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Abstract 

We apply a Structural Ricardian Model (SRM) to farm-level data from Ghana in order to 

estimate the impact of climate change on crop production. The SRM explicitly incorporates 

changes in farmers’ crop selection in response to variation in climate, a feature lacking in 

many existing models of climate change response in Africa. Two other novel features of our 

model are an estimate of the response of agricultural profits to differences in land tenure, and 

a comprehensive investigation of the appropriate functional form with which to model 

farmers’ responses. This final feature turns out to be important, since estimates of the effect 

of climate change turn out to be sensitive to the choice of functional form. 
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1. Introduction 

Many developing countries are especially sensitive to climate change because they are 

located in the tropics, with temperatures that already compromise agricultural production (Da 

Cunha et al., 2015; Kurukulasuriya et al., 2006; Mendelsohn et al., 2006), and because they 

have limited access to the human and physical capital that might mitigate its effects (Di 

Falco, 2014). These challenges are often compounded by a lack of access to new technology 

and to developed markets (Di Falco, 2014; Kurukulasuriya et al., 2006). Ghana is one 

example of a country facing these challenges. Less than 1% of its land is under irrigation and 

the vast majority of its farmers rely entirely on rainfall (MoFA, 2010; 2014; World Bank, 

2010).  

In this paper we present estimates of the effect of climate change on Ghana based on 

the application of a Structural Ricardian Model (SRM) to a large microeconomic dataset. The 

first stage in the model is designed to estimate farmers’ crop choices – a feature that is absent 

from many other estimates of climate change effects in developing countries – while the 

second stage is designed to estimate farm revenue conditional on these choices. The model is 

then used to simulate the impact of climate change under various climate scenarios. Our 

model incorporates two other innovative features absent from many applications of the SRM. 

Firstly, we explicitly allow crop choice to depend on the form of land tenure, which is known 

to affect agricultural production through its impact on investment decisions and access to 

credit (Fenske, 2011). Secondly, we apply the model in a way that allows for a variety of 

alternative functional forms. Our results turn out to be highly sensitive to the choice of 

functional form, and we find that inappropriate functional form restrictions can lead to 

misleading results. In this respect our findings are in line with the Italian study of De Salvo et 

al. (2013).1 

                                                           
1 Other authors, for example Fezzi and Bateman (2013), have found results that are not sensitive to 
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2. An overview of the SRM 

In a traditional Ricardian model of farm productivity, farmers are assumed to allocate their 

land to different crops so as to maximize profit, and therefore land values reflect the present 

discounted value of future farm revenue (Mendelsohn et al., 1994; 1996). This model has 

been criticised for failing to pay sufficient attention to the factors that drive crop selection 

(Elbehri and Burfisher, 2015; Kurukulasuriya and Mendelsohn, 2008; Seo and Mendelsohn, 

2008), and the SRM addresses this criticism by incorporating an explicit model of the 

farmer’s choice of crops. In our version of the model, assume that the desirability of crop j on 

plot i is given by: 

 
𝑦𝑖𝑖∗ = 𝛽𝑖𝑥𝑖 +  𝑣𝑖𝑖           (1) 

 
Here, 𝑥𝑖 stands for a vector of farm characteristics and 𝛽𝑖  stands for a vector of parameters to 

be estimated. If the error term 𝑣𝑖 is drawn from a Gumbel Distribution and if the farmer of 

plot i chooses the most desirable crop, then the probability that crop j will be chosen out of J 

alternatives (𝑃𝑖𝑖) is given by the following equation (McFadden, 1973):2
 

 

𝑃𝑖𝑖 = exp�𝛽𝑗𝑥𝑖�

∑ exp(𝛽𝑘𝑥𝑖)
𝑘=𝐽
𝑘=0

                           (2) 

 
Suppose further that the annual net revenue per hectare from crop j (𝜑𝑖𝑖) is given by the 

following function: 

                                                                                                                                                                                     
functional form restrictions, but our results add weight to the argument that such restrictions should not be 

assumed a priori. 
2 This specification of the first-stage regression equation assumes the Independence of Irrelevant 

Alternatives (IIA). Bourguignon et al. (2007) find that violation of the IIA assumption does not impair the 

consistency of the estimates of the second-stage regression equation, i.e. equation (4) below. Nevertheless, 

we tested for violation of the IIA assumption using the method of Small and Hsiao (1985). Using this test, 

we cannot reject the IIA assumption at conventional confidence levels.  
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𝜑𝑖𝑗(𝜃)−1
𝜃

= 𝛼𝑖𝑧𝑖 + 𝑤𝑖𝑖              (3) 

 
Here, 𝑧𝑖 stands for a vector of farm characteristics (excluding at least one of the 𝑥𝑖 variables), 

𝛼𝑖  stands for another vector of parameters to be estimated, and 𝑤𝑖𝑖 stands for a normally 

distributed error term. The left hand side of equation (3) is a Box-Cox transformation 

incorporating the parameter 𝜃 (Box and Cox, 1964). Direct estimation of this equation is 

likely to suffer from selection bias but, having fitted equation (2) to the data using a 

multinomial logit model, the bias can be corrected by fitting the following equation (Dubin 

and McFadden, 1984; Bourguignon et al., 2007; Seo and Mendelsohn, 2008): 

 
𝜑𝑖𝑗(𝜃)−1

𝜃
= 𝛼𝑖𝑧𝑖 + 𝜎 √6

п
∑ 𝑟𝑘𝑖 ∙ �

𝑃𝑖𝑘𝑙𝑙(𝑃𝑖𝑘)
1−𝑃𝑖𝑘

+ 𝑙𝑙(𝑃𝑖𝑖)�𝑘≠𝑖  + 𝑤𝑖𝑖         (4) 

 
Here, 𝑟𝑘𝑖 = 𝑐𝑐𝑟𝑟�𝑤𝑖𝑖,  𝑣𝑖𝑘� and 𝜎 is a variance parameter;  𝜎 ∙ 𝑟𝑘𝑖  can be estimated directly. 

