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Abstract 
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competitive balance in the sports economics literature, in comparison with other standard-
deviation-based measures. Simulation methods are used to evaluate the effects of changes 
in season length on the distributions of competitive balance measures for different 
distributions of the strengths of teams in a league. The popular RSD measure performs as 
expected only in cases of perfect balance; if there is imbalance in team strengths, its 
distribution is very sensitive to changes in season length. This has important implications 
for comparisons of competitive balance for different sports leagues with different numbers 
of teams and/or games played. (JEL L83, D63, C63) 
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I. INTRODUCTION 

Professional sports leagues “are in the business of selling competition on the playing 

field” (Fort and Quirk 1995, p.1265). An appropriate degree of competitive balance, how 

evenly teams are matched, is regarded as central to this endeavour, as this affects the 

degree of uncertainty over the outcomes of individual matches and overall championships. 

According to the ‘uncertainty of outcome hypothesis’ (Rottenberg 1956), higher levels of 

competitive balance, reflected in more uncertain outcomes, increase match attendances, 

television audiences and overall interest (Forrest and Simmons 2002; Borland and 

Macdonald 2003; Dobson and Goddard 2011). However, in a free market, teams with 

greater financial resources (e.g., due to location in larger population centres, more lucrative 

sponsorship deals or larger shares of television broadcasting rights) can hire better players, 

improve team performance and increase their dominance. This undermines competitive 

balance and hence uncertainty of outcome, which, in turn, can threaten the sustainability of 

the league because of excessive predictability of outcomes. Consequently, in sports 

antitrust cases, a lack of competitive balance is a widely used justification for restrictive 

practices (such as salary caps, player drafts and revenue sharing) that would not be 

countenanced in other industries (Fort and Quirk 1995; Szymanski 2003).   

An important strand of the competitive balance literature involves assessing the extent 

of competitive balance, tracking its movements over seasons, and examining the effects of 

regulatory, institutional and other changes in business practices (Fort and Maxcy 2003). 

Appropriate measurement is an important prerequisite for such analyses. Consequently, 

considerable effort has gone into measuring competitive balance.  
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Standard measures of dispersion, inequality and concentration, applied to end-of-

season league outcomes such as win percentages or points percentages, are commonly 

used. These measures include the actual standard deviation, the ratio of the actual and 

idealized standard deviations (Noll 1988; Scully 1989; Quirk and Fort 1992; Fort and Quirk 

1995), the Gini coefficient (Fort and Quirk 1995; Schmidt and Berri 2001), the Herfindahl–

Hirschman index (Depken 1999), concentration ratios (Koning 2000) and relative entropy 

(Horowitz 1997).1  

From this menu, the ratio of standard deviations (RSD), also known as the ‘relative 

standard deviation’, is the most commonly used measure of competitive balance in the 

sports economics literature. This is generally considered the most useful “because it 

controls for both season length and the number of teams, facilitating a comparison of 

competitive balance over time and between leagues” (Fort 2007, p. 643). The aim of this 

paper is to examine, using simulation methods, the distributional properties of the widely 

used RSD measure in comparison with other standard-deviation-based measures. 

Despite their widespread use, relatively little is known about the properties of the 

sampling distributions of such measures in the context of comparing competitive balance in 

different sports leagues with different design characteristics. A distinctive characteristic of 

sports leagues is that their playing schedules impose restrictions on the distribution of wins; 

for example, teams cannot win matches in which they do not play. Playing schedules 

constrain the range of feasible values of measures of competitive balance (Horowitz 1997; 

Utt and Fort 2002; Owen et al. 2007; Owen 2010; Manasis et al. 2011). Analysis of the 

implications of this feature has, so far, concentrated on deriving analytical expressions for 

lower and upper bounds of selected competitive balance measures. These lower and upper 
                                                 
1 See Dobson and Goddard (2011, Ch. 3) for a succinct review of these and other measures. 
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bounds are found to depend on the number of teams and/or the number of games played by 

each team (Depken 1999; Owen et al. 2007; Owen 2010; Manasis et al. 2011). This 

complicates the interpretation of balance measures, when comparisons (e.g., across 

different leagues or for the same league over time) involve different numbers of teams or 

games played, which is often the case. Although these results are suggestive of potential 

problems, actual outcomes may be far from the extremes of the feasible ranges and, 

arguably, may be less affected by changes in competition design. For meaningful 

comparisons, it is important to have a clear idea of how the complete distributions vary in 

response to different aspects of league design (e.g., the number of teams, the number of 

games played by each team or other variations in the playing schedules). Simulation 

provides an ideal approach to evaluate the effects of such changes in competition design on 

the distributions of competitive balance measures for known distributions of the strengths 

(abilities) of the teams in the league.  

