Trends, propensity score matching and comparative safety using real world data

Prasad

Otago : Unibersity

Research in Pharmacoepidemiology (RiPE) @ National School of Pharmacy, University of Otago

Outline

- Background on real world data
- How are we using it for current research ?
- Initiatives in furthering research
- Conclusions
- Acknowledgments

 Pharmacoepidemiology uses real world data to answer <u>effectiveness</u>-how does a treatment work in the real world?

 Randomised controlled trials demonstrate <u>efficacy</u>-can a treatment work under 'ideal circumstances'

Background-Why use real world data?

- No inclusion/exclusion criteria
- Treatment outcome derived from actual practice
- Estimates of treatment impact are close to reality
- Not analysed by intent-to-treat vs 'as treated'
- Provides insight to off-labelled use, prescribing behaviour
- Examine safety within the context of doses, multimorbidity in special populations (e.g. older people)

Background-Why use real world data?

"A clinical trial is the best way to assess whether an intervention works, but it is arguably the worst way to assess who will benefit from it" David Mant

Current research-How are we using real world data?

• Level A studies- prescribing trend, adherence

• Level B studies- examining adverse outcomes

• Level C studies- comparative safety

Level A studies- prescribing trend, adherence

Prescribing trend

Drugs Aging DOI 10.1007/s40266-014-0205-1

ORIGINAL RESEARCH ARTICLE

Psychotropic Medicine Utilization in Older People in New Zealand from 2005 to 2013

Henry C. Ndukwe · June M. Tordoff · Ting Wang · Prasad S. Nishtala

Defined Daily Dose

For example, Citalopram 20mg; WHO assigned (20 mg)

DDD = <u>Strength (20mg/tablet) * Quantity</u> WHO-DDD (20mg)

DDD per year = weighted DDD sum ($\sum DDD_i$: DDDs)

DDD/1000 older people /day = <u>DDD per year * 1000</u> 365

Psychotropic drug utilisation (in DDD/TOPD) compared by therapeutic class and subclass between 2005 and 2013 calendar years

Therapeutic class	Therapeutic subclass	ATC CODE	2005 DDD/TOPD	2013 DDD/TOPD
Anxiolytic	BDZ	N05BA	11.2	10.5
	Non-BDZ	N05BE	0.2	0.2
Hypnotic and Sedatives	BDZ Hypnotics	N05CD	25.5	17.5
	Zopiclone	N05CF	33.8	48.1
National Total	anoloi	Joz	159.5	195.4

Analgesic medicine utilisation in New Zealand from 2005 to 2013 Joshua OH, Natalie CHUN, Daniel KIM, Fatimah KAMIS, Cecilia KIU (Accepted DRWO)

Preventive medicine utilisation in New Zealand from 2005 to 2013 Narayan et al

Dabigatran and Warfarin

■2005 ■2006 ■2007 ■2008 ■2009 ■2010 ■2011 ■2012 ■2013

Prevalence of Potentially Inappropriate Medicine use in older New Zealanders:A population-level study (>half a million) using the updated 2012 Beers criteria Narayan et al

The updated Beers 2012 criteria uncovered that a number of older New Zealanders were prescribed NSAIDs. amitriptyline and zopiclone.

Level B studies- examining drug exposures and adverse outcomes

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY (2014) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3624

ORIGINAL REPORT

Associations of drug burden index with falls, general practitioner visits, and mortality in older people

Prasad S. Nishtala^{1*}, Sujita W. Narayan¹, Ting Wang² and Sarah N. Hilmer³

 The drug burden attributable to each anticholinergic or sedative medication was calculated using the equation,

$$Drug \ burden = D \div (\partial + D)$$

where D is the daily dose taken by the patient, and δ is the minimum efficacious dose.

 The total drug burden for an individual was calculated as the sum of the drug burden using a linear additive model.

