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Abstract 

 

The impact that oil shocks have on stock prices in oil exporting countries has implications for 

both domestic and international investors. We derive the shocks driving oil prices from a fully-

identified structural model of the oil market. We study their nonlinear relationship with stock 

market returns in major oil-exporting countries in a multi-factor Markov-switching 

framework. Flow oil-demand shocks have a statistically significant impact on stock returns in 

Canada, Norway, Russia, Kuwait, Saudi Arabia, and the UAE. Idiosyncratic oil-market shocks 

affect stock returns in Norway, Russia, Kuwait, Saudi Arabia and UAE. Speculative oil shocks 

impact stock returns in Canada, Russia, Kuwait and the UAE. Flow oil-supply shocks matter for 

the UK, Kuwait, and UAE. Mexico is the only country where stock returns are unaffected by oil 

shocks. These results shed important light on investor sentiment toward the relationship between 

oil shocks and stock markets in oil exporting countries. 
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1. Introduction 

For many of the major oil-exporting countries, oil rents form a large share of GDP, with Kuwait in 

the upper range of 40-50%, followed by Saudi Arabia, the United Arab Emirates, Russia, and Norway, 

with declining shares respectively, down to around 10% (Figure 1). Hence, oil price shocks are likely 

important drivers of stock markets in oil-exporting countries that have reasonably well-functioning stock 

markets in terms of stock market capitalization relative to GDP (size of the stock market) and values of 

stock trades relative to GDP (liquidity of the stock market).1 Knowing the quantitative impact of oil price 

shocks in oil exporting countries is therefore of great relevance for portfolio construction and risk 

management of international investors in such global markets.  

Kilian (2009) showed in a seminal paper that the reasons of oil price changes matter crucially for their 

effects on real GDP in the US, an oil importing country. Kilian and Park (2009, p. 1267) pointed out that 

studies that ignore the source of oil price shocks are biased towards finding no statistically significant 

relationships between oil price shocks and variables such as stock prices. There are two reasons for that.  

First, oil-supply and oil-demand shocks have normally different effects on economic and financial 

markets. Second, the relationship between oil price shocks and macroeconomic and financial variables 

likely changed over time, with oil price shocks having less of an effect on real GDP in recent decades in 

oil importing countries. 

The structural oil-market model of Kilian (2009), used in numerous empirical studies, was 

generalized by Kilian and Murphy (2014) in order to capture unobservable shifts in expectation about 

future oil demand and supply. They explained how, through arbitrage, crude oil inventories above ground 

reflect such changes in expectations. Therefore, they introduced above-ground crude oil-inventory 

changes in the oil-market model of Kilian (2009) as an additional variable, capturing the speculative 

demand for crude oil. This approach makes it feasible to explicitly identify structural speculative oil-

demand shocks for crude oil and to evaluate their role for stock market returns. Furthermore, the second 

                                                 
1 See Baumeister and Kilian (2016) for a detailed analysis of oil price fluctuations over the past forty years. Large 

price fluctuations have been a recurring feature in oil markets and recent years are no exception. 
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generation oil-market model of Kilian and Murphy (2014) does not impose zero short-run (on impact) 

price elasticities for oil supply and oil demand, as was the case in the framework of Kilian (2009).  

Baumeister and Hamilton (2015), among others, recently criticized this aspect of Kilian’s (2009) 

modelling framework.      

The Markov switching model (Hamilton, 1990) is a flexible framework for studying the relationship 

between oil shocks and stock markets. It allows for time-varying causality across regimes, whereas linear 

models assume constant parameters and no regime (structural) changes. In the estimation of Markov 

models all information about the varying regime-switching probabilities of being in a particular regime is 

used, i.e., the full sample is used. Breaks are not imposed or treated as one-time events with zero 

probability of recurring. Instead, the Markov framework lets the data determine the probabilities of 

change, and changes are assumed to reoccur with non-zero probability. This is in sharp contrast to 

standard tests for structural breaks that treat a break or multiple breaks as unique events (at known or 

unknown points in tine), with a zero probability of occurring again in the future and hence being ignored 

in forecasting (Hamilton, 2016).    

We follow Kilian’s (2009) two-stage approach. However, we derive the structural shocks from the 

fully identified oil-market model of Kilian and Murphy (2014). We first estimate a structural vector-

autoregressive (VAR) model and identify, with sign restrictions and elasticity bounds, four structural oil 

shocks: a flow oil-supply shock, a flow oil-demand shock, a speculative oil-demand shock, and an oil-

market-specific idiosyncratic oil price shock not captured by the previous three shocks. In the second 

stage, we assess the impact of each of these shocks on excess stock returns within a Markov-switching 

framework. The Markov model that we apply allows for volatility to differ across regimes so that the 

model can capture the time-varying volatility in stock markets, which is a significant stylized fact in 

financial markets. In addition, we explore what global factors affect the state probability of market 

transition between low and high volatility regimes, using a “probit” model.   

Our paper contributes to the literature in three ways: (i) we combine the fully identified structural 

VAR oil-market model of Kilian and Murphy (2014) with a Markov switching model for stock returns, 
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using a two-stage analysis; (ii) we study the impact of speculative behavior in the crude oil market on 

stock market returns, after accounting for the roles of flow oil-supply shocks and flow oil-demand shocks, 

and (iii) we do this for major oil exporting countries that have seen an increased interest in their stock 

markets from international investors in recent years. Overall, we find that at least one of the four 

structural shock has a statistically significant effects on excess stock returns in one of the Markov states, 

except for Mexico that is unaffected by oil-market shocks. The domestic excess stock returns respond 

statistically significantly to all four shocks in Kuwait and the United Arab Emirates, to flow oil-demand, 

idiosyncratic and speculative (inventory) shocks in Russia, to flow oil-demand and idiosyncratic shocks 

in Norway and Saudi Arabia, to flow oil-demand and speculative shocks in Canada, and to flow oil-

supply shocks only in the UK.  