Simulation methods have been applied to several different aspects of the analysis of 

sports leagues, including predicting the outcomes of matches and tournaments (e.g., Clarke 

1993; Koning et al. 2003), examining the effects of tournament design or 

promotion/relegation systems on specific measures of competitiveness or outcome 

uncertainty (Scarf et al. 2009; Puterman and Wang 2011), assessing the effects on match 

attendance of changes in league structure or of equalizing playing talent across teams 

(Dobson et al. 2001; Forrest et al. 2005), illustrating the properties of a theoretical model of 

strategic behaviour in football (Dobson and Goddard 2010), computing measures of match 

importance (Scarf and Shi 2008), and generating ex ante measures of uncertainty of 

outcome (King et al. 2012). However, there has been surprisingly little use of simulation 
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methods to examine the properties of measures of competitive balance. As far as we are 

aware, the only other study to do so is by Brizzi (2002); he considers normalized measures 

based on the standard deviation, the Gini coefficient, the mean absolute deviation and the 

mean letter spread, all applied to points totals rather than points ratios. However, he does 

not consider the popular RSD measure and simulates sampling distributions only for the 

case of exactly equally matched teams, i.e., the polar case of perfect competitive balance.  

In Section II we outline the various standard deviation-based measures of competitive 

balance considered in our analysis. Section III contains the details of the simulation design. 

The distributional properties of the various competitive balance measures, for different 

numbers of teams and games played, are reported in Section IV. Concluding comments and 

implications for analysts of competitive balance, sports administrators and antitrust 

authorities are contained in Section V.  

 

II. STANDARD-DEVIATION-BASED MEASURES OF COMPETITIVE BALANCE 

In practice, measurement of competitive balance is complicated by its 

multidimensional nature. The different dimensions include the evenness of teams in 

individual matches, the distribution of wins or points across teams at the end of a season, 

the persistence of teams’ record of wins or points across successive seasons, and the degree 

of concentration of championship wins over a number of seasons (Kringstad and Gerrard 

2007).  

In this study we focus on different variants of the standard deviation of points ratios 

(or, equivalently, points percentages) based on end-of-season standings. In many sports, 

including association football, points are allocated for results other than wins (e.g., draws, 
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or ties) and different points assignments are possible for wins, draws and losses; therefore, 

examining points ratios is more general than considering win ratios. We emphasize 

standard-deviation-based measures because of their popularity in the analysis of 

competitive balance in practice; in principle, the same approach can be used for any 

competitive balance measures. 

The ‘actual’ standard deviation of points ratios (ASD) provides a simple, natural 

measure of the ex post variation in end-of-season points ratios. This can be calculated as 

 

2
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N equals the number of teams in the league, pi = Pi /Ti, where Pi and Ti are, respectively, the 

actual number of points accumulated and the maximum possible points total attainable by 

team i in a season, and 
1

N
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=

= ∑ /N is the league’s mean points ratio. For scenarios in 

which draws are not possible or are worth half a win, then p  always equals 0.5, so the 

mean points ratio does not need to be estimated and N can be used, instead of (N – 1), as 

the divisor in calculating the standard deviation.  

Other things equal, the larger the dispersion of points ratios around the league mean in 

any season, the more unequal is the competition. However, although the mathematical 

expression for ASD does not depend explicitly on the number of games played by each 

team, ASD tends to decrease if teams play more games because the extent of random noise 

in the final outcomes is reduced (Leeds and von Allmen 2008). Consequently, following 

Noll (1988) and Scully (1989), sports economists commonly use RSD, which compares 

ASD to a benchmark ‘idealized standard deviation’ (ISD) (e.g., Schmidt and Berri 2003; 
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Fort and Lee 2007). ISD corresponds to the standard deviation of the outcome variable in a 

perfectly balanced league in which each team has an equal probability of winning each 

game.2  

If draws are not possible, then ISD can be derived as the standard deviation of a 

binomially distributed random variable with a probability of success of 0.5 across 

independent trials; hence, ISD = 0.5/G0.5, where G is the number of games played by each 

team (Fort and Quirk 1995). If draws are possible, analogous expressions for ISD can be 

derived, allowing for different possible points assignments for wins, draws and losses (Cain 

and Haddock 2006; Fort 2007; Owen 2012). A variant of ISD has also been proposed that 

allows for home advantage (Trandel and Maxcy 2011).  

RSD, calculated as ASD/ISD, is the most widely used competitive balance measure in 

the sports economics literature (Fort 2006, Table 10.1); indeed, it has been described as 

“the tried and true” measure of within-season competitive balance (Utt and Fort 2002, 

p.373). RSD takes the value of unity if the league is perfectly balanced, with higher values 

representing greater levels of imbalance. However, Goosens (2006, p.87) criticises RSD for 

sometimes taking values below unity (i.e., ASD < ISD), implying “a competition that is 

more equal than when the league is perfectly balanced”. Such an apparently contradictory 

interpretation is feasible because ISD represents an ex ante probabilistic benchmark rather 

than the actual ex post minimum for ASD, i.e., zero, corresponding to a situation in which 

all teams end up with the same points ratio. To avoid values below unity, Goosens (2006) 

advocates using a normalized standard deviation measure, here denoted ASD*, which 

                                                 
2 ‘Idealized’, in this context, does not necessarily imply ‘ideal’, in the sense of an optimal value for ASD. 
Perfect balance and complete imbalance are polar cases, but the former is almost certainly not the optimal 
level of competitive balance. What constitutes an optimal level is an open question, and the answer may vary 
from one league to another; see Fort and Quirk’s (2010, 2011) formalization of the factors involved. 
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compares ASD with its maximum feasible value; i.e., ASD* = ASD/ASDub, where ASDub is 

the upper bound of ASD corresponding to the ex post ‘most unequal distribution’ (Fort and 

Quirk 1997; Horowitz 1997; Utt and Fort 2002).3 This involves one team winning all its 

games, the second team winning all except its game(s) against the first team, and so on 

down to the last team, which wins none of its games.  