 See De Salvo et al. (2013) for a previous SRM application of the Box-Cox 

transformation. This transformation allows the equation for net revenue to take a range of 

alternative functional forms, encompassing equations in levels (e.g. Coster and Adeoti, 2015; 

Fleischer et al., 2008; Kurukulasuriya and Ajwad, 2007; Mendelsohn et al., 1996; Seo and 

Mendelsohn, 2008) as well as inverse and semi-logarithmic functions (e.g. Chatzopoulos and 

Lippert, 2015; Fezzi and Bateman, 2013). Another attractive feature of Box-Cox 

transformation is its ability to compensate for heteroscedasticity (Blaylock et al., 1980). In 

the special case of  𝜃 = 1 we have a model in levels, in the case of 𝜃 = 0 we have a 

logarithmic model, and in the case of 𝜃 = –1 we have an inverse transformation (Box and 

Cox, 1964). 

 In our application of the model, the 𝑥𝑖 variables in equations (1-2) comprise the 

following features: 
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 tempi: the mean temperature observed on plot i, and (tempi)2. 

 precipi: mean precipitation observed on plot i, and (precipi)2. 

 tenurei: the form of land tenure applicable to plot i. 

 soili: a measure of soil quality on plot i. 

 agei: the age in years of the head of the household farming plot i. 

 malei = 1 if the head of the household farming plot i is male; otherwise malei = 0. 

 non-farm-incomei: the gross non-farm income of the household farming plot i. 

 
The 𝑧𝑖 variables in equations (3-4) comprise all of these features except non-farm-incomei. 

Non-farm income allows the household to bear periods with no income from crops, and so to 

plant crops which take a long time to grow; in Ghana this is particularly relevant to plantain, 

which is a perennial crop. It is also likely that non-farm income will be positively associated 

with the cultivation of maize, which is especially reliant on costly inputs such as inorganic 

fertilizers, pesticides and weedicides (Coster and Adeoti, 2015; Kanton et al., 2016). 

However, non-farm income should not affect the productivity of the land once the crop has 

been planted.3 

 
3. Data 

The data for 𝜑𝑖𝑖, tenurei, agei, malei, and non-farm-incomei are taken from the sixth round of 

the Ghana Living Standards Survey (GLSS), published by the Ghana Statistical Service. This 

survey was implemented between 18 October 2012 and 17 October 2013 (Ghana Statistical 

Service, 2014). The results below are based on observations for the 6,321 farming households 

in the sample. For the dependent variables 𝜑𝑖𝑖, net revenue is measured as the total US Dollar 

                                                           
3 It turns out that the correlation between temp and (temp)2 makes estimates of non-linear temperature 

effects in second-stage model of revenue very imprecise, so in results reported below (temp)2 is  omitted at 

the second stage. However, our a priori identification restriction is on non-farm-income. 
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value of crop j less production costs, as reported by the head of the household farming plot i.4 

Our analysis is confined to the most important income-generating crops in Ghana: maize (Zea 

mays), rice (Oryza spp), cassava (Manihot esculenta), plantain (Musa spp), groundnuts 

(Arachis hypogaea), and millet (Pennisetum glaucum). Tenurei is measured as a binary 

variable indicating whether the land is communal (tenurei = 0) or private (tenurei = 1). We 

define private land as land that the household has procured individually, has long-term rights 

to, and can use for any purpose. Communal land belongs to the extended family or to the 

community, and the household has no property rights over this land, which accounts for about 

80% of all farmland in Ghana (Pande and Udry, 2005).  Farmers with private land are usually 

able to recoup the investments they make, but investment in communal land carries no such 

guarantee. We anticipate that farmers will be more likely to invest in their land if it is owned 

privately (Kurukulasuriya and Ajwad, 2007), increasing net revenue. We also anticipate that 

net revenue will be higher if the household head is male. Households with female heads may 

have less access to resources, or face discrimination in the market place, or have fewer men 

to work in the fields when the women have childcare responsibilities (Coster and Adeoti, 

2015; Kurukulasuriya and Ajwad, 2007). The effect of age on revenue could be positive, if it 

associated with greater experience (Coster and Adeoti, 2015; Fleischer et al., 2008), or 

negative, if households with older heads are less physically capable. 

 The climate variables (tempi, precipi) are constructed from historical weather station 

data for the period 1973-2011 (National Oceanic and Atmospheric Administration, 2015). 

We match the GLSS data to the climate data at a spatial resolution of one degree. Tempi is 

defined as the mean recorded temperature over the period (in degrees centigrade) and precipi 

                                                           
4 A plot is defined as all land allocated to a particular crop by a single household. 
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is defined as mean recorded precipitation (in millimetres).5,6 The variable soili is constructed 

from data provided by the Soil Research Institute of Ghana’s Council for Scientific and 

Industrial Research (CSIR-SRI). Soili = 1 indicates relatively fertile soil (soil types I-IV as 

defined by the CSIR-SRI) while soili = 0 indicates relatively infertile soil (types V-VI).7 

Table 1 reports descriptive statistics for the variables in our model disaggregated by 

crop. The table shows some strong associations between crop type and farm characteristics, 

although it is important to note that these are unconditional associations. Rice, plantain and 

cassava tend to be cultivated in relatively high-precipitation areas while millet and 

groundnuts are cultivated in relatively low-precipitation areas; maize represents an 

intermediate case. Plantain, cassava and maize are also associated with relatively fertile soil, 

while groundnuts and millet are associated with relatively infertile soil; rice represents an 

intermediate case. There is no substantial variation in the mean temperature associated with 

the different crops. Average net revenues from rice and groundnut cultivation are much 

higher than for other crops. Plantain cultivation is associated with relatively high non-farm 

income and millet cultivation with relatively low non-farm income. For all crops, however, 

there is substantial variation across households in both the net revenue from the crop and the 

                                                           
5 Alternatively, we might include seasonal climate variables, for example mean temperature and 

precipitation for each month or for each quarter of the year. However, the seasonal measures in our dataset 

are highly collinear and have no significant explanatory power in our model.  
6 A model incorporating spatially interpolated climate variables may suffer from an errors-in-variables 

problem (Chatzopoulos and Lippert, 2015). In order to explore this potential problem, we fitted a model in 

which latitude, longitude, visibility, maximum sustained wind speed and sea level pressure were used as 

instruments for temp and precip. Using the Wooldridge Score Test (Wooldridge, 1995), it was not possible 

to reject the null hypothesis that temp and precip are exogenous at conventional confidence levels. 
7 Soil type I is non-gravelly and medium to moderately heavy textured. Soil type II is medium to 

moderately heavy textured but gravelly. Soil type III, which is mostly alluvial, may contain gravelly and 

moderately shallow soil or heavy plastic clay. Soil type IV is shallow and imperfectly drained. Soil type V 

comprises poorly drained soils or terraced-derived soils containing pebbles. Soil type VI is very saline. 