The paper is organized as follows. Section 2 presents a brief discussion of theoretical transmission 

channels between oil prices and stock prices.  An overview of the related literature is also included. 

Section 3 discusses the econometric approach in some detail, and Section 4 describes the data. Section 5 

offers the empirical results and Section 6 concludes the paper.   

 

2. Oil price shocks and the role of stock markets in oil-exporting countries  

Theoretically, oil prices can affect stock prices in oil-exporting countries in several ways. At any 

time, the price of a share in a company is equal to the expected present value of discounted future cash 

flows (Huang et al., 1996). Oil price shocks can affect stock prices directly by affecting current and future 

cash flows or indirectly by affecting interest rates that are used to discount the future cash flows. Unless 

there is complete substitution between factors of production, rising oil prices generally increase the cost 

of doing business when oil is used as an input. Oil is an essential input in the production of many goods 

and services. For non-oil related companies, a positive unexpected increase in oil prices will usually 

reduce cash flows and stock prices and hence lead to a reduction of realized stock returns. For oil related 

companies, involved in the production of oil, this generally increases cash flows and stock prices, along 

with realized stock returns. The effects depend on how inelastic the demand for oil is and on the time 
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horizon considered (i.e., short- versus longer-run elasticities).  The increase in stock prices and stock 

returns for oil related companies will increase consumption and investment through the wealth and 

income channels and with it economic activity and real GDP. The opposite effects occur for non-oil 

related companies. Furthermore, oil royalties for governments in oil-producing countries may increase as 

well when oil prices go up, depending on elasticities of oil demand and on how royalties are levied. Such 

royalties may be used for additional domestic government spending, say to increase transfer payments to 

households or to build up the domestic infrastructure, and thus lead to further economic stimulus.   

The effects of oil price shocks in the stock-pricing formula depend also on the interest rate used for 

discounting the expected future cash flows. The nominal interest rate in turn depends on expected 

inflation and expected real rates of interest. These depend on aggregate demand and supply conditions in 

an economy, which are influenced by monetary and fiscal policies and by trade effects as well. An 

economic slow-down in oil-importing countries will affect non-oil related exports originating in oil-

exporting countries. Depending on the size of the non-oil export sector in oil-exporting countries, oil-

exporting countries will see a negative stimulus coming through the trade channel. The net effect for oil-

exporting countries may be positive or negative.2 Bjørnland (2009) pointed out that Norway, a net oil 

exporter, has benefited from oil price increases, showing temporary increases in economic growth, 

whereas Canada, also a net-oil exporter, has shown instead declines in economic growth, more in line 

with the effects of oil price hikes in oil-importing countries.    

Numerous studies have analyzed the impact of oil price shocks on stock markets, as for example 

Ferson and Harvey (1994), Jones and Kaul (1996), Sadorsky (1999; 2001), Hammoudeh and Aleisa 

(2004), El-Sharif et al. (2005), Basher and Sadorsky (2006), Boyer and Filion (2007), Park and Ratti 

(2008), Kilian and Park (2009), and Basher et al. (2012). The literature has mostly focused on the US and 

other oil-importing developed countries and less on emerging markets, developing countries, and oil-

exporting countries.    

                                                 
2 For the oil-exporting countries, a positive terms of trade shock may also eventually lead to a Dutch Disease 

phenomenon.  This is caused by an increase of the price of the non-tradable goods and an appreciation of the real 

exchange rate (Buetzer et al., 2016). 
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The literature on oil shocks and stock markets in oil-exporting countries is relatively sparse. Some 

studies on emerging economies included a few of the oil exporters as part of the emerging economies but 

generally did not analyze them separately (e.g., Basher and Sadorsky, 2006) or looked at a composite 

emerging markets index instead (Basher et al., 2012). Only a few papers directly consider oil-exporting 

countries.  For example, Sadorsky (2001) explored the relationship between oil prices and equity values 

in the Canadian oil and gas sector. He found a significant positive relationship between the oil equity 

index and the price of crude oil, with a 1% increase in oil prices being associated with a 0.305% increase 

in the value of the index. Mohanty et al. (2011) found that, except for Kuwait, oil price changes are 

associated with increased stock price returns in the GCC countries. In examining dynamic correlation 

between oil prices and stock prices Filis et al. (2011) found that dynamic correlation does not differ 

between oil-importing countries and oil-exporting countries. Guesmi and Fattoum (2014) find similar 

evidence using a slightly different selection of oil-importing and oil-exporting countries. There is also 

some evidence that oil prices have asymmetric impacts on stock returns. Ramos and Veiga (2013) found 

that the impact of oil price changes on stock prices depends upon whether a country is a net oil importer 

or net oil exporter. In particular, oil price increases have a positive impact on stock markets in oil 

exporting countries. Also, Demirer et al. (2015) found that, for Gulf Arab stock markets, higher oil prices 

lead to higher stock returns. 