Of more concern, RSD has an upper bound, RSDub, which is an increasing function of 

the number of teams, N, and the number of rounds of matches, K (Owen 2010); indeed, 

RSDub is much more sensitive to variation in the numbers of games played than ASDub.4 

Consequently, comparing competitive balance across different leagues using RSD is likely 

to be more problematical than if ASD is used, especially if the relevant upper bounds of 

RSD (and hence the feasible range of outcomes) differ markedly due to differences in these 

parameters across leagues. Paradoxically, RSD is commonly advocated for comparisons 

that involve different numbers of teams and/or games played (e.g., Leeds and von Allmen 

2008, pp.156-157; Fort 2011, pp.167-169; Blair 2012, pp.67-68). Variation in the feasible 

range of values for RSD for different N and K therefore represents a potentially more 

fundamental justification for the use of a normalized standard deviation measure that lies in 

the interval [0, 1].5  

The coefficient of variation of points ratios, CV = ASD/ p  is another potential 

standard-deviation–based competitive balance measure. If p  equals 0.5, then variation in 

CV is entirely due to variation in ASD, so nothing is gained by also considering CV. 

                                                 
3 Goosens (2006) calls ASD* the “National Measure of Seasonal Imbalance”. Brizzi (2002) also considers a 
normalized ASD measure (applied to total points) and inverts the measure to give an index of equality, EQ = 
1 − (ASD/ASDmax), where ASDmax is the standard deviation of total points in the most unequal distribution. 
4 For the case of a balanced schedule with no draws (or with draws treated as half a win), RSDub = 2[K(N + 
1)/12]0.5, which is an increasing function of both K and N, compared to ASDub = [(N + 1)/{12(N − 1)}]0.5, 
which, in the limit, as N increases, tends to (1/12)0.5 = 0.289 (Owen 2010). 
5 Note that the normalized variant of RSD, defined as RSD* = RSD/RSDub, is identical to ASD/ASDub = ASD*. 
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However, if draws are possible and are not considered as worth half a win, then p  can vary 

across seasons, and CV is a feasible alternative.6  

Other than results on the upper bounds of ASD and RSD, little is known about the 

distributional properties of the various standard-deviation–based measures of competitive 

balance under different degrees of inequality in team strengths; this provides the motivation 

for the current study.  

 

III. SIMULATION DESIGN 

In order to examine how the distributional properties of standard-deviation-based 

measures of within-season competitive balance are affected by changes in the format of a 

sports league, specifically season length, we consider simulated results for a wide range of 

different scenarios corresponding to different values of N (the number of teams), K (the 

number of rounds of matches), and different distributions of team strengths. We allow for 

the existence of draws, home advantage, and alternative points assignment schemes, all of 

which can affect match outcomes and hence, ultimately, teams’ end-of-season points ratios 

and league rankings.  

We consider leagues with balanced schedules, in which each team plays every other 

team in the league the same number of times. Season length, i.e., the number of games 

played by each team, G, is the same for all teams and equals K(N – 1). This format is 

common, especially in European football (typically with K = 2). However, the simulation 

methods used can be adjusted to reflect the details of any unbalanced schedule of matches, 

in which a team may play some teams more frequently than others. 

                                                 
6 Note that CV = [2 IGE(2)]0.5, where IGE(2) is a member of the family of generalized entropy measures of 
inequality (Bajo and Salas 2002).  
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The simulation design includes the following components:  

(i) An explicit characterization of the strengths of the teams in the league;   

(ii) A model that generates match outcomes allowing for the effects of relative team 

strengths, home advantage (if included) and stochastic factors; 

(iii) Combining generated outcomes for individual matches in the playing schedule of 

matches for the season, using a given points assignment scheme, to arrive at end-of-season 

points ratios for each team in the league and hence values of the various competitive 

balance measures; 

(iv) Repeating the generation of individual match outcomes in the playing schedule a large 

number of times to generate a distribution of values for each end-of-season competitive 

balance measure for given values of team strengths and competition design parameters; 

(v) Rerunning the simulations for different assumptions about the distribution of teams’ 

strengths and different N and K. 