Adding indicator variables for individual soil types does not produce statistically significant coefficients. 
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non-farm income of the households cultivating it. There is a relatively high proportion of 

households with female heads farming the perennial crops, cassava and plantain, and these 

crops are also associated with a relatively high incidence of private land tenure. There is little 

variation in the average age of the household head across different types of crop.  

 
4. Modelling the impact of climate change on crop production  

4.1. The selection equation 

Individual parameter estimates from the multinomial crop selection model in equation (2) are 

presented in Appendix 1. A Wald χ2 test shows that the explanatory variables are jointly 

significant at the 1% level, while the count R2 statistic indicates that the regressors explain 

over 50% of the variation in crop selection. Table 2 presents the corresponding marginal 

effects for all variables except temp and precip, evaluated at the mean shares of each crop, 

along with heteroscedasticity-robust standard errors. Table 2 shows marginal effects that are 

somewhat different from the unconditional associations in Table 1, which reflects significant 

correlations across the different explanatory variables and suggests that great care should be 

taken when interpreting the unconditional associations.  

Table 2 shows that higher soil quality is associated with a significantly greater 

probability of cultivating maize and cassava (and plantain, although this effect is relatively 

small), while the other crops – groundnuts, rice and millet – are associated with low-quality 

soils. It is already known that maize requires especially fertile soil (Coster and Adeoti, 2015; 

Kanton et al., 2016), and that groundnuts are particularly suitable for low-quality land 

because of their ability to fix atmospheric nitrogen (Kombiok et al., 2012). Perennial crops 

such as cassava and plantain may be allocated to more fertile soils in order to minimize soil 

improvement costs. The table also shows that private land tenure is associated with a 

significant rise in the probability of maize cultivation and a significant fall in the probability 

of groundnut, millet and plantain cultivation. One possible explanation for these effects is 
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that efficient maize cultivation is associated with long-term investments that are larger, on 

average, than for other crops, and that private land tenure incentivizes such investments. 

However, differences in capital investments across crops are not well documented, so this is a 

topic for future research. 

Age and sex of the household head also have significant effects on crop selection. 

Older farmers are more likely to select cassava but less likely to select groundnuts and rice. 

One possible explanation, which requires further research, is that groundnuts and rice are 

more likely to be sold at market, while cassava is more likely to be consumed by the 

household, and that food makes up a greater share of the total consumption of households 

with older heads. Households with female heads are more likely to cultivate the perennial 

crops (cassava and plantain) and less likely to cultivate millet and maize; these effects are 

statistically significant. Cassava and plantain require some post-harvest processing in order to 

preserve them, and these tasks are often undertaken by women (African Development Fund, 

2008). Moreover, cassava and plantain are harvestable throughout the year (Dziedzoave et 

al., 2006), so a household specializing in these crops will not have to compete with other 

farmers for tractors and casual labour at the beginning of the season. This makes them 

particularly suitable for households with less bargaining power in the local community. 

 As anticipated, higher non-farm income is associated with a greater probability of 

maize and plantain cultivation. It is also associated with a smaller probability of millet 

cultivation; these effects are statistically significant. 

The inclusion of quadratic terms in temp and precip allows the effect of these 

variables to be non-monotonic, so Figures 1-2 show the predicted probability of the selection 

of different crops at different temperature and precipitation levels, along with the 

corresponding 95% confidence interval. These effects are estimated at the mean values of the 

other regressors. Figure 1 shows that at moderate temperatures (below 26.5 degrees 
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centigrade) around 60% of the land is under maize cultivation and almost no land is under 

millet cultivation. Above 26.5 degrees there is substantial switching from maize to millet, and 

at 28 degrees almost all of the land is under millet cultivation. See Aidoo et al. (2016) for a 

discussion of the characteristics of millet which make is especially tolerant of high 

temperatures. Rises in temperature are associated with a gradual decline in the proportion of 

land devoted to cassava and (to a lesser extent) plantain: at 25 degrees these crops together 

account for about 40% of the land under cultivation, this figure dropping to almost zero at 28 

degrees. Groundnuts account for about 20% of land under cultivation at mid-range 

temperatures (25.5-26.5 degrees), but a very small proportion outside this range. The 

cultivation of rice is relatively invariant to temperature. 

Figure 2 shows that there are several non-monotonic precipitation effects. The 

cultivation of the annual crops (maize, groundnuts, rice and millet) is most frequent at 

intermediate precipitation levels. Maize cultivation reaches a peak at 1200mm of rainfall, 

millet at 1400mm, groundnuts at 1500mm, and rice at 1700mm. In extremely dry conditions 

(below 1100mm), only 40% of the land is allocated to maize and almost no land is allocated 

to the other annual crops. In extremely wet conditions (above 1800mm), almost no land is 

allocated to any of the annual crops. At extreme levels of precipitation the dominant crop is 

cassava. Cassava has an extensive root system that protects it from drought and is robust 

enough to withstand high rainfall (Dziedzoave et al., 2006). 

 
4.2. The revenue equation 

Table 3 presents estimates of the parameters in equation (4). Estimates of the θ parameter for 

each crop range from 0.07 to 0.18: these numbers are significantly greater than zero but 

significantly less than one (p < 0.05 in all cases), so we can reject the linear, inverse, and log-

linear specifications of the SRM. For each crop, the first column in the table reports the 

parameter estimates in the unrestricted model (with a fitted value of θ), while subsequent 
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columns reports parameter estimates from a semi-log-linear model (imposing θ = 0) and from 

a linear model (imposing θ = 1). Here we concentrate mainly on the results in the first 

column, while the other columns show how the results differ if a specific functional form is 

assumed. The Box-Cox transformation is non-linear, so the coefficients cannot be compared 

directly across the columns, and further results comparing individual marginal effects in the 

different models are available on request. The rest of this section discusses the sign and 

statistical significance of different effects, leaving the discussion of the size of the effects of 

climate change in the different models to the next section.  

