Ending the Cardiovascular Disease Epidemic in New Zealand: What can Modelling tell us?

Prof Nick Wilson, Prof Tony Blakely, Dr Nhung Nghiem, Frederieke Sanne van der Deen (on behalf the wider BODE³ Team), University of Otago, Wellington

Funding: Health Research Council; MBIE

Burden of Disease Epidemiology, Equity and Cost-Effectiveness Programme

WELLINGTON

Structure of this presentation

- Modelling methods
- Results for sodium reduction
- Results for tobacco control
- Results for CVD preventive medications
- League tables
- Conclusions

Our multi-state life-table models

Methods – multi-state life-table

• A multi-state life-table is literally that: a life-table in which subjects (proportions of a cohort) can be in multiple states simultaneously

	Α	В	С	D	E	F	G	Н		
					Life table	Deaths in				
1					cohort	cohort				
				probability of	no. of survivors at	no. who die	no. of person-years			
			average mortality	dying between	age x out of those	between age x	lived by cohort to		prevYLD rate	disa
2	sex	age	rate at age x	age x and x+1	in year 1	and x+1	age x+1/2	life expectancy	from all causes	р
3		x	m _x	qx	l _x	dx	L _x	ex	wx	
					10 = population		$L_x = (l_x + l_{x+1})/2$			
4			mortality data	$q_x = 1 - EXP(-m_x)$	$l_x = l_{x-1} - d_{x-1}$	$\mathbf{d}_{\mathbf{x}} = \mathbf{q}_{\mathbf{x}} \times \mathbf{l}_{\mathbf{x}}$	$L_{110+} = l_{110+}/m_{110+}$	$e_x = \Sigma L_x / l_x$	from BOD data	Lw _x =
		_å		*** · · · · · · · · · · · · · · · · · ·		-				
7	male	4	0.000135194	0.0001	114928	16	114920	79.14	0.026408649	
7 8	male male	4	0.000135194 0.00010438	0.0001	114928 114912	16 12	114920 114906	79.14 78.15	0.026408649	_
7 8 9	male male male	- 4 5 6	0.000135194 0.00010438 8.39192E-05	0.0001 0.0001 0.0001	114928 114912 114900	16 12 10	114920 114906 114895	79.14 78.15 77.16	0.026408649 0.03374444 0.03374444	
7 8 9 10	male male male male	4 5 6 7	0.000135194 0.00010438 8.39192E-05 6.41376E-05	0.0001 0.0001 0.0001 0.0001 0.0001	114928 114912 114900 114891	16 12 10 7	114920 114906 114895 114887	79.14 78.15 77.16 76.17	0.026408649 0.03374444 0.03374444 0.03374444	
7 8 9 10 11	male male male male male	4 5 6 7 8	0.000135194 0.00010438 8.39192E-05 6.41376E-05 5.40211E-05	0.0001 0.0001 0.0001 0.0001 0.0001	114928 114912 114900 114891 114883	16 12 10 7 6	114920 114906 114895 114887 114887 114880	79.14 78.15 77.16 76.17 75.17	0.026408649 0.03374444 0.03374444 0.03374444 0.03374444	
7 8 9 10 11	male male male male male	4 5 6 7 8 LifeTab	0.000135194 0.00010438 8.39192E-05 6.41376E-05 5.40211E-05 e CHD Strok	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	114928 114912 114900 114891 114883	16 12 10 7 6	114920 114906 114895 114887 114887 114880 C EndometrialCan	79.14 78.15 77.16 76.17 75.17	0.026408649 0.03374444 0.03374444 0.03374444 0.03374444	

Burden of Disease Epidemiology, Equity and Cost Effectiveness Programme

WELLINGTON

4

Specific methods

- Models built in Excel & TreeAge (Markov macro-simulation)
- Health system perspective, 3% discount rate
- Built-in disease trends out into the future eg, declining CVD incidence, case-fatality rate (CFR)
- Disease-specific incidence, case-fatality, prevalence from range of sources, using DISMOD to ensure consistency: (mortality data, HealthTracker, NZ Burden of Disease Study (NZBDS), NZCMS)
- Morbidity incorporated using years lived with disability (YLDs) from NZBDS
- Costs in each state from rich linked NZ data, 2011 \$

INGTON

Dietary sodium interventions – contributing to a NZ league table

- A "diet high in sodium" 2nd most important dietary risk factor for health loss (Global Burden of Disease Study 2013).
- Countries use a wide range of interventions:
 - Labelling (many)
 - Maximum levels in foods (eg, bread)
 - Media campaigns (eg, UK)
 - Taxing salty foods (eg, Hungary)
 - Encouraging industry to reformulate food
 - Substitution with KCl (eg, Finland)
 - Dietary counselling (many)