In reality, teams’ strengths are unobservable, and so, therefore, is the degree of 

inequality in their strengths. One of the main advantages of using a simulation approach is 

that team strengths are pre-specified and hence known. Simulating a large number of 

seasons and calculating the end-of-season competitive balance measures allows us to 

examine the distributions of these measures for different assumptions about the distribution 

of team strengths and for season length (which depends on N and K) in order to assess 

which measures provide the most reliable representation of the imbalance in team strengths 

across a range of different leagues in practice.  
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Modelling Individual Match Outcomes 

To model match outcomes we use a framework similar to that of Stefani and Clarke 

(1992) and Clarke (1993, 2005). The outcome of each match is characterized by the home 

team’s winning margin (points or goals scored by the home team less points or goals scored 

by the away team). The winning margin depends on the teams’ relative playing strengths 

and the extent of home advantage (if any): 

 

 

 Mijm = H + Si – Sj (2) 

 

where Mijm is home team i’s expected winning margin against away team j in match m; H 

is home advantage, and Si is the strength rating for team i.7  

To provide plausible values of team strengths and, where considered, home advantage, 

these are calibrated against actual results from English Premier League (EPL) football. The 

model in equation (2) is fitted to match results, season by season, for 10 seasons of the 

EPL (2001/2 to 2010/11), both allowing for a constant home advantage and with H 

omitted. The error in prediction is calculated as: 

 

 Eijm = Aijm – Mijm  (3) 

 

where Aijm and Eijm are, respectively, the actual match winning margin and the error in the 

prediction of the match outcome of home team i against away team j in match m. 

Two approaches are adopted. For what we denote the ‘linear model’, we calculate the 

strength ratings (and, if included, H) that minimize the sum of squared errors, 2 ,ijm
m

E∑  in 

                                                 
7 Mijm < 0 corresponds to a win for the away team with a points margin of |Mijm|. 
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match outcome predictions for each season (regardless of whether or not draws can occur, 

as there is no specific draws parameter in this method).  

We also fit a Bradley-Terry (1952) model for paired comparisons to estimate the 

strength ratings and, if included, H. The probability of a home team win is based on the 

relative strength ratings of the two opposing teams. The probability that home team i beats 

away team j is given by Pwin,i,j = exp(ri)/[exp(ri) + exp(rj)], where ri is the strength rating 

for team i (i = 1, ..., N). Pwin,i,j is a positive function of ri, a negative function of rj, and 

exhibits diminishing returns to relative ability. With no draws, the probability that home 

team i loses to away team j is given by Plose,i,j = 1 − Pwin,i,j. For ease of notation, denoting Ri 

= exp(ri), Pwin,i,j = Ri/(Ri + Rj) and Plose,i,j = Rj/(Ri + Rj). Maximum likelihood estimates of 

the Ri values (i = 1, ..., N) are obtained by maximizing the log-likelihood function for the 

set of match outcomes for the season, and the ri ratings obtained as ln(Ri). The Bradley-

Terry model design is flexible and can incorporate a general home advantage, team-

specific home advantages, drawn matches, or combinations of these (Rao and Kupper 

1967; Agresti 1990; King 2011). Draws are common outcomes in the EPL data, so the 

Bradley-Terry models are optimized with a draws parameter present. Because the linear 

and Bradley-Terry models use the numerical difference in the competing teams’ strengths 

as the basis of an expected match outcome, we can normalize ability ratings, so that the Si 

ratings in equation (2) have a mean of zero for both model types.8 

Table 1 reports the mean, maximum and minimum ranges of strength ratings for ten 

EPL seasons under each model type. Plots of the ranked strength ratings for the 20 EPL 

teams are approximately linear functions of the teams’ rank, in each season. We therefore 

                                                 
8 A team’s strength rating can be interpreted as the expected points margin resulting from a match against an 
average team at a neutral venue (with no home advantage for either team). 
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maintain this observed linear pattern and range of fitted strength ratings in the EPL as a 

benchmark for formulating the different predetermined strength ratings in our simulations.9 

Two variants of the simulation model are considered to alleviate concerns that any 

results may be dependent on a specific simulation model. In the first model (denoted the 

‘linear simulation model’), simulating a match outcome involves adding a generated 

random error to the right-hand side of equation (2):  

 

 SMijm = (H + Si – Sj) + GEm (4) 

 

where SMijm and GEm are, respectively, the simulated winning margin and the generated 

error for home team i’s match against away team j in match m. GEm is drawn from a 

normally distributed random variable with a zero mean and standard deviation, σ = 1.5. 

The properties of GE are consistent with those of the actual errors obtained if the model in 

equations (2) and (3) is fitted, by minimizing the sum of squared errors in prediction, to the 

EPL data (2001/2 to 2010/11). Hence, the distribution of generated errors is approximately 

equal to the distribution of observed errors. 

Positive values for simulated winning margins indicate home-team wins and negative 

values indicate away-team wins. The linear simulation model does not explicitly account 

for the possibility of draws, but they can be incorporated in the model by finding the value 

of d (where −d < match outcome < d) such that the proportion of match outcomes classified 

as draws is the same as observed in the EPL data.  