 Before discussing estimates of the α coefficients in Table 3, we note that several of 

the selection effects (𝑟𝑘𝑖) are significant at the 5% level. Restricting attention to the first 

column for each crop (i.e. our preferred model), all but one of these significant effects is 

negative: that is, a plot which is predicted to be used for crop k but is instead used for crop j 

can be expected to generate less revenue from this crop than otherwise. One interpretation of 

these effects is that the average household is making reasonably efficient crop selection 

decisions. These decisions are characterized in Table 2, and households which deviate from 

the average are less efficient. The one exception is that maize plots which are predicted to be 

used for plantain generate higher revenue than otherwise. However, this represents a single 

anomalous coefficient out of 25. 

In interpreting the effect of temperature in equation (4), it is important to remember 

that the different crops are typically grown in different climatic ranges. Of the three crops 

showing a significant negative effect of temperature on revenue, one (millet) is the crop 

which predominates at very high temperatures, while the other two (plantain and rice) have a 

probability of selection that is relatively invariant to temperature. The crops which show the 

largest reductions in the probability of selection at very high temperatures in Figure 1 
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(cassava, groundnuts and maize) show positive temperature effects in Table 3,8 although in 

the Box-Cox model these effects are statistically insignificant. One interpretation of the Table 

3 results is that when temperatures are high enough to threaten the yields of cassava, 

groundnuts or maize, farmers immediately substitute into millet, which is the most heat-

tolerant crop. One might ask whether farmers substitute too readily into millet. The absence 

of positive millet selection effects (𝑟𝑚𝑖𝑙𝑙𝑚𝑚𝑖) in Table 3 suggests that farmers are generally 

making the right decisions about when to grow millet; however, the absence of negative 

temperature effects for cassava, groundnuts and maize suggests further research into the 

relative returns to millet production at the critical temperature margin, around 27 degrees.9 

 The two crops for which there is an effect of land tenure on revenue that is significant 

at the 5% level are cassava and maize. This is consistent with the Table 2 results: private land 

tenure is also associated with a greater probability of maize and cassava cultivation, although 

the second effect is not statistically significant. For all crops except plantain, the sex of the 

household head has a significant effect on revenue. Ceteris paribus, households with female 

heads are earning revenues that are about half as large as those of other households. Similar 

results appear in Coster and Adeoti (2015) and in Kurukulasuriya and Ajwad (2007), who 

suggest that this effect can be explained by differential access to productive resources and 

discrimination in the market place. The one crop for which there is a significant effect of the 

age of the household head on revenue is maize. The effect is negative, as in Ajetomobi et al. 

(2010) but in contrast to Coster and Adeoti (2015) and Fleischer et al. (2008), who find a 

positive effect, and Issahaku and Maharjan (2014) and Kurukulasuriya and Ajwad (2007), 

                                                           
8 The results for cassava and rice are consistent with those in Issahaku and Maharjan (2014). 
9 As noted above, parameter estimates in a model including both temp and (temp)2 are very imprecisely 

estimated, and it is not possible to determine whether the marginal effect of temperature on yield varies 

across the range. If there were evidence of a positive effect of temperature on maize revenues at the upper 

extent of the relevant range then one could argue more strongly that farmers are switching too soon. 
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who find no significant effect. The relative importance of experience and physical capability 

may well vary across households and crops, so it is unlikely that our results for age can be 

generalized. 

 The one anomalous result in Table 3 is that there is a negative and significant 

association between soil quality and net revenue from cassava and maize. One possible 

reason for this effect is that cassava and maize farmers over-invest in the improvement of 

fertile soils, but establishing the true cause of this effect is a subject for future research. 

 
5. Simulating impact of climate change on agricultural revenue 

We rely on the latest temperature and precipitation projections of the Intergovernmental 

Panel on Climate Change (IPCC) (Christensen et al., 2013) to simulate the impact of climate 

change on agricultural revenue in Ghana. These projections are based on Phase Five of the 

Coupled Model Inter-comparison Project (CMIP5), which collates results from 39 different 

global models. We use the projections for West Africa up to the year 2035. Three different 

IPCC scenarios are considered. Under the first and ‘most optimistic’ scenario, temperature is 

projected to increase by 0.7 degrees and precipitation by 8%. These increases represent the 

minimum projected increase in temperature and maximum projected increase in precipitation. 

The second scenario corresponds to the median increase in temperature (0.9 degrees) and in 

precipitation (1%). The third and ‘least optimistic’ scenario corresponds to the maximum 

projected increase in temperature (1.5 degrees) and maximum decline in precipitation (4%).  

Table 4 presents the simulated change in the probability of selecting each crop under 

the three different scenarios, while Table 5 presents the simulated change in in revenue.10 In 

                                                           
10 An important caveat here is that given the way in which the projections have been constructed, it is not 

possible to compute standard errors around these simulations. The simulations also assume no change in 

any of the other characteristics affecting crop selection and revenue. 
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Appendices 2-3 we present a regional disaggregation of these results.11 The main feature of 

Table 4 is that rising temperatures are associated with the increasing selection of millet and 

decreasing selection of other crops. Millet currently accounts for just over 6% of all plots: 

under the third and most extreme scenario this percentage is projected to increase tenfold. 

Maize currently accounts for just over 50% of all plots: under the third scenario this 

percentage is projected to fall by more than half. There are also substantial reductions in the 

cultivation of cassava, plantain, groundnuts and rice: in the third scenario these last two crops 

disappear almost entirely. 

Table 5 presents the results for revenue, including simulations based on all three of 

the models in Table 3 (θ estimated, θ = 0, and θ = 1). For the first two of these models, which 

are nonlinear, it is necessary to compute marginal effects for the discrete changes in 

temperature and precipitation. For the Box-Cox model (θ estimated) we employ the two-stage 

smearing method of Abrevaya (2002), which is an extension of Duan (1983). For the log-

linear model (θ = 0) we use the extension of Duan proposed by Baum (2009). The signs of 

the effects are mostly consistent across the three models, but the sizes of the effects vary 

substantially, especially when comparing the linear model with the other two. Moreover, for 

millet, which is projected to become the most important crop in Ghana, the signs of the 

effects do vary across models. This means that finding the correct functional form for the 

revenue equation is essential for producing accurate climate change predictions. Given that 

the restrictions θ = 0 and θ = 1 can be rejected on our data we suggest that the simulations 

based on the Box-Cox model are the most reliable.12 

                                                           
11 The appendices show that there is substantial inter-regional variation in the magnitude of the effects, as 

has been found in other countries – see for example Wang et al. (2009).  
12 In some cases the linear model predicts negative revenue for a particular crop. We have left these 

predictions in Table 5, but this is another reason for being sceptical about any predictions based on this 

model. 
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The most striking feature of the Box-Cox results in Table 5 is that there are only two 

cases in which there is any substantial change in revenue: under the first scenario there are 

moderate increases in cassava and rice revenue resulting from the increased precipitation. 