In contrast to the above studies, Kilian and Park (2009) used the oil-market model of Kilian (2009) 

and documented that the effect of oil price shocks on the US stock market differs significantly, depending 

on the source of the oil price change.  They found that positive oil-demand shocks depressed US stock 

prices, while oil-supply shocks had little impact on stock prices. Sim and Zhou (2015) used as well the 

two-stage model in Kilian (2009) to study the effect of the quantiles of the oil-specific shocks on the 

quantiles of the US stock returns and found asymmetric effects.  Further, Aspergis and Miller (2009) used 

the two-stage Kilian (2009) framework in order to investigate the impact of oil shocks on the stock 

markets of Australia, Canada, France, Germany, Italy, Japan, and the United States. They found that the 

impact of oil shocks on stock prices is small. On the other hand, Jung and Park (2011) compared the 
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relationship between stocks and oil prices in Norway and South Korea, using the SVAR in Kilian and 

Park (2009).  They found that the responses of stock returns and volatility differ substantially, depending 

on the cause of the oil price change and on whether a country is a net oil exporter or importer.  Kang and 

Ratti (2013) add a variable for economic policy uncertainty to the Kilian and Park (2009) model and find 

that structural oil shocks account for approximately 32% of the long-term variability in stock returns 

while economic policy uncertainty accounts for 19%. Furthermore, Wang et al. (2013) extended the linear 

SVAR approach of Kilian and Park (2009) to various oil-exporting and oil-importing countries. They 

found that the effects of oil price shocks on local stock markets differ by magnitude, duration, and 

direction according to whether a country is a net oil-exporter or net oil-importer and according to the type 

of oil shock. Kang et al. (2015) combine the Kilian and Park (2009) SVAR model with a time-varying 

parameter VAR and find evidence of time variation in the estimated coefficients and the variance-

covariance matrix. The contribution of each oil shock has changed across time.  

A few studies applied the Markov-switching model to analyze the relationship between oil price 

shocks and financial markets.  Chen (2010) used a Markov-switching model to study the impact of oil 

price shocks on US stock returns. He found evidence that an increase in oil prices increased the 

probability of a bear market. The results are robust to different measures of oil prices changes and several 

different measures of broad-based US stock markets. Beckmann and Czudaj (2013) applied the Markov-

switching model to the relationship between oil prices and exchange rates. Beckmann and Czudaj (2013) 

considered five major oil-exporting and six oil-importing countries, as well as the euro area.  Their short-

run nonlinear vector error-correction follows a two-state Markov-switching regime that is embedded 

within a long-run linear cointegrating relationship (with no Markov-switching). Also, Balcilar et al. 

(2015) used a Markov-switching vector error-correction model with two variables, namely historic US oil 

prices and stock prices. However, these authors did not study the sources of oil price shocks when 

analyzing the Markov-switching dynamics, because their econometric framework is not quite suitable for 

this purpose.  On the other hand, Basher et al. (2016) used a different Markov model and considered the 

sources of oil shocks as in Kilian (2009) in the analysis of the dynamics between oil price shocks and 
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exchange rates.  The above results generally supported the presence of regime switching for the effects of 

oil shocks. Moreover, Angelidis et al. (2015) used a Markov-switching model in a two-stage Kilian 

(2009) setting to analyze the impact of oil shocks on Dow Jones stock returns and volatility, and found 

that oil demand and supply shocks help explain the transition from low volatility to high volatility states. 

A further crucial aspect in the relationship between oil prices and macroeconomic or financial 

variables is whether oil price increases have different effects from oil price decreases, i.e., whether there 

is asymmetry.  Mork (1989) argued for asymmetric effects of oil price changes.  He found that increases 

in the real price of oil have much more predictive power for US real output growth than declines.  

Moreover, Hamilton (2003) defined a net oil price increase as the relevant variable to model the effects of 

oil prices on the economy.  His oil price measure included only oil price increases that represent new 

highs relative to the recent experience, or reversals of recent decreases.  Various definitions of this net oil 

price increase have been used with varying lag lengths in order to determine new highs of the oil price.   

However, Kilian and Vigfusson (2011) discussed econometric issues in regards to oil price shocks and 

presented empirical evidence in favor of effects on output being linear and symmetric.3  Our Markov-

switching model has the advantage that it determines relevant regimes that prevail over time from the data 

without imposing a strict formula for switches, as Hamilton’s net oil price does by using specific time 

periods when oil prices reach new highs.  

 

3. Empirical methodology 

We employ the two-stage approach developed by Kilian (2009).  However, we use the oil-market 

SVAR model of Kilian and Murphy (2014) with four variables instead of the model of Kilian (2009) with 

three variables only to model the oil market.  We construct in the first stage the four structural shocks in 

the crude oil market.  In order to identify structural shocks we use sign restrictions and elasticity bounds, 

following Kilian and Murphy (2014).  In the second stage, we empirically assess the responses of stock 

                                                 
3 See the reply by Hamilton (2011). 
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market returns of selected major oil-exporting countries to the four oil shocks identified, using a Markov-

switching framework (Hamilton, 1990).  

The modelling framework of Kilian (2009) explicitly identified global crude oil-supply shocks due to 

changes in world oil production and global aggregate demand shocks due to changes in the world demand 

for oil resulting from business cycle fluctuations.  A third oil-market-specific shock was only implicitly 

identified in Kilian (2009).  This third structural shock was designed to capture all other shocks besides 

oil-supply and oil-demand shocks that hit the oil market and thus the third structural shock forms a 

residual shock category, which complicates the economic interpretation of these residual shocks. In 

contrast, the second generation oil-market SVAR of Kilian and Murphy (2014) explicitly identifies 

speculative oil-demand shocks in addition to flow oil-supply shocks and flow oil-demand shocks.  Kilian 

and Murphy’s (2014) SVAR represents a fully specified structural model of the oil market. The residual 

shocks in this model capture shocks to real oil prices such as extreme weather events, changes in storage 

technology or preferences, etc. Crude oil inventories above the ground reflect speculative motives in 

regards to future oil price movements or the degree of concerns about future oil supplies, including 

precautionary motives and strategic oil reserves.  Usual arbitrage arguments link the demand for physical 

oil inventories with financial futures markets for crude oil (Kilian and Murphy, 2014).  On the other hand, 

speculative behavior of oil producers, such as pumping less crude oil from below-ground in anticipation 

of higher future oil prices, is captured by the flow oil-supply variable in the SVAR model.  