                                                 
9 In the simulations, team strengths are fixed throughout each simulated season. Updating of team strengths 
as the season progresses is possible in this setup (e.g., Clarke 1993; King et al. 2012) but, in order to focus on 
the properties of the competitive balance measures, we assume team strengths remain constant throughout the 
season. 
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In the second simulation model, the Bradley-Terry model is used to generate 

probabilities of a win, draw, or loss for the home team, based on the relevant teams’ 

strength ratings. Simulating match outcomes simply involves generating a random number, 

x, from a uniform distribution on the interval (0, 1), which determines the category of 

match outcome. For example, if the probabilities of a home win, a draw and an away win 

for a particular match are, respectively, 0.4, 0.35 and 0.25, then 0 ≤ x < 0.4 would indicate 

a home team win, 0.4 ≤ x < 0.75 a draw, and 0.75 ≤ x < 1.0 an away team win. 

The probability of the home team winning in the EPL is approximately 0.6 (assuming 

draws are considered as half a win). This probability is also observed in the simulated data 

whenever home advantage is included in the match outcome generation process, whereas a 

value of approximately 0.5 is observed in the simulated data whenever home advantage is 

not included. This suggests inclusion of the home advantage parameter gives realistic 

results, whereas exclusion gives location-neutral results.  

 

Specification of Distributions of Teams’ Strength Ratings 

Five strength rating distributions are used in the simulations. All have an average 

strength rating of zero and follow a linear pattern of ratings, with teams equally spaced, 

from the strongest to the weakest team. The five distributions take values for the range, R = 

(maximum strength – minimum strength), of 0, 1.25, 2.5, 3.75 and 5, i.e., covering a 

spectrum from teams of equal strength (perfect balance) through to very unequally 

distributed team strengths (a high degree of imbalance). For both the fitted Bradley-Terry 

and linear models, the optimized EPL strength ratings have a range that approximately 

matches the middle (R = 2.5) of the five distributions specified. Hence, the results of the 



 14 

simulation cover both perfect equality and a high degree of inequality, and centre roughly 

where we would expect to see actual EPL results taking place. 

The strength ratings for N = 20 are illustrated diagrammatically in Figure 1. To 

construct strength rating distributions for different values of N but with the same level of 

‘strength inequality’, we maintain a constant range of strength ratings but allow the slope 

of the plot of strength ratings against team number to decrease as N increases. Details of the 

five strength rating distributions considered, for different values of N, are reported in 

Tables A1 to A4 in Appendix A. Once we depart from a perfectly balanced league, many 

different patterns of inequality in team strengths are possible, but the pattern we adopt has 

two advantages. Firstly, maintaining a constant range of strength ratings means the 

probability of the strongest team beating the weakest team remains constant with changes 

in N. Secondly, an average-strength team will have unchanged probabilities of beating both 

the strongest and weakest teams.10 

 

Simulation Parameters 

Simulations were run for both the linear and Bradley-Terry-type model for the 

following parameters and variations in specification: range (R): 0, 1.25, 2.5, 3.75, 5; 

number of teams (N): 10, 15, 20, 25; number of rounds per season (K): 2, 4, 6, 8, 10; draws 

possible (with the probability of a draw approximately matching that in the EPL) or no 

draws; home advantage: H = 0, H ≠ 0; and points assignment schemes: (2,1,0), (3,1,0).11 

                                                 
10 Although not a specific design feature, the standard deviation of strength ratings is approximately 
preserved as N varies for each range of strength ratings considered. 
11 The notation (3,1,0), for example, represents three points for a win, one point for a draw, and zero points 
for a loss. 
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A thousand simulations were run for each combination of parameters and specification 

choices for each of the two simulation models. This gives a large number of different 

combinations of model type and parameter selection. However, the key results relating to 

the effects of variation in season length are not affected in any important way by variations 

in the other characteristics; to save space we therefore report representative results.  

For each set of simulated end-of-season points ratios, we calculate ASD, RSD = 

ASD/ISD, ASD* = ASD/ASDub, and CV = /ASD p  (if p  ≠ 0.5). For the calculation of 

ASD, we use N as the divisor in cases in which p  = 0.5, i.e., if draws are not allowed or if 

a (2,1,0) points allocation is used; otherwise we use (N − 1), as in equation (1).  

ISD is calculated as 0.5/G0.5, where G = K(N − 1) is the number of games each team 

plays per season, in cases in which draws are not feasible and H = 0. If draws are feasible, 

then we use the corresponding ISD = (1 ) / 4d G−  for a (2,1,0) points assignment scheme, 

or [(1 )( 9) / 4] / 9d d G− +  for a (3,1,0) points assignment, where d is the simulated 

probability of a draw in that season (Owen, 2012, equations (2′) and (3′) respectively). If H 

≠ 0, we use the ISD expression derived by Trandel and Maxcy (2011, p.10).12  

ASDub, the upper bound of ASD, corresponding to the most unequal distribution of 

results possible given the (balanced) schedule of games played, is evaluated as [(N + 