However, these two crops account for only a small proportion of total land use. For other 

crops (and for cassava and rice under the other scenarios) the predicted changes are very 

small. Another way of putting this result is that for each crop, the estimated effects of 

temperature and precipitation on revenue using the existing survey data are sometimes 

statistically significant but nevertheless generally quite small: the variation within the 

climatic range typical of each crop does not have large effects. However, as illustrated in 

Figures 1-2, there is substantial variation in the climatic conditions associated with each crop. 

Therefore, the effects of climate change on total agricultural revenue will be dominated by 

crop selection effects. In the baseline case corresponding to current climatic conditions, the 

estimated net revenue from millet for a household with average characteristics is about $240 

per hectare. The next lowest figure is for plantain ($270), followed by cassava ($290), maize 

($300), and then groundnuts and rice ($400). The Box-Cox results in Table 5 suggest that 

these figures are unlikely to change by very much, but the results in Table 4 suggest that 

groundnut and rice cultivation will plummet and millet will supplant maize as the 

predominant crop. 

 
6. Summary and conclusion 

We apply a Structural Ricardian Model to farm-level data from Ghana in order to estimate 

the impact of climate change on crop selection and revenue from production. We find that 

both crop selection and revenue are associated with a range of characteristics of the 

household and its land. Non-farm income, soil quality and the form of land tenure have 

substantial effects, and we find evidence suggesting that households with female heads are 

considerably disadvantaged. Conditional on these effects, local temperature and precipitation 
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have large and asymmetric effects on crop selection decisions; they also have some effect on 

revenue from individual crops. One novel feature of our approach is the use of a Box-Cox 

transformation to model effects on revenue. We find that the simple functional forms that 

have been used in previous studies – for example a linear or log-linear function – can be 

rejected on our data. Alternative function forms lead to widely varying estimates of the size 

of the effects of temperature and precipitation on revenue, so this is not a trivial issue. 

 Our simulations of the effect of climate change are derived by combining the results 

of our statistical model with climate forecasts from the Intergovernmental Panel on Climate 

Change. These simulations suggest that climate change will have large effects on crop 

selection decisions: in particular, there will be substantial substitution of millet for maize 

(which is currently the most important food crop), and the cultivation of other crops such as 

groundnuts and rice will fall dramatically. Because of this adaptation, with farmers relying 

increasingly heavily on heat-tolerant millet, there are unlikely to be large effects on the 

revenue per hectare from individual crops. Although the overall volume of crop production 

might not change very much, overall revenue is likely to fall substantially, because millet is 

the least profitable of all existing crops, while groundnuts and rice are the most profitable. 

 Our results also suggest some ways in which the decline in revenue might be 

mitigated. Over the range of moderate temperatures at which maize cultivation is currently 

observed, higher temperatures do not reduce revenue, and it is possible that farmers switch 

too readily from maize to millet when temperatures rise, suggesting the need for incentives to 

encourage maize production. One policy might be to extend private land tenure, which is 

strongly associated with both a propensity to cultivate maize and with revenues from maize 

cultivation. However, even if such measures do mitigate the decline in revenue, Ghana may 

have to look to alternative, non-agricultural sources of income in the future.  
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Table 1 

Descriptive statistics 
 

 
cassava groundnut maize millet plantain rice 

  Mean (standard deviation in parentheses)  

revenue ÷ 100 2.85 (3.78) 3.96 (4.27) 2.96 (4.26) 2.36 (2.26) 2.67 (4.10) 4.03 (5.11) 

temp 26.1 (0.50) 26.6 (0.40) 26.3 (0.60) 26.8 (0.40) 25.9 (0.60) 26.5 (0.40) 

precip ÷ 1000 1.39 (0.11) 1.21 (0.13) 1.31 (0.14) 1.20 (0.10) 1.45 (0.08) 1.44 (0.10) 

non-farm-income ÷ 1000 3.75 (7.42) 2.64 (7.53) 4.02 (13.2) 1.45 (3.66) 6.61 (32.0) 3.36 (10.7) 

age  50 (15) 47 (16) 48 (15) 49 (17) 49 (14) 46 (16) 

   Percentage   

soil 91.9 30.8 77.7 43.8 97.8 49.8 

tenure 29.5   6.1 21.9   2.7 26.7 10.9 

male 70.5 81.2 80.2 83.2 70.9 81.3 

   Number of observations   

 762 1019 3255 403 457 410 
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Table 2 

Marginal effects in the crop selection model 

 cassava groundnuts maize millet plantain rice 

tenure 0.011  
0.010 

  –0.046**  
0.014 

    0.069**  
0.019 

  –0.038**  
0.009 

–0.013*  
0.007 

0.018  
0.012 

non-farm-income –2.4×10–7 

  4.0×10–7 
–7.2×10–7 
  7.4×10–7 

    3.0×10–6** 
1.0×10–6 

–3.0×10–6* 
1.5×10–6 

    5.2×10–7** 

4.0×10–7 
5.8×10–7 
3.8×10–7 

soil     0.056**  
0.011 

  –0.216**  
0.013 

    0.111**  
0.016 

–0.011*  
0.006 

    0.081**  
0.004 

  –0.021**  
0.007 

age     0.0010**  
0.0003 

–0.0010*  
0.0003 

–0.0000  
  0.0004 

0.0002  
0.0002 

0.0001  
0.0002 

–0.0005*  
0.0002 

male   –0.040**  
0.010 

–0.006  
  0.011 

  0.050**  
0.015 

    0.020**  
0.007 

–0.018*  
0.008 

–0.006  
  0.008 

 
* and ** signify significance levels at 5% and 1%, respectively. Heteroscedasticity-robust standard errors are in italics. 
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Table 3 
Conditional net revenue regression coefficients (part 1) 

   cassava      groundnuts       maize    
model Box-Cox  log-linear  linear  Box-Cox  log-linear  linear   Box-Cox  log-linear  linear  
temp 1.423 