Characteristic	Value
(n=537,387)	(95% CI)
Age (yrs) mean	74.72 (74.70-74.74)
Sex (% female)	54.90 (54.77-55.03)
DBI group (%)	43.22 (43.09-43.35)
DBI exposure	0.177 (0.176-0.178)
Polypharmacy (%)	55.58 (55.45-55.72)
Medicines	5.64 (5.63-5.65)
Chronic Disease Score	6.04 (6.03-6.05)

N=537,387	DBI group (n = 232,291)	Control (n = 305,096)	
Sex			
Male n(%)	103,031(44.4%)	139,295(55.6%)	
Female n(%)	129,260(55.7%)	165,801(54.3%))
Ethnicity			ł
NZ-European n(%)	l 92,488(50%)	232,690(76.2%)] I
Māori n(%)	9,903(4.2%)	15,386(5.0%)	
Age groups			
Group A n(%)	115,415(49.7%)	180,613(55.1%)	1
Group B n(%)	81,057(34.9%)	91,404(27.9%)]
Group C n(%)	35,819(15.4%)	33,079(10.9%)	í I
Polypharmacy			J
Value = $I n(\%)$	54,742(23.6%)	183,925(60.3%)	
Value = $2 n(\%)$	177,549(76.4%)	121,171(39.7%)	
CDS scores		λ , , , , , , , , , , , , , , , , , , ,	
0-5 n(%)	104,005(33.0%)	178,365(58.4%)	
6-10 n(%)	73,741(25.9%)	89,004(29.1%)	

 $y \sim Negbin(\mu_i, k)$

$$\log \mu_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots \dots$$

Negative binomial regression model

	Falls	GP visits
	NB Model	NB Model
	IRR (95% CI)	IRR (95% CI)
Age (linear)	1.366 (1.289-1.447)	1.021 (1.016-1.025)
Age (quadratic)	0.998 (0.998-0.998)	0.999 (0.999-0.999)
Female	1.197 (1.135-1.263)	1.042 (1.038-1.046)
Ethnicity		
*European		
Māori	0.852 (0.738-0.983)	0.972 (0.963-0.980)
CDS scores	1.043 (1.037-1.048)	1.021 (1.020- 1.021)
Polypharmacy	1.792 (1.659-1.936)	1.238 (1.232-1.244)
DBI>0	1.561 (1.476-1.651)	1.125 (1.121-1.129)

	Mortality		
	Cox Model		
	HR (95% CI)		
Age (linear)	1.816 (1.755-1.880)		
Age (quadratic)	0.997 (0.996-0.997)		
Female	0.759 (0.737-0.781)		
Ethnicity			
*European			
Māori	1.798 (1.689-1.916)		
CDS scores	1.044 (1.041-1.047)		
Polypharmacy	1.661 (1.592-1.732)		
DBI >0	1.287 (1.249-1.326)		

Using apposite regression models, we found that higher DBI was associated with greater primary care visits, falls and mortality

Associations of drug burden index.....<u>revisited</u>

Propensity score matching

	DBI group (n = 172,714)	Control (n = 172,714)			
Sex					
Male n(%)	94,258	94,258			
Female n(%)	78,456	78,456			
Ethnicity		C)			
NZ-European n(%)	137,393	137,393			
Māori n(%)	9,116	9,116			
Age groups					
Group A n(%)	92,929	92,929			
Group B n(%)	57,226	57,226			
Group C n(%)	22,559	22,559			
Polypharmacy					
Value = 1 n(%)	54,74 I	54,741			
Value = 2 n(%)	117,973	117,973			
CDS scores					
0-5 n(%)	76,76 l	76,761			
6-10 n(%)	60,256	60,256			

Propensity Score Matching

- Propensity score is the conditional probability of receiving treatment given a set of pre-treatment characteristics.
- Propensity scores are computed using Probit/Logit models.
- Individuals in the treatment group are matched with control group that have similar (or close) propensity scores.