 

3.1 Identification of global oil shocks and estimation of the SVAR model 

Oil demand and supply, both in flow terms, are cast in an SVAR model specified as: 

𝐴0𝑦𝑡 = 𝐴(𝐿)𝑦𝑡−1 + 𝜀𝑡, (1) 

where yt is a vector with four variables for t=1, …, n: (i) the percentage change in global oil production 

(prod), (ii) an index of global economic activity (rea), (iii) the natural logarithm of the real price of oil (in 

US dollars; rpo), and (iv) global oil-inventory changes (inv); 𝜀𝑡 is a vector of serially and mutually 
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uncorrelated structural innovations that have economic meaning. The reduced-form VAR, where 𝑒𝑡 =

𝐴0
−1𝜀𝑡 is a vector of correlated errors, is estimated from: 

𝑦𝑡 = 𝐴0
−1𝐴(𝐿)𝑦𝑡−1 + 𝑒𝑡. (2) 

The orthogonal structural innovations are derived from the reduced form estimates in equation (2) by 

imposing various restrictions on 𝐴0
−1. We model the crude oil market as in Kilian and Murphy (2014).  

The four structural shocks in equation (1) are interpreted as follows: 𝜀1𝑡
𝑠  represents shocks to the global 

supply of crude oil above the ground (flow supply) that we label “supply shock”; 𝜀2𝑡
𝑑  captures shocks to 

flow oil demand due to changes in the global demand for all industrial commodities that reflect changes 

in global real economic activity caused by business cycle fluctuations (“demand shock”);  𝜀3𝑡
𝑖𝑑𝑖 represents 

all other (residual) oil-market specific idiosyncratic demand shocks (“idiosyncratic shock”); and 𝜀4𝑡
𝑖𝑛𝑣 is a 

shock to above-ground oil inventories due to speculative concerns over future oil demand and supply 

(“inventory shock”).  The identification of 𝐴0
−1 is achieved by imposing restrictions: 

𝑒𝑡 =

(

 
 

   𝑒1𝑡
𝑝𝑟𝑜𝑑

 𝑒2𝑡
𝑟𝑒𝑎

 𝑒3𝑡
𝑟𝑝𝑜

𝑒4𝑡
𝑖𝑛𝑣

)

 
 
= [

−     +          +       none
−     +          −       none
+     +          +       none
  none none  +       none   

]

(

 
 

𝜀1𝑡
𝑠

𝜀2𝑡
𝑑

𝜀3𝑡
𝑖𝑑𝑖

 𝜀4𝑡
𝑖𝑛𝑣
)

 
 

. (3) 

Following Kilian and Murphy (2014), all structural shocks have been normalized to imply an increase 

in the real price of oil.   Their methodology involves sign restrictions and restrictions on the bounds of the 

price elasticity of oil supply and the price elasticity of oil demand for the impact responses in equation 

(3).  Kilian and Murphy (2012) illustrated that sign restrictions on the impact of responses alone, as 

shown in equation (3), are generally too weak to be informative for identification of the shocks.  Kilian 

and Murphy (2014) therefore imposed further restrictions, following the methodology developed by Inoue 

and Kilian (2013).4  The dynamic response of the real price of oil to a negative oil-supply shock must 

have an initial positive impact on the real price of oil for at least 12 months. They also imposed 

restrictions on the short-run price elasticities of oil supply and of oil demand.  The bounds imposed are [0, 

                                                 
4 In contrast to the conventional approach to sign-identified VARs, Inoue and Kilian’s (2013) method avoids 

problems associated with impulse responses that lack a specific corresponding structural model.  
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0.025] for the price elasticity of oil supply on impact.   The oil demand elasticity in production, which is 

usually used in the literature, sets the production of oil equal to the consumption of oil.  When oil 

inventory changes play a role, this definition cannot be used.  Following Kilian and Murphy (2014), we 

use instead the price elasticity for oil demand “in use” that excludes inventory changes, because inventory 

oil is not in use but in storage.  The elasticity of oil demand in use is weakly negative on impact, in 

addition to having a lower bound determined by a long-run elasticity of -0.8, so that we impose for 

identification  -0.8 ≤ “price elasticity of oil demand in use” ≤ 0 for the effect on impact.5         

Bayesian methods are used for the estimation of the SVAR model and the associated impulse 

response functions.  These methods allow assigning a posterior density value to each admissible structural 

model that satisfies the identifying restrictions outlined above.  A standard Gaussian-inverse Wishart prior 

distribution for the reduced-form VAR parameters and a Haar distribution for the rotation matrix are 

assumed.  The posterior distribution of the structural impulse responses is derived by applying the 

identification criteria to each draw of the parameters and rotation matrix (used in constructing the 

structural impact multiplier matrix for the impulse responses) from those prior distributions.  We will 

repeat this procedure for five million draws and discard structural models that imply impulse responses 

not obeying the identifying restrictions.   

We include seasonal dummies in the VAR in order to account for seasonal effects.  Furthermore, we 

do not impose unit roots and cointegration on the estimated VAR in equation (2), i.e., we do not apply a 

vector error-correction model.  Sims et al. (1990) showed that consistent parameter estimates can be 

obtained by applying least squares to VARs, despite the presence of variables with unit roots, as long as 

the variables with unit roots are cointegrated among themselves.  In other words, it is not necessary to 

impose cointegration to achieve consistency of the estimates.  Also, Hamilton (1994, pp. 651-653) 

provided some detailed discussion on this approach and pointed to pitfalls of imposing invalid 

cointegration restrictions.  Moreover, it is incorrect to use first-differences of variables (that have unit 

                                                 
5 Kilian and Murphy (2014) experimented with alternative elasticities of oil supply for an upper bound as large as 

0.1 and found qualitatively similar results for impulse responses. See also Baumeister and Hamilton (2015) on the 

critical role of the short-run price elasticities.     
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roots) in a VAR when cointegration is present because then missing error-correction terms create omitted 

variables problems.  For our data, standard Phillips-Perron and DF-GLS test results (available from the 

authors on request) showed strong evidence in favor of unit roots for the global real economic activity 

variable and for the log of the real oil price.  Cointegration is supported by usual Engel-Granger tests 

between these two variables.  On the other hand, the percentage change in the oil supply and the change 

in crude oil inventories are variables that are covariance stationary.6  Hence, the above VAR specification 

is consistent with the requirements of Sims et al. (1990).   In addition, we tested each of the four oil shock 

series, described in (3), for unit roots and found that these are well described as covariance stationary 

processes.  Therefore, cointegration modelling is not needed.   

