = "Chain values of a", ) 

abline(h = trueA, col="red" ) 

 

# For comparison with linear regression: 

summary(lm(y~x)) 

confint(lm(y~x)) 

 

 