1)/{12(N − 1)}]0.5, if ASD is calculated with N as the divisor, and [N(N + 1)/(12(N − 1)2)]0.5, 

if ASD is calculated with (N – 1) as the divisor (Owen 2010).13  

 
                                                 
12 The home-advantage-corrected ISD calculated by Trandel and Maxcy (2011) treats a draw, if feasible, as 
half a win. We apply this form of ISD only to the case of home advantage with no draws. 
13 ASD* is invariant to whether the divisor in ASD is N or (N − 1), as long as ASD and ASDub are defined 
consistently; this applies regardless of the details of the points assignment. For the non-symmetric (3,1,0) 
assignment, the mean points proportion will usually not equal 0.5 in practice; however, by construction, it is 
0.5 for the most unequal distribution.  
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IV. SIMULATION RESULTS 

To compare the distributions of the various competitive balance measures visually for 

different distributions of strength ratings, model types and competition specifications, we 

use kernel density estimates (using the Epanechnikov kernel function in Stata). We focus 

on presenting results for the Bradley-Terry model allowing for draws and home advantage, 

with a (3,1,0) points allocation. These are representative of the results obtained with other 

variations in parameters and specifications, the effects of which are minor compared to the 

dominant patterns documented below.14  

Figure 2 contains kernel densities for ASD* and RSD for the case of N = 20 and K = 2, 

for varying degrees of imbalance in the strength of the teams (from R = 0 through to R = 5). 

These measures satisfy a basic minimum requirement for a reasonable indicator of 

competitive balance: increasing levels of imbalance in the distribution of team strengths are 

represented by rightward shifts in the densities. A similar pattern is obtained for ASD and 

CV. 

Next, we examine the effects of changing the number of teams or the number of 

rounds for different levels of competitive balance.15 Figure 3 shows the effects of varying 

K, the number of rounds, keeping the number of teams, N, fixed at 10, for the case of 

perfect balance in team strengths, i.e. Si = 0 for all i. The densities for ASD in panel (a) 

illustrate the concern that motivated the development of RSD; ASD, on average, takes 

higher values and its density has a larger variance if teams play fewer games (in this case 
                                                 
14 To demonstrate the robustness of key results to variations in model and parameters, the supporting 
information contains simulated densities for the linear model, with draws, home advantage, and a (3,1,0) 
points allocation (Appendix B) and the linear model, with no draws, no home advantage, and a (2,1,0) points 
allocation (Appendix C). Summary statistics (minimum, mean, maximum, and the 5th, 25th, 50th, 75th and 
95th percentiles) for the simulated distributions for RSD and ASD* are reported in Appendices D, E and F.  
15 The results for varying N and K are examined separately, rather than focusing purely on G, the number of 
games each team plays, because the upper bound of ASD is a decreasing function of N and not K, but the 
upper bound for RSD is an increasing function of both (Owen 2010). 
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because there are fewer rounds of games). As K increases, the densities for ASD shift to the 

left and the variances of the observed ASD values decrease. This pattern, analogous to 

positive ‘small-sample bias’ in estimating the degree of inequality in teams’ playing 

strengths using ASD, is also observable in its normalized variant, ASD*, in panel (c) and 

CV in panel (d). Therefore, adjustments to allow for the feasible range of values of ASD (as 

with ASD*) or variations in the league’s mean points ratio (as with CV) do not correct for 

these properties of ASD.  

In contrast, in this case, RSD does correct for the shift in the density of ASD as K 

varies, as illustrated in panel (b) of Figure 3, which are approximately centred on unity. As 

shown in Figure 4, similar patterns are obtained if N is allowed to vary for a constant value 

of K.16 Therefore, in the case of perfect balance, whereas ASD, ASD* and CV exhibit 

upward bias in estimating competitive imbalance for shorter seasons, RSD does exactly 

what it was designed to do by controlling for the effects of variations in the number of 

games played, either due to variation in N or K. 

The next set of comparisons looks at the case of varying N while keeping K fixed at 2, 

but this time for the case of moderate imbalance in team strengths (R = 2.5), as 

approximately relevant for the EPL. The densities are shown in Figure 5. Again, a leftward 

shift and reduced variance of the density functions are observed for ASD* as N increases. 

However, the striking feature of Figure 5 is the behaviour of the densities for RSD in panel 

(b). As N increases, the density functions shift to the right.  

This feature of the density for RSD is even more strikingly displayed in Figure 6. Here 

we keep N = 10 throughout and increase the number of rounds, K (from 2 up to 10). ASD* 

                                                 
16 In Figure 3 and following Figures, we focus on the densities for RSD and ASD*, as the densities for ASD 
and CV behave in a similar fashion to ASD*. 
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displays similar properties to Figure 5, as discussed above. The density for RSD shifts even 

more markedly to the right, reflecting the more dramatic increase in the number of games 

played as K increases.  