 

3.2 Markov-switching 

The next step in our analysis is to specify a Markov-switching model in order to study what effects 

the four oil shocks have on stock market returns in each of the oil exporting countries.  The structural oil-

market shocks have been constructed from the reduced-form VAR residuals by imposing sign and 

elasticity bounds restrictions in such a way that they are orthogonal (Kilian and Murphy, 2014, p. 463).  

The extent to which these shocks are orthogonal to excess stock returns depends in part on how well the 

VAR is specified.  The oil-supply, oil-demand, and speculative shocks are each explicitly identified, 

whereas the idiosyncratic shocks are only implicitly identified because they capture all other residual 

influences. However, the second stage regression estimates are consistent as long as the shocks are at least 

predetermined variables with respect to unexpected changes in stock returns so that there is no feedback 

from excess stock returns to the shocks within the month. It is commonly assumed that oil-market shocks 

are predetermined with respect to other macroeconomic and financial variables; see for example Kilian 

(2009), among others.  In particular, we follow Kilian and Park (2009) and treat oil prices as 

predetermined with respect to stock market returns. This means that excess stock market returns are 

                                                 
6 The inclusion of the oil demand elasticity in the model requires that oil inventories are specified in changes rather 

than percent changes.  See Kilian and Murphy (2014). 
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allowed to respond contemporaneously to oil supply, demand, speculative and idiosyncratic shocks.  On 

the other hand, shocks to excess stock returns in oil-exporting countries do not affect global oil 

production, global real economic activity, global speculative oil demand, and global real oil prices within 

the month but may have effects with a delay of a month or more.      

The oil-market shocks are generated regressors in the second stage regressions.  Usually, generated 

regressors do not cause problems for coefficient estimates in second stage regressions but the estimates of 

the standard errors of the coefficients are not consistent because the sampling variation in the generated 

regressors is ignored (e.g., Wooldrigde, 2010). However, these implications depend on the exact model 

specification and assumptions.  Our setup fits Model 4 in Pagan (1984, p. 232) with γ =0.  He (p. 233) 

showed that in this case (γ =0) the second stage ordinary least squares estimators are efficient and produce 

consistent estimates of coefficients and standard errors, and estimation and inference can proceed as 

usual.  Murphy and Topel (1985) extended these results to models that are nonlinear.  Hence, all our 

estimates in the second stage are unaffected by generated regressor problems as we do not include lags on 

the shocks.     

We proceed by specifying a multi-factor model to relate stock returns to oil shocks. This approach has 

been widely used to study the impact of oil prices on stock returns (e.g. Sadorsky, 2001; Boyer and 

Filion, 2007; Basher and Sadorsky, 2006). A linear multi-factor model for stock market returns has the 

following form:  

𝑠𝑟𝑖,𝑡 = 𝛽0,𝑖 + 𝛽1,𝑖𝜀𝑖,𝑡
𝑠 + 𝛽2,𝑖𝜀𝑖,𝑡

𝑑 + 𝛽3,𝑖𝜀𝑖,𝑡
𝑖𝑛𝑣 + 𝛽4,𝑖𝜀𝑖,𝑡

𝑖𝑑𝑖 + 𝛽5,𝑖𝑤𝑜𝑟𝑙𝑑𝑡 + 𝑢𝑖,𝑡, (4) 

where sri.t is excess stock market returns in country i, expressed in percentages.  The oil shock variables 

are from the SVAR in the previous section: an oil-supply shock (εs), an oil-demand shock (εd), an oil-

inventory shock (εinv), and any other idiosyncratic shocks to oil demand (εidi).  We also include the excess 

return of the world stock market index (worldt) to control for other influences on returns of stocks in oil-

exporting countries, besides the oil shocks.   
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We specify now the multi-factor Markov switching model in order to account for the possible non-

linear relationship between stock returns and oil shocks.   

 𝑠𝑟𝑖,𝑡 = 𝛽0,𝑖,𝑠𝑡 + 𝛽1,𝑖,𝑠𝑡𝜀𝑖,𝑡
𝑠 + 𝛽2,𝑖,𝑠𝑡𝜀𝑖,𝑡

𝑑 + 𝛽3,𝑖,𝑠𝑡𝜀𝑖,𝑡
𝑖𝑛𝑣 + 𝛽4,𝑖,𝑠𝑡𝜀𝑖,𝑡

𝑖𝑑𝑖 + 𝛽5,𝑖,𝑠𝑡𝑤𝑜𝑟𝑙𝑑𝑖,𝑡 + 𝑢𝑖,𝑡. (5) 

The Markov specification allows the impact of oil shocks on stock returns to be state (st) dependent. The 

probability of transition from the State 1 in period t to the State m in period t+1 depends upon the state in 

period t only.  Within each regime, the Markov process is conditionally linear.  Switching between 

regimes is stochastic, which is driven by a time-varying transition probability matrix.  In our model, the 

transition probability matrix changes depending on the values of the intercept, the variance, the four oil 

shocks and the world stock market variable.   It is commonly assumed that the stochastic regime 

generating process follows an ergodic, homogeneous, first-order Markov chain.  The number of regimes 

(M) is finite and transition probabilities are constant: 

𝑝𝑙𝑚 = Pr( 𝑠𝑡+1 = 𝑚 ∣∣ 𝑠𝑡 = 𝑙 ) ,   𝑝𝑙𝑚 ≥ 0,   ∑ 𝑝𝑙𝑚 = 1,   ∀ 𝑙,𝑚 ∈  {1, . . , 𝑀} 
𝑀
𝑚=1 .  (6) 

The Markov-switching models were estimated with two states, state dependent regression coefficients, 

and state dependent volatility for the error process, because stock market returns are known to exhibit 

volatility clustering.   