 
0.568 

 
198.7 ** 0.265 

 
-0.055 

 
141 

  
0.521 

 
0.28 * 104.5 * 

 
2.8  0.4  74.4   0.2  0.3  113.3   0.4  0.2  58.7  

precip 0.181 ** 0.073 ** 22.7 ** 0.039 
 

0.011 
 

10.2 
  

0.028 
 

0.016 
 

4.3 
 

 
12.1  0.02  5.2   1.0  0.02  6.6   2.5  0.01  3.8  

(precip)2 -6.9×10-5 ** -2.8×10-5 ** -0.01 ** -1.6×10-5 
 

-5.1×10-6 
 

-0.004 
  

-7.9×10-6 
 

-4.7×10-6 
 

-0.001 
 

 
12.5  8.9×10-6  0.002   1.3  6.7×10-6  0.002   1.5  3.7×10-6  0.001  

tenure 1.879 ** 0.837 ** 176.3 ** -0.662 * -0.295 
 

-106.6 
  

0.35 ** 0.193 ** 67.8 ** 

 
35.1  0.1  39.6   3.1  0.2  75.1   9.9  0.1  22.9  

soil -2.061 * -0.937 * -162.1 * 
 

0.577 
 

0.381 
 

-9.9 
  

-1.028 ** -0.568 ** -185 * 

 
2.8  0.5  98.0   0.8  0.4  138.5   8.4  0.2  91.4  

age 0.005 
 

0.002 
 

-0.3 
  

0.005 
 

0.003 
 

0.03 
  

-0.011 ** -0.006 ** -2.5 ** 

 
0.2  0.01  1.1   0.4  0.004  1.3   8.7  0.002  0.7  

male 1.917 ** 0.812 ** 189.3 ** 1.783 ** 0.823 ** 263.6 ** 1.341 ** 0.778 ** 177.2 ** 

 
18.9  0.2  42.8   68  0.1  30.8   104.1  0.1  24.8  

rcassava 
       

1.626 
 

0.488 
 

442.1 
  

1.044 * 0.585 * 170.3 
 

        
1.0  0.9  295.2   2.9  0.3  119.6  

rgroundnuts -0.999 
 

-0.4 
 

-240.6 
         

2.3 
 

0.2 
 

87.3 
 

 
0.2  0.9  171.1          0.5  0.3  125.9 

 rmaize -1.885 * -0.772 * -272.4 ** 0.009 
 

-0.039 
 

41.3 
        

 
5.6  0.3  81.7   0.001  0.2  76.9 

        rmillet -3.757 
 

-1.428 
 

-611.9 ** -1.966 * -0.757 
 

-447.9 ** -0.64 
 

-0.286 
 

-237.6 * 

 
2.0  1.1  234.4   4.6  0.4  165.2   1.3  0.3  132 

 rplantain 0.203 
 

0.337 
 

-293.2 
  

-3.095 * -1.793 * -144.1 
  

1.816 ** 0.971 ** 352.3 ** 

 
0.02  0.7  179   3.6  0.9  271.9   15.1  0.3  104.7 

 rrice 0.822 
 

0.616 
 

-568 
  

2.583 
 

1.572 
 

73.7 
  

-3.811 * -1.826 
 

-1201.0 ** 

 
0.01  3.4  701.7   0.5  2.0  603.2   3.9  1.1  368.3 

 θ 0.178 ** 
    

0.145 ** 
    

0.113 ** 
   σ 3.3 

      
2.2 

      
2.2 

     
* and ** signify significance at 5% and 1%, respectively. Figures in italics are χ2 test statistics (in the Box-Cox models) or standard errors (in other models).  
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Table 3 
Conditional net revenue regression coefficients (part 2) 
   millet      plantain       rice    
model Box-Cox  log-linear  linear  Box-Cox  log-linear  linear   Box-Cox  log-linear  linear  
temp -2.431 * -1.285 * -368.5 * -4.545 * -2.612 * -495.7 

  
-1.792 ** -1.188 * -600.1 ** 

 
4.5  0.6  162.8  4.1  1.3  269.9   8.1  0.5  277.7  

precip 0.081 
 

0.046 
 

31.6 
 

-0.402 * -0.243 * -28.5 
  

-0.1 * -0.064 
 

-37.9 ** 

 
0.5  0.1  29.7  4.1  0.1  25.9   4.4  0.04  19.2  

(precip)2 -2.9×10-5 
 

-1.7×10-5 
 

-0.01 
 

1.4×10-4 
 

8.5×10-5 * 0.01 
  

3.5×10-5 * 2.3×10-5 
 

0.01 ** 

 
0.5  3.1×10-5  0.01  3.8  4.1×10-5  0.01   4.3  1.3×10-5  0.01  

tenure -0.778 
 

-0.442 
 

-77.1 
 

0.689 
 

0.367 
 

70.5 
  

-0.607 
 

-0.404 
 

-201.3 
 

 
1.8  0.4  125.9  2.2  0.3  68.1   3.4  0.2  119.9  

soil -0.073 
 

-0.017 
 

-35.8 
 

7.288 
 

4.061 * 723.8 
  

-0.617 
 

-0.489 
 

68.3 
 

 
0.01  0.5  144.4  3.1  1.8  418.2   1.5  0.4  201.5  

age -0.003 
 

-0.002 
 

-0.2 
 

0.043 
 

0.025 
 

5.0 
  

0.001 
 

0.001 
 

0.4 
 

 
0.1  0.01  2.1  2.9  0.02  3.2   0.03  0.004  1.6 

 male 0.969 ** 0.551 ** 125.7 * -1.36 
 

-0.825 
 

-95.6 
  

0.888 ** 0.617 ** 120.9 
 

 
8.4  0.2  50.3  1.4  0.7  156.4   12.2  0.2  70.5 

 rcassava 5.029 
 

2.775 
 

1200.4 
 

-11.846 ** -7.024 ** -1049.5 * 
 

-5.304 
 

-3.417 
 

-2008.3 * 

 
1.6  2.9  960.9  9.2  2.4  488.4   3.6  2.0  828.1 

 rgroundnuts -2.884 * -1.522 * -457.5 * -0.521 
 

-0.718 
 

-260.1 
  

-3.097 ** -2.134 * -772.8 
 

 
5.5  0.7  175.4  0.01  3.7  807.5   8.7  0.8  334.3 

 rmaize -0.892 
 

-0.51 
 

-129.6 * 0.095 
 

0.071 
 

1.8 
  

-0.221 
 

-0.154 
 

-84.1 
 

 
2.1  0.3  65.2  0.01  0.7  162.4   0.3  0.3  135.8 

 rmillet 
      

-1.277 
 

-0.545 
 

-539.8 
  

-1.461 
 

-1.073 
 

-22.5 
 

       
0.03  3.9  821.3   1.8  1.1  559.5 

 rplantain -11.977 * -6.236 * -1913.9 * 
       

-4.253  -2.814  -1533.1 
 

 
4.3  2.8  747.3         3.5  1.7  963.1 

 rrice 2.072 
 

1.038 
 

630.9 
 

34.908 
 

20.097 
 

5319.2 * 
 

     
 