6

Specific methods (sodium reduction)

- Model built in TreeAge
- Estimates QALYs gained (\downarrow CHD & \downarrow stroke)
- Population: 2.3 m NZ adults, aged 35+
- Methods details on BODE³ website:
 - Nghiem et al 2015, PLoS One
 - Nghiem et al 2016, BMC Public Health
 - Wilson et al 2016, Nutr J
 - Online Reports: eg, model validation

Screenshot, BODE³ Online Interactive League Table: QALY gains (life-time) for NZ population in 2011

Screenshot, BODE³ Online Interactive League Table: Health system costs (life-time) NZ\$ for NZ population

Published but not yet in the online league table: Costeffectiveness planes (sodium reduction)

Cost-effectiveness plane: highest impact interventions (sodium reduction)

Who gains the QALYs & when (sodium reduction)

Selected issues

- Pro-equity: 33% higher per capita QALY gain for Māori from sodium reduction
- Salt tax revenue a potential plus for some policy-makers
- Particularly strong case for progressing salt substitution (since it is happening already)
- Recent studies: uncertainty about hazard at Na+ <5g/d, high metabolic demands of salt excretion.

LLINGTON

Summary: Sodium reduction

- In our league table: 32 methodologically comparable interventions for policy-makers to consider
- Sodium substitution largest gains (& seems relatively feasible)
- Further work still needed on the possible hazard of low sodium intakes & metabolic impacts

LLINGTON

Tobacco control modelling

- Multi-state life-table model in Excel
- Models \downarrow IHD, \downarrow stroke, + 14 other conditions
- Methods details on BODE³ website, eg:
 - Blakely et al 2015, PLoS Med
 - Pearson et al 2016, Tob Control
 - Nghiem et al 2017, Tob Control
 - Van der Deen et al 2017, Tob Control

ELLINGTON

Tobacco control interventions: Health gain (QALYs) over the remainder of the lives of the 2011 NZ population

0

50,000 100,000 150,000 200,000 250,000 300,000

Tobacco control interventions: Net health system cost-savings accrued over the remainder of the lives of the 2011 NZ population in NZ\$

Health gains from tobacco tax increases

Slightly modified from PLoS Med paper

Cost-savings from tobacco tax increases

Slightly modified from PLoS Med paper

12 Tobacco Control Interventions

- All generate health gain and net cost-savings
- But only 17% of QALYs gain from CVD prevention since most is from:
 - COPD: 53%
 - Lung cancer: 26%
- But CVD benefits usually achieved sooner

20

Modelling CVD preventive medications

- Use of triple therapy (statin + anti-hypertensive + aspirin) for primary prevention
- Stratified by 5y absolute risk of CVD event
- NZ risk data (PREDICT) (Knight et al 2017, PLoS One)
- Multi-state life-table model in Excel
- Models: \downarrow IHD, \downarrow stroke, \downarrow colorectal cancer

Provisional results: 60-64y old men

Five-year cumulative risk category	QALYs gained	Cost offsets (NZ\$ million)	Incremental cost- effectiveness ratio (ICER) in NZ\$ per QALY gained, (95%UI)
>20%	25	\$0.024	\$969 (\$-319 to \$2,250)
>15 <i>,</i> ≤20%	77	\$0.037	\$479 (\$-1,200 to \$2,090)
>10, ≤15%	324	\$0.146	\$449 (<mark>\$-1,920</mark> to \$2,960)
> 5, ≤10%	1440	\$3.71	\$2,580 (\$-1,410 to \$7,160)
>0 <i>,</i> ≤5%	1230	\$13.4	\$11,000 (\$3,660 to \$19,200)

Average healthy life gained per man 60-64y man from offer of triple therapy for 5y (provisional results)

Five-year cumulative risk category	Non-Maori	Maori
>20%	3.2 months	2.7 months
>15, ≤20%	2.2 months	2.0 months
>10, ≤15%	1.5 months	1.4 months
>5, ≤10%	23 days	24 days
> 0, ≤5%	12 days	13 days

League table development

- Includes all our published CVD intervention results (also compared to cancer control etc)
- Our envisaged backbone of communication with:
 - Researchers, policy-makers, public, other stakeholders
- To try it: See our *Public Health Expert* blog series on using the BODE³ Interactive League Table

LLINGTON

In Conclusion, Modelling can:

- Show the health gain and cost impacts of interventions to reduce CVD (eg, sodium, tobacco, pharmaceutical) – all with uncertainty
- Inform equity impacts (eg, Māori per capita QALY gain greater)
- Show timing of health gains & costs
- Facilitate league table development

But early stages in gauging policy-maker response to modelling outputs & league tables

WELLINGTON