A good fitting Markov-switching model provides a classification of regimes with estimated 

(smoothed) probabilities that are either close to one or zero. We use the regime classification measure, 

RCM, of Ang and Bekaert (2002).  It allows us to determine the accuracy of the various estimated 

Markov-switching models.  It is computed as follows: 

𝑅𝐶𝑀(𝑆) = 100𝑆2
1

𝑇
∑ ∏ 𝑝̃𝑗,𝑡

𝑆
𝑗=1

𝑇
𝑡=1 .  (7) 

The average of the product of smoothed probabilities is denoted by 𝑝̃ and S is the number of regimes or 

states, S. The switching follows a Bernoulli distribution and hence the RCM provides an estimate of the 

variance. The statistic ranges from perfect regime classification with a value of 0 to a failure to detect any 

regime classification with a value of 100.   Therefore, lower values of the RCM are preferable to higher 
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values of the RCM in regards to the overall fit of the Markov–switching model, along with its smoothed 

probability indicator close to 1. 

 

4. Data 

We used monthly data on world oil supply, global real economic activity, global crude oil inventories, 

oil prices, and stock market indices.  The start date is January 1974 and the end date is August 2015, the 

latest date for which all variables were available when this research project was started.   The world oil 

supply, in millions of barrels per day, is taken from the US Energy Information Administration’s (EIA) 

web site.7  An index of global real economic activity is sourced from Lutz Kilian’s website.8  Global 

crude oil inventories refer to oil inventories above the ground and these are approximate by OECD crude 

oil inventories.9  We updated the data available from Kilian and Murphy (2014) beyond August 2008, 

with data from the EIA and data adjustments kindly supplied to us by Lutz Kilian.  OECD data is only 

available for petroleum inventories and not for crude oil inventories.  Following Kilian and Murphy 

(2014), US crude oil inventories are scaled with the ratio of OECD petroleum stock to US petroleum 

stocks in order to arrive at OECD crude oil inventories.  Further data construction details are given in 

Kilian and Murphy (2014).10  Nominal oil prices in US dollars per barrel are measured by US refiner 

acquisition cost of imported crude oil.11   Real oil prices are calculated with the US CPI.12  

Data on stock market indices for individual countries as well as for the World Stock Market are 

collected from MSCI.13 For each country, monthly returns on stock market indices are calculated as log 

                                                 
7 https://www.eia.gov/totalenergy/data/monthly/  
8 http://www-personal.umich.edu/~lkilian/paperlinks.html  
9   Kilian and Murphy (2014) note that (below-ground) oil reserves are not included as they are not necessary for 

identification of the SVAR model.  Also, below-ground oil reserves are not accessible in the short run as additional 

infrastructure needs to be put in place first.  Aside from that, there are no reliable data on below-ground oil stocks. 
10 On the accuracy of this definition of inventories, see Kilian and Lee (2014).  They (p. 85) showed that an 

alternative measure of inventories derived from proprietary data leads to “very similar results in general,” despite 

having larger amplitude and the correlation between the two inventory measures being relatively low.    
11https://www.eia.gov/petroleum/data.cfm#prices   
12https://fred.stlouisfed.org/search?st=us+cpi   
13 The indexes are explained at https://www.msci.com/indexes.    

https://www.eia.gov/totalenergy/data/monthly/
http://www-personal.umich.edu/~lkilian/paperlinks.html
https://www.eia.gov/petroleum/data.cfm#prices
https://fred.stlouisfed.org/search?st=us+cpi
https://www.msci.com/indexes
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differences. These data are all in US dollars. The three-month US T-bill is used as a proxy for the risk free 

asset used to calculate excess stock market returns.  

Consistent with previous studies, our choice of countries is determined by data availability of major 

oil-exporting countries.   Furthermore, we choose among the top fifteen crude oil exporting countries, as 

ranked by the US Central intelligence Agency’s “The World Factbook”, those countries with relatively 

well-functioning stock markets.14 The ranking, retrieved on 11 November 2016, is based on the total 

amount of crude oil exported in a given year, with data availability ranging from 2012 to 2014 depending 

on the country.  The top fifteen crude-oil exporters are (listed from highest to lowest):  Saudi Arabia, 

Russia, Canada, United Arab Emirates (UAE), Nigeria, Iraq, Kuwait, Angola, Kazakhstan, Venezuela, 

Iran, Qatar, Mexico, Norway, and Algeria.  In order to assess how well the stock market is functioning, 

we employ data on market capitalization and stock values traded.  Market capitalization is defined as the 

share price times the number of shares outstanding for listed companies, as a percentage of GDP. Stock 

values traded are also specified as a percentage of GDP.  Data, mostly for 2013 to make it comparable to 

the CIA data, are taken from the World Bank’s World Development Indicators database, as of 17 