 
0.2  3.0  852.5  2.3  14.6  2674.1 

        θ 0.118 ** 
    

0.126 ** 
     

0.073 * 
    σ 1.549 

     
2.674 

      
1.563 

     * and ** signify significance at 5% and 1%, respectively. Figures in italics are χ2 test statistics (in the Box-Cox models) or standard errors (in other models). 
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Table 4 

Simulated change in probability of selecting a crop under various IPCC scenarios 
 

 cassava groundnut maize millet plantain rice 

Baseline 12.1%   16.2%   51.6%     6.4%   7.2%   6.5% 

Scenario I –7.1%   –8.5%   –6.1% +24.3% –4.3% +1.7% 

Scenario II –6.7% –12.8% –13.0% +38.1% –1.7% –3.9% 

Scenario III –8.6% –15.4% –28.8% +56.4% +2.3% –6.0% 

 

The baseline represents the estimated probability of selecting a particular crop for the 

average household under current conditions. 
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Table 5 

Simulated change in net revenue under various IPCC scenarios 
 

  cassava groundnuts maize 

 Model Box-
Cox linear log-

linear 
Box-
Cox linear log-

linear 
Box-
Cox linear log-

linear 

Baseline  286.8   283.9   309.3 393.8 395.6 398.8 294.6   296.4 299.2 

Scenario I +98.9 +260.0 +208.6   +4.2 +36.6 +12.9 +11.0 +238.7   –2.0 

Scenario II   +2.0 +202.7     +0.2   –0.1 +124.2   +0.5 +0.71 +115.9   –0.6 

Scenario III +19.3 +177.8   +50.0   +2.5 +208.2   +0.4   –1.0   +65.9   +2.8 

 
 

  millet plantain rice 

 Model Box-
Cox linear log-

linear 
Box-
Cox linear log-

linear 
Box-
Cox linear log-

linear 

Baseline  235.8   236.7 236.6   274.1   268.3   305.1   406.7   404.4   415.4 

Scenario I +14.0 –623.3 +32.1 +172.9 –899.9 +357.3 +154.2 –221.2 +106.4 

Scenario II   –0.0 –360.5   +0.7 +18.3 –524.5   –12.5     +5.0 –534.5     –2.0 

Scenario III   +5.2   +66.8   +4.0   +68.8 –404.2 +201.7   +13.1 –867.9   +43.2 

 

The baseline represents the estimated revenue from a particular crop for the average 

household under current conditions. 
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Fig. 1. Predicted probability of selecting a crop at various temperatures 

 

0
1

0.
2

0.
4

0.
6

0.
8

P
ro

ba
bi

lit
y

25 26 27 28
Temperature normal (1973-2011) (oC)

Groundnut95% upper CI
Maize95% lower CI
Millet

0
1

0.
2

0.
4

0.
6

0.
8

P
ro

ba
bi

lit
y

25 26 27 28
Temperature  normal (1973-2011) (oC)

Cassava95% upper CI
Plantain95% lower CI
Rice



29 
 

 
Fig. 2. Predicted probability of selecting a crop at various levels of precipitation 
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Appendix 1: Parameter estimates in the crop selection model (N  = 6306) 
 

 cassava groundnuts millet plantain rice 

temp   12.1   72.9** –81.8** –44.4**   22.2* 
   8.7   8.2   10.6   9.2   11.1 

(temp)2 –0.3 –1.4**   1.6**   0.8** –0.4* 
   0.2   0.2   0.2   0.2   0.2 

precip –0.07**   0.03**   0.11** –0.02*   0.02 
   0.01   0.01   0.02   0.01   0.01 

(precip)2   2.3 x 10–5** –8.1 x 10–6** –3.7 x 10–5**   6.6 x 10–6* –4.4 x 10–6 
   3.4 x 10–6   2.8 x 10–6   6.3 x 10–6   3.7 x 10–6   5.1 x 10–6 

tenure   0.01 –0.5** –1.1** –0.3*   0.04 
   0.1   0.2   0.3   0.1   0.2 

non-farm  –4.4 x 10–6 –1.6 x 10–5** –6.8 x 10–5*   5.8 x 10–6*   3.2 x 10–6 
income   4.3 x 10–6   6.1 x 10–6   2.8 x 10–5   3.0 x 10–6   5.7 x 10–6 

soil   0.6** –1.7** –0.7**   4.0** –0.8** 
   0.2   0.1   0.1   1.0   0.1 

age   0.008** –0.006*   0.002   0.003 –0.01* 
   0.003   0.003   0.003   0.003   0.004 

male –0.5** –0.1   0.4* –0.4** –0.1 
   0.1   0.1   0.2   0.1   0.1 

Count R2 = 0.53 

Joint significance of regressors: χ2(45) = 2136 [ p < 0.01] 
 

The default category is maize. * and ** signify significance at 5% and 1%, respectively. 

Heteroscedasticity-robust standard errors are in italics.  