Propensity score matching

$$\hat{P}_{i} = \frac{\exp(\beta^{X} i)}{1 + \exp(\beta^{X} i)}$$

Propensity score matching

Individuals	Exposure	Predicted Probabilities	
1	DBI=Y	0.9876	
2	DBI=Y	0.7564	
3	DBI=N	0.9778	
4	DBI=Y	0.7865	
5	DBI=N	0.2101	
6	DBI=Y	0.2000	
7	DBI=N	0.3390	
8	DBI=Y	0.3387	
9	DBI=N	0.7729	
10	DBI=Y	0.6988	

Nearest neighbour matching

Kernel matching

Propensity score matching assumptions

Eq I
$$Y_1 = \bar{u}_1(X) + Z_1$$
 $\bar{u} = Mean effect$
Eq 2 $Y_0 = \bar{u}_0(X) + Z_0$ Z=error term
 $\blacktriangle = (Y_1 - Y_0) = \{\bar{u}_1(X) - \bar{u}_0(X)\} + \bar{u}_1 - \bar{u}_0$ Heterogeneity
ATE
Eq 3 $Y = T^*Y_1 + (I - T)^*Y_0$
if T=1, then Y=Y_1, if T=0 then Y=Y_0

Eq4
$$Y=Z_0(X) + \triangle ATE^*T + \{T(Z_1-Z_0)+Z_0\}$$

I. All confounders (X) have been accounted
2. No/minimal error terms

	Falls		GP visits		Mortality	
	Before	After	Before	After	Before	After
	Matching	Matching	Matching	Matching	Matching	Matching
	IRR	IRR	IRR	IRR	HR	HR
PP	l.79 (l.65-l.93)	l.99 (l.79-2.2l)	I.23 (I.23-I.24)	.3 (1.30-1.31)	l.66 (l.59-l.73)	1.10 (1.04-1.17)
DB I	l.56 (l.47-l.65)	l.56 (l.47-l.67)	I.I2 (I.I2-I.I2)	1.12 (1.11-1.12)	I.28 (I.24-I.32)	I.08 (I.04-I.II)

PP-Polypharmacy

Current research-Level B studies-A Data linkage study:

Nishtala PS, Soo L. Proton pump inhibitors utilisation in older people in New Zealand from 2005 to 2013. Intern Med J 2015.

Nishtala PS, **Soo L.** Proton pump inhibitors utilisation in older people in New Zealand from 2005 to 2013. Intern Med J 2015.

- Short-term PPI (30-60 days) use associated with aspirin and NSAID exposures
- Long-term (>180 days) PPI use associated with aspirin exposure, NSAID exposure, gastritis/duodenitis, GORD and increasing age

Level C studies- comparative safety

'Real-world' haemorrhagic rates for warfarin and dabigatran using population level data

- New user design: Followed inception cohort using warfarin or dabigatran for the first time
- Followed cohort for period of 18 months
- Estimated incidence rate (person years), incidence rate for 30 days and hazard ratios
- Propensity score matching

Initiatives for advanced research

Marginal structural models: when you have a time varying covariate

Instrumental variables

Conclusions

 Real world data can provide evidence in special populations (e.g. older people) often excluded in RCTs

• Real world data can account for comorbidity

• Support policy decisions

Detect off-labelled & inappropriate medicine use

Acknowledgements

RiPE group

Dr David Chyou Statistician Chanaka Kaluarachchi Statistician Sujita Narayan PhD Candidate Henry Ndukwe PhD Candidate Mohammed Salahudeen PhD Candidate

eetee leeteee ee

ELACE CERTER

Grants DEAN Fund UORG NZPERF Lottery health

Collaborators

- •<u>Professor Sarah Hilmer</u> University of Sydney
- Associate Professor Simon Bell Monash University
- •<u>Associate Professor Timothy Chen</u> University of Sydney
- •Dr Danijela Gnjidic University of Sydney
- •<u>Dr Carl Hanger</u> University of Otago, Christchurch
- •Dr Hamish Jamieson, University of Otago, Christchurch
- •Dr Ibrahim Oreagba University of Lagos

Otago : Unibersity

Research in Pharmacoepidemiology (RiPE) @ National School of Pharmacy, University of Otago