November 2016.15        

No data are available for Iraq, Angola, and Algeria, so that we exclude these countries from our 

analysis. We exclude also Nigeria, Kazakhstan, and Venezuela because of low market capitalization and 

stock values traded (relative to the other countries), which are below 16% and 1.3%, respectively.  We 

exclude Iran due to the embargo imposed on its oil exports during our sample period, and Qatar due to its 

overall small size of the stock market.  All other countries show market capitalizations above 34% and 

trade values above 10%, except for the UAE (with 5.5% in 2013 but with higher numbers in most other 

years).  Additionally, we include the UK as a control.  It is ranked by the CIA on place nineteen and has 

                                                 
14 https://www.cia.gov/library/publications/the-world-factbook/rankorder/2242rank.html  
15 http://data.worldbank.org/indicator/CM.MKT.LCAP.GD.ZS; 

http://data.worldbank.org/indicator/CM.MKT.TRAD.GD.ZS  

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2242rank.html
http://data.worldbank.org/indicator/CM.MKT.LCAP.GD.ZS
http://data.worldbank.org/indicator/CM.MKT.TRAD.GD.ZS
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been an oil exporter for most of our sample period.16  Our chosen set of major oil exporting countries 

therefore is: Canada, Mexico, Norway, Russia, the UK, Kuwait, Saudi Arabia, and the UAE, ordered 

alphabetically by geographical region (North America, Europe, and the Middle East).  

We will study the effect of uncertainty on the probability of transitioning between low and high 

volatility states.  For this purpose, we use the filtered Markov-switching probability associated with each 

country’s low volatility state as the dependent variable and regress it on a global factor: a global interest 

rate as a proxy for global uncertainty and, alternatively, a global economic policy uncertainty index, 

available online.  The first measure is calculated as the difference in the yield spread between the three-

month Eurodollar LIBOR (London Interbank Offered Rate) and the three-month US Treasury bill rate.  It 

is the so-called “TED spread.”  Fluctuations in the TED spread may capture fluctuations in global credit 

risks (Ferson and Harvey, 1994).17  The second measure is the global economic policy uncertainty (EPU) 

index of Baker et al. (2016), calculated as the GDP-weighted average of monthly EPU index values for 

the US, Canada, Brazil, UK, Ireland, Germany, Spain, France, Netherlands, Italy, Russia, India, China, 

South Korea, Japan, and Australia.  The national EPU indices include measures of uncertainty such as the 

frequency of keyword searches for terms like “uncertainty”, “economic crisis”, or “budget deficit” in 

newspapers.18  

Figure 2 plots stock price indexes of the eight markets considered in this study. A cursory look at this 

figure shows a remarkably similar pattern for the impact of the global financial crisis in 2008.  Except for 

Canada and Mexico, the stock markets in the other the six countries stayed in the post-crisis period well 

below their pre-crisis peak in early 2008.  For Saudi Arabia and the UAE, an even bigger market crash 

occurred in early 2006, when share prices collapsed by 75% and 57%, respectively (Basher et al., 2014). 

Share prices in these two largest Middle Eastern markets have not returned yet to their pre-2006 level. 

 

                                                 
16 The UK became a net oil importer in 2005.  For crude oil and natural gas liquids it is a net importer since 2013.  

See https://www.eia.gov/todayinenergy/detail.cfm?id=16971. 

 
17 Interest rates are available from the Federal Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/.  
18 The monthly global index is available at http://www.policyuncertainty.com from January 1997. 

https://www.eia.gov/todayinenergy/detail.cfm?id=16971
http://research.stlouisfed.org/fred2/
http://www.policyuncertainty.com/
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5. Empirical results 

5.1 Global structural oil-market shocks and their effects on oil-exporters’ excess stock returns  

We implement the SVAR identification and estimation procedures outlined in Section 3.1. Our 

sample period, from February 1974 to August 2015, produces 103 admissible structural VAR models that 

satisfy the identifying assumptions.  This compares to only 16 admissible structural models in Kilian and 

Murphy’s (2014) sample that ended in August 2008.  We estimated a value of -0.2539 for the posterior 

median of the price elasticity of oil demand in use.  We follow Kilian and Murphy (2014) and choose 

among the admissible SVAR models the one that has an elasticity of oil demand in use closest to this 

value.  Table 1 presents selected summary statistics of the variables used in the empirical model. The first 

four variables are the orthogonal shocks from this SVAR.  As constructed, the normalized oil shocks have 

zero mean and the same standard deviation. The remaining variables in Table 1 are the monthly excess 

returns of stock markets including the world stock market. Not surprisingly, the average monthly returns 

of the three Middle Eastern markets are negative, partly because the available samples for these markets 

coincide with two large stock market crashes in 2006 and 2008, and partly due to the limited absorptive 

capacity of these economies beyond the oil sector (Basher and Fachin, 2013). The standard deviations of 

stock returns always exceed their mean levels, implying extremely high volatility of returns in national 

and world stock markets. However, among the eight stock markets, the extremely high volatility of 

Russia and the UAE is particularly noteworthy, providing a heuristic impression that these markets are 

prone to speculative attacks. The last two columns in Table 1 present the Phillips-Perron and DF-GLS 

unit root test statistics. The Phillips-Perron tests are highly statistically significant for each of the 

countries, implying that the null hypothesis of a unit root in stock returns for these countries is rejected at 

conventional significance levels.  

We present next the results of the BDS (Brock et al. 1987 and Brock et al. 1996) test, which is 

commonly used to test for the presence of nonlinearity in the data. The null hypothesis of the BDS test is 

that increments to stock returns are independent and identically distributed, or equivalently, are iid.  For 

the test, a distance  is chosen.  The probability of the distance between a pair of points to be less or equal 
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to  should be constant under the null hypothesis. The number em of consecutive data points to include in 

the set of pairs is chosen.  Joint probabilities for pairs of points in the set, being less than or equal to , are 

calculated as the product of the individual probabilities.  Under the null hypothesis of independence, a test 

statistic based on the (normalized) difference of correlation integrals between two equally-sized sets of 

pairs should be close to zero and asymptotically normally distributed with mean zero (and variance 1).  