 

  



31 
 

Appendix 2: Simulated change in probability of selecting a crop disaggregated by region 

 cassava groundnut maize millet plantain rice 

Western Region 

Baseline   38.4%   1.4%   42.4%     0.1%   17.3%   0.4% 
Scenario I –26.9% +0.3% +23.3%   +6.2%   –3.7% +0.7% 
Scenario II –20.7% –1.0%   +9.4%   +3.8%   +8.4% +0.0% 
Scenario III –29.0% –1.4% –17.7% +13.4% +35.0% –0.3% 

Central Region 

Baseline   15.0%   7.3% 66.5%   0.8%   8.3%   2.0% 
Scenario I –10.0% +0.6% +1.3% +9.8% –4.6% +3.0% 
Scenario II –8.9% –4.0% +2.8% +10.1% –0.2% +0.3% 
Scenario III –12.6% –7.1% –29.1% +44.1% +6.2% –1.5% 

Greater Accra Region 

Baseline 11.6%   6.4%   56.7%   16.7%   5.9%   2.6% 
Scenario I –8.4% –3.6% –9.4% +24.3% –2.8% –0.1% 
Scenario II –7.3% –5.4% –10.6% +23.9% +1.0% –1.6% 
Scenario III –9.9% –6.4% –33.5% +44.4% +7.9% –2.4% 

Volta Region 

Baseline 10.6%   21.7%   53.9%   2.2%   2.4%   9.1% 
Scenario I –6.4% –13.4%   –0.4% +13.4% –0.8% +7.6% 
Scenario II –7.1% –19.3%   –8.7% +38.6% +0.8% –4.2% 
Scenario III –9.6% –21.7% –42.2% +80.1% +2.3% –9.0% 

Eastern Region 

Baseline   21.4%   2.2% 59.5%     0.9% 15.1%   0.8% 
Scenario I –16.0% +1.0% –8.6% +31.6% –8.9% +0.9% 
Scenario II –13.3% –1.1% –12.8% +28.9% –1.6% –0.1% 
Scenario III –16.0% –2.1% –29.1% +42.1% +5.7% –0.6% 

Ashanti Region 

Baseline 13.1%     5.2% 65.6%   2.1% 10.7%   3.3% 
Scenario I –4.0% +13.3% –7.3% –0.6% –8.9% +7.4% 
Scenario II –5.3%   +9.8% –0.2% +0.4% –7.7% +3.0% 
Scenario III –7.4%   +1.2% +4.9% +6.5% –5.8% +0.6% 

Brong-Ahafo Region 

Baseline 19.9%   3.7%   53.3%     0.6%   19.5%   2.9% 
Scenario I –9.5% +6.6% +12.8%   +1.4% –14.9% +3.7% 
Scenario II –6.6% +2.2% +10.6%   +5.9% –11.9% –0.2% 
Scenario III –7.1% –1.9% +6.2% +11.6% –7.0% –2.0% 
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Appendix 2 (continued) 

 cassava groundnut maize millet plantain rice 

Northern Region† 

Baseline   6.1%   17.0%   57.0%     7.3%   2.2%   10.3% 
Scenario I –1.7% –10.2% –12.0% +21.1% –1.1%   +3.9% 
Scenario II –4.4% –14.7% –25.2% +50.8% –0.6%   –5.9% 
Scenario III –5.7% –17.0% –50.2% +83.7% –0.7% –10.1% 

Upper East Region† 

Baseline   2.0%   21.1%   38.6%   23.6%   0.5%   14.2% 
Scenario I –1.4% –20.2% –25.3% +55.0% –0.2% –7.9% 
Scenario II –2.0% –21.0% –37.2% +74.6% –0.4% –13.9% 
Scenario III –2.0% –21.1% –38.6% +76.4% –0.5% –14.2% 

Upper West Region† 

Baseline   2.2%   45.1%   40.3%   5.8% 0.0%   6.6% 
Scenario I –1.5% –31.0% –12.9% +43.4% 0.0% +2.0% 
Scenario II –1.8% –41.7% –21.8% +69.5% 0.0% –4.1% 
Scenario III –2.2% –45.1% –38.7% +92.5% 0.0% –6.5% 

 

† In these regions, some simulated observations have a higher temperature than any in-

sample observation, so the results should be treated with caution. 
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Appendix 3: Simulated change in crop net revenue disaggregated by region (Box-Cox model) 

 cassava groundnut maize millet plantain rice 

Western Region 

Baseline   238.6 § 250.7 §   328.3 § 
Scenario I   –94.7 § –54.8 § +213.3 § 
Scenario II   –17.8 §   –7.8 §   +72.3 § 
Scenario III +100.5 § +34.6 § –138.7 § 

Central Region 

Baseline 260.2 § 243.4 § § § 
Scenario I +73.0 § –16.5 § § § 
Scenario II   +4.6 §   –2.4 § § § 
Scenario III   –4.6 § +10.7 § § § 

Greater Accra Region 

Baseline   447.0 § 252.0  § § 
Scenario I +334.5 § –20.5  § § 
Scenario II   +28.5 §   –3.0  § § 
Scenario III   –83.9 § +13.2  § § 

Volta Region 

Baseline   352.3 385.8 279.1 § § § 
Scenario I +483.0 +60.8 +19.4 § § § 
Scenario II   +30.3   +6.3   +1.6 § § § 
Scenario III –64.8 –22.0   –4.3 § § § 

Eastern Region 

Baseline 315.8 § 244.0 §   263.8 § 
Scenario I –45.5 § –37.4 § +890.7 § 
Scenario II –10.2 §   –5.3 §   +32.2 § 
Scenario III +60.5 §   23.0 §   –49.3 § 

Ashanti Region 

Baseline   189.8 § 291.0 §   160.4 § 
Scenario I +244.4 § +19.5 § –114.1 § 
Scenario II   +19.1 §   +2.1 §   –38.9 § 
Scenario III   –54.4 §   –7.2 § +412.7 § 

Brong-Ahafo Region 

Baseline 328.9 § 277.4 §   406.3 § 
Scenario I +86.4 § –17.9 § +553.1 § 
Scenario II   +2.5 §   –2.7 §   +12.2 § 
Scenario III +11.3 § +12.5 §   +48.3 § 
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Appendix 3 (continued) 

Northern Region† 

Baseline § 486.8 300.6 § § 494.1 
Scenario I § +17.5 +50.9 § §   –3.9 
Scenario II §   +1.4   +5.5 § §   –8.6 
Scenario III §   –3.6 –20.1 § § +63.7 

Upper East Region† 

Baseline § 268.1 315.8 229.0 § 307.0 
Scenario I § +41.0 +73.5 +44.9 § –46.3 
Scenario II §   +4.6   +8.1   +4.3 §   –9.3 
Scenario III § –17.0 –29.7 –14.4 § +53.3 

Upper West Region† 

Baseline § 417.0 424.2 § § § 
Scenario I § –26.9 +14.1 § § § 
Scenario II §   –3.8   +1.3 § § § 
Scenario III § +16.6   –4.0 § § § 

 

 

† In these regions, some simulated observations have a higher temperature than any in-

sample observation, so the results should be treated with caution. 
 

§ Given the small sample sizes at the sub-national level, results are reported only for crops 

accounting for at least 10% of the baseline case in Appendix 2. 
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