

EMAN405 Energy Practice & Musselburgh School

He Kaupapa Hononga: Otago's Climate Change Research Network Royal Society Te Apārangi Science Teaching Leadership Programme

Audit for Musselburgh School

- In compliance with AS/NZS 3598.1:2014
- Initial site visit
 - Meeting principal, administrator, teachers, students
 - Presentation to 60 students (9 11 years) and four staff to enhance their understanding of the audit's purpose and increase buy-in
 - Developed both a quantitative and qualitative understanding of energy usage patterns through informal interviews and object auditing
- Conducted analyses for Type I and Type II audit reports that were presented to school

Challenges

- Completing audit after 1 site visit
- Accessing school & staff for data
- Sensitivity around changing priorities
- Need to complete assignment

Opportunities

- Building on kanohi ki te kanohi visit
- Brokering the partnership
- Enhancing Principal involvement
- Building student communication skills

Audit Findings

Daily electricity consumption profiles

Figure 4 Daily profile of average electricity usage in 2019 during term time. Averages have been calculated excluding weekend days.

Figure 9 Term 3 time of use energy end-use breakdown

Figure 10 Term 1 time of use energy end-use breakdown.

Audit Findings

Monthly electricity and gas consumption profiles

Figure 5 Monthly electricity consumption in 2019

Figure 12 Monthly gas use between for the 2019 calendar year

Audit Findings

Overview

- Total site electricity consumption (2019) was 31709 kWh at a cost of \$7600
- Total gas consumption for the property (2019) was 168,680 MJ at a cost of \$6778.
- Local comparative indicators of performance show that the electricity consumption is smaller (200 kWh per student) relative to larger local schools.

Recommendations

Type I

Table 1 Annual energy saving measures summary

Measure	Energy Savings	Financial Savings \$	Cost \$	Payback years
Shorter Payback				
Measures (< 2 years)				
Thermostat control of radiators	33,700 MJ (gas)	1360	1600	1.2
Lighting control in	1820 kWh	550	660	1.2
classrooms				
Longer Payback	N .	- 1	·	*
Measures (> 2 years)				
LED lighting retrofit	4270 kWh	1280	2940	2.3
Individual heat pump	168,680 MJ (gas),	3450	24500	7.1
units to replace boiler	-11,060 kWh (elec)			
Energy Management				
Measures				
Energy Savings	NA	NA	NA	NA
Measures				
Subtotals	20	2		
With thermostat control	33,700 MJ (gas),	3190	5200	1.6
measure [‡]	6090 kWh (elec)			
With heat pump	168,680 MJ (gas),	6090	29040	4.8
installation measure§	- 4970 kWh (elec)			

^{*}Recommendation independent of heat pump replacement of boiler. These recommendations cannot be implemented concurrently.

[†] Recommendation independent of thermostat control of boiler. These recommendations cannot be implemented concurrently.

[|] Negative value represents an increase in electricity consumption.

[‡]Subtotal including thermostat control measure. Does not include savings accrued from heat pump installation measure.

[§] Subtotal including heat pump installation measure. Does not include savings accrued from thermostat control measure.

Recommendations

Type II

Alternative heating systems:

- continued use of natural gas boiler
- wood pellet boiler
- air-source heat pumps

Table 1 Life cycle cost analysis of alternative heating systems

	Current Boiler	Wood pellet	Heat pumps
		boiler	
Lifecycle cost at N = 10 Years (\$)	71,392	176,680	93,647
Lifecyle cost at N = 20 Years (\$)		191,325	175,003
Lifecyle cost at N = 30 Years (\$)		199,880	250,140

*The CO2-e values for LPG and wood obtained from the Ministry for Environment, 2019. Mercury Energy's electricity is assumed to be 100% renewable

Figure 2 Comparison of expected annual CO₂-e emissions of alternative heating system

School Board of Trustees Response

Immediate Action on Recommendations

- Repair thermostat controls on radiators
- Reduce use of automatic heating in May-Oct
- Reconsider energy efficiency of new building

Intentions for 2021

- Consider energy efficiency in policy reviews
- Study energy and eco-building through science curriculum
- Assess own impacts of behaviour change on energy use

Key learnings in Energy Practice partnership

- Authentic service learning can benefit all partners individual needs while establishing a common goal towards a low energy future
- Community problem solving enhances Understanding, Investigating, Communicating, Participating and Contributing in the Nature of Science (NZ Curriculum)
- Relationships initiated kanohi ki te kanohi develop the mutual trust necessary to continue an effective collaborative partnership remotely in COVID-19 times

Where to from here?

Practical experience in a controlled environment. Allowed to make mistakes!

- Informal point of contact assisted in the establishment of a good working relationship with client (school). This is particularly important in a COVID sensitive situation.
- Gained the confidence to go into the workforce and conduct energy audits (this time getting paid to do it!)

Just the beginning ...

2020

- Energy Audit at 1 school
- Professional development for teachers in science capabilities
- Science Curriculum Development

2021

- ➤ Return to He Kaupapa Hononga
- ➤Ongoing UO service learning e.g. Carbon footprint analysis
- Explore action research possibilities
- Share experiences with other schools
 - Ōtākou ŠTEAM Cluster 9 schools
 - Otago Enviroschools 64 schools

SCIENCE TEACHING LEADERSHIP PROGRAMME