Figures 7 to 9 compare the properties of the densities of ASD* and RSD for the highest 

level of imbalance in the simulations (R = 5). For ASD*, the densities are all now centred at 

higher values of ASD* compared to the locations in Figures 4, 5 and 6, reflecting the higher 

degree of imbalance in team strengths, but again display leftward drift and decreased 

variance as K or N increases. The densities for RSD show an even more marked rightward 

shift as N or K increases.17  

For higher levels of imbalance, the larger the number of games played, the smaller is 

the overlap between the RSD densities for different values of K. In Figure 9, with R = 5 and 

N = 20, there is no overlap at all in the sets of simulated RSD values when comparing the 

densities for K = 2, 4, 6, 8 and 10; see the maximum and minimum simulated values in 

Appendix Table D9. The rightward shift in the RSD densities as more games are played is 

consistent with the upper bound of RSD being a strictly increasing function of N and K, as 

discussed in section II. However, what the simulations show is that the whole density 

function of RSD shifts to the right, for representative distributions of team strengths.  

The notion that RSD controls for variation in season length (whether due to changes in 

the number of teams or rounds) therefore applies only in the polar case of perfect balance in 

team strengths, as illustrated by a comparison of Figures 3 and 4, panel (b), with the 

corresponding panels in Figures 5 to 9.  

                                                 
17 The marked rightward shifts in Figures 5 and 7 are therefore not an artefact of the way in which the 
strength distributions, for a given R, are adjusted as N is varied, because similar rightward shifts in the RSD 
densities are obtained when K is increased for given R and N.  
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The sensitivity of RSD values to N and K complicates interpretation of comparisons of 

RSD values from different leagues (with different N and/or K) or from the same league if 

there are variations in its N or K over time, as is commonly the case. Direct comparisons of 

numerical values for RSD implicitly assume that RSD controls for season length, so that 

differences in RSD values are presumed to reflect primarily differences in the degree of 

imbalance in playing strengths. 

To illustrate the problems with this approach, in Figure 10 we plot densities for five 

different combinations of N, K and R: R = 1.25, with N = 10 and K = 8 (72 games for each 

team); R = 2.5, with N = 20 and K = 2 (38 games for each team), R = 2.5, with N = 10 and 

K = 4 (36 games for each team); R = 2.5, with N = 20 and K = 4 (76 games for each team); 

and R = 5, with N = 10 and K = 2 (18 games for each team). The densities for RSD in panel 

(b) overlap considerably, and do not even preserve the correspondence between the left-to-

right order of the densities’ location and the values of R, suggesting that RSD is unable to 

identify the underlying levels of competitive balance. In contrast, the densities for ASD* in 

Figure 10, panel (a) do separate out the three different degrees of imbalance in playing 

strengths, at least for the limited comparisons in this example. This is consistent with the 

ASD being less dramatically affected by variations in the number of games played by each 

team. 

The location shifts discussed above are also illustrated in Table 2, which summarizes 

the mean values of the density functions for RSD and ASD* for different values of N, K and 

R. In particular, for each value of R, the variation in mean values of ASD* across different 

value of N and K is relatively limited (despite the short-season upward bias). In contrast, 
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for each value of R (apart from R = 0), there is considerably more variation in the mean 

values of RSD across different N and K combinations. 

Not only do the values of RSD diverge as more games are played, but the rate of 

divergence appears to depend on the degree of imbalance in playing strengths. The 

rightward shift in the RSD densities, as more games are played, appears to become more 

marked the more severe the departure from perfect balance (for example, compare Figures 

5(b) and 7(b), and Figures 6(b) and 8(b). Table 2 shows that the greater the degree of 

imbalance, the wider is the range of possible mean values of the RSD densities for different 

N and K combinations. This produces considerable overlap in RSD values consistent with 

different levels of underlying imbalance. These characteristics make it unlikely that any 

correction could be devised for RSD, based on the number of games played, that would 

work for general departures from perfect balance, because in practice such departures can 

occur in many different ways and their extent is unknown.  

In contrast to the divergent behaviour of RSD, the reduction in the upward bias in ASD, 

ASD* and CV, as season length increases, reflects a form of convergent updating of the 

estimate of the degree of imbalance in team strengths as more information becomes 

available from the additional games played. Correction for the overestimation of imbalance 

when applying ASD and ASD* to leagues with short seasons is therefore likely to be a more 

fruitful avenue for further investigation. 

 

V. CONCLUSION 

Appropriate measurement of competitive balance is a cornerstone of the economic 

analysis of professional sports leagues, not least because of the importance of arguments 
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about the extent of competitive imbalance as a justification for radical restrictive practices 

in sports antitrust cases. The most common measure of within-season competitive balance 

in the sports economics literature is the ratio of standard deviations (RSD) applied to points 

(or win) proportions; its popularity is based on the widespread belief that it controls for 

season length when making comparisons of competitive balance.  

Simulation methods are used to examine the effects of changes in season length on the 

distributional properties of RSD, in comparison with other standard-deviation-based 

measures of competitive balance, for different distributions of the strengths of teams in a 

league. The popular RSD measure performs as expected in the polar case of perfect 

balance, which is rarely, if ever, observed in practice. However, if there is imbalance in 

team strengths, its distribution is very sensitive to changes in season length; for unchanged 

levels of imbalance in team strengths, RSD values essentially blow out as the number of 

games played by each team increases, and this divergence is more marked the further the 

departure of the underlying inequality of strengths from perfect balance.  