Table 2 shows bootstrap p-values of the BDS test statistics for different combinations of em (the 

embedding dimension) and .  As can be seen, except for a very few cases, the null hypothesis of iid stock 

returns is strongly rejected.  For Norway, results are sensitive to the value of em and the level of 

significance chosen.  The null hypothesis is rejected when em=3 at the 10% level but not at the 5% level.  

For the UAE, the value of  matters similarly:  for =1, the null hypothesis is rejected at the 5% level, for 

=0.75 it is rejected only at the 10% level, and for =0.5 it is not rejected at conventional levels of 

significance.  This implies that a linear model is generally misspecified and there may be nonlinear 

structures in the data.       

Figure 3 plots the historical time paths of the four structural shocks of the crude oil market over the 

period 1977-2015. To improve the readability of the plot, the values are expressed as annual averages. In 

fact, Figure 3 is an updated version of Figure 2 in Kilian (2009)19, where the sample ends in December 

2007. Focusing on the most recent years, we see that the four structural shocks match the recent 

developments in the global crude oil market, as describe in Kilian and Baumeister (2016).  For example, 

the plunge in the oil price from 2014 onwards can be attributed to both a falling aggregate demand and a 

robust oil supply.  

Table 3 presents estimation results of the multi-factor two-state Markov switching model for each of 

the eight countries. Judging by the values of sigma, State 1 is considered a “high volatility” state for 

Canada, Russia, the UK, and Saudi Arabia, and State 2 is a “high volatility” state for Mexico, Norway, 

Kuwait, and the UAE.  The estimated coefficients of the high volatility state are indicated in boldface in 

                                                 
19 Kilian’s (2009) model does not include oil inventory. 
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Table 3. The UK provides the strongest evidence for oil-supply shocks (εs) affecting stock returns as the 

estimated coefficient on this variable is negative and significant in both states. Oil-supply shocks also 

impact stock returns in Kuwait and the UAE in at least one state, though the coefficient is positive for 

Kuwait. Overall, there is evidence showing that oil-supply shocks affect the stock returns in the UK, 

Kuwait, and the UAE. 

 An unanticipated oil-demand shock (εd), due to a change in global aggregate demand, exerts a 

statistically significant impact on stock returns in at least one state for each country except Mexico and 

the UK. A positive flow oil-demand shock has a positive impact on stock return for all countries except 

State1 for Kuwait. There is strong evidence showing that flow oil-demand shocks impact stock returns in 

six of the eight countries studied.   

The impact of an unanticipated increase in the idiosyncratic oil-market shocks (εidi) on stock 

returns is significant for Norway, Russia, Kuwait, Saudi Arabia and UAE. The coefficients are positive, 

except for the last two countries. Judging by the magnitude of the regression coefficients, the stock 

returns in the three GCC Arab markets (Kuwait, Saudi Arabia and the UAE) are significantly more 

sensitive to idiosyncratic oil-market shocks than in the five other countries in the sample. This 

underscores the basic point about these Arab economies’ heavy reliance on oil revenue exports as a driver 

of economic growth. 

Finally, oil-inventory shocks (εinv), which reflect the “speculative component” of the real price of oil, 

have a statistically significant impact on stock returns in Canada, Russia, Kuwait and the UAE.  An 

unexpected increase in the demand for oil inventories in anticipation of, say, a future decline in oil 

supplies relative to demand causes an increase in stock returns in Canada, Russia, and Kuwait. However, 

for the UAE, a speculative shocks that increase the current real price of oil leads to a sharp decline in 

stock return, perhaps due to an expected downward movement in future oil prices.  
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Compared to the different shocks in the crude oil market, changes in world stock returns have almost 

always20 highly statistically significant and positive effect on stock market returns in the oil-exporting 

countries, irrespective of the stock market regimes (low or high volatility).  This underscores the point 

that movements in world stock markets matter more for predicting future stock returns in oil-exporting 

countries, relative to the three oil-market shocks considered in the analysis. From this point of view, there 

seems to be some decoupling between the stock market and the crude oil market in oil-exporting 

countries, albeit with vastly different orders of magnitudes. As the composition of stock markets tend to 

be broader in scope than that of the oil market, it is not surprising to find that after controlling for the 

world stock market return, the impacts of oil price shocks become less important.    

Table 4 provides some inference on regimes. The expected duration in a regime is computed as P𝑖𝑗 =

 
1

1−𝑝𝑖𝑗
, where P𝑖𝑗 are the estimated transitional probabilities reported in Table 4. Both measures 

complement each other. The results imply that generally the expected duration of the low volatility state 

is higher than that of the high volatility state (which is indicated in boldface). This finding supports the 

conventional wisdom that turmoil periods have a lower duration than quieter spells (Gallo and Otranto, 

2014). The diagonal elements of the transition probability matrix P11 and P22 respectively indicate the 

estimated probability of staying in State 1 and State 2 given that the market is in State 1 and State 2 in the 

current period. Except for Canada and Kuwait, the results imply that the probability of staying in a given 

state is highly persistent because the probability exceeds 0.9. The off-diagonal elements of the transitional 

probability matrix P12 and P21 indicate the probability of transitioning from one state to another state. For 

example, for Canada and UAE the estimated probability (denoted by P12) implies that the market always 

remains in State 2. The final measure, RCM, suggests that the lower its value is the better is the regime 

classification a market has within the Markov model. Hence a RCM value of 70.84 for Canada implies 

that regimes for Canadian data are less distinct, compared to other markets such as Russia or the UK 

where the distinction between the two regimes are more clear cut.  Figure 4 plots the filtered probabilities 

                                                 
20 Except for the UAE in