Comparison of RSD for sports leagues with different numbers of teams and/or games 

played can therefore lead to misleading conclusions about the differences in the underlying 

degrees of competitive balance. Other standard-deviation-based measures, such as ASD, 

ASD* and CV, although overestimating imbalance for shorter seasons, are much less 

sensitive to variations in season length and appear to offer a more useful basis for cross-

league comparisons in competitive balance. 
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TABLE 1 

Range of Fitted Strength Ratings from the English Premier League, 

Seasons 2001/02 – 2010/11 

Model Mean range Maximum range Minimum range 
Bradley-Terry (H ≠ 0)  2.812 3.711 1.989 
Bradley-Terry (H = 0) 2.682 3.633 1.839 
Linear (H ≠ 0) 2.275 3.174 1.700 
Linear (H = 0) 2.275 3.175 1.700 
 

 

TABLE 2 

Means of the Density Functions for RSD and ASD* for Varying Degrees of Imbalance 
      

   RSD  ASD* 
              

   Degree of imbalance, R  Degree of imbalance, R 
              

N K G 0 1.25 2.5 3.75 5  0 1.25 2.5 3.75 5 
              

10 2 18 0.96 1.29 1.84 2.22 2.47  0.29 0.39 0.57 0.70 0.80 
10 4 36 0.96 1.57 2.45 3.04 3.18  0.20 0.33 0.53 0.68 0.78 
10 6 54 0.96 1.84 2.94 3.69 4.16  0.16 0.32 0.52 0.67 0.77 
10 8 72 0.95 2.03 3.35 4.25 4.78  0.14 0.30 0.52 0.67 0.77 
10 10 90 0.95 2.24 3.73 4.73 5.35  0.13 0.30 0.51 0.67 0.77 
              

15 2 28 0.95 1.40 2.05 2.55 2.85  0.24 0.35 0.53 0.68 0.77 
15 4 56 0.96 1.74 2.78 3.52 3.98  0.17 0.31 0.51 0.66 0.76 
15 6 84 0.95 2.01 3.34 4.27 4.85  0.14 0.29 0.50 0.65 0.76 
15 8 112 0.95 2.29 3.83 4.91 5.58  0.12 0.29 0.50 0.65 0.76 
15 10 140 0.95 2.51 4.28 5.49 6.22  0.11 0.28 0.50 0.65 0.75 
              

20 2 38 0.95 1.49 2.26 2.83 3.20  0.21 0.33 0.52 0.66 0.76 
20 4 76 0.95 1.90 3.11 3.95 4.48  0.15 0.30 0.50 0.65 0.75 
20 6 114 0.95 2.21 3.74 4.79 5.45  0.12 0.28 0.49 0.64 0.75 
20 8 152 0.95 2.51 4.29 5.52 6.29  0.11 0.28 0.49 0.64 0.75 
20 10 190 0.94 2.79 4.78 6.15 7.02  0.09 0.28 0.49 0.64 0.75 
              

25 2 48 0.95 1.59 2.46 3.10 3.51  0.19 0.32 0.51 0.65 0.75 
25 4 96 0.96 2.03 3.37 4.32 4.93  0.14 0.29 0.49 0.64 0.75 
25 6 144 0.94 2.39 4.10 5.26 6.00  0.11 0.28 0.49 0.64 0.74 
25 8 192 0.95 2.72 4.70 6.07 6.93  0.10 0.27 0.48 0.64 0.74 
25 10 240 0.95 3.01 5.24 6.77 7.73  0.08 0.27 0.48 0.64 0.74 
              

Note: Means of simulated density functions are for the Bradley-Terry model, with draws, home advantage, and a 
(3,1,0) points allocation. N is the number of teams, K the number of rounds of games, and G the number of games 
played by each team. R is the range of playing strengths of teams (maximum – minimum).  
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FIGURE 1 
Strength rating distributions used for simulations, N = 20 

 
 
 

FIGURE 2 
Density functions of balance measures for varying degrees of imbalance 
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FIGURE 3 
Density functions of balance measures for R = 0 (perfect balance), N = 10, varying K 
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FIGURE 4 
Density functions of balance measures for R = 0 (perfect balance), K = 2, varying N 
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FIGURE 5 
Density functions of balance measures for R = 2.5 (moderate imbalance), K = 2, varying N 
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FIGURE 6 
Density functions of balance measures for R = 2.5 (moderate imbalance), N = 10, varying K 
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FIGURE 7 
Density functions of balance measures for R = 5 (severe imbalance), K = 2, varying N 
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FIGURE 8 
Density functions of balance measures for R = 5 (severe imbalance), N = 10, varying K 
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FIGURE 9 
Density functions of balance measures for R = 5 (severe imbalance), N = 20, varying K 
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FIGURE 10 
Density functions of balance measures for different combinations of R, N and K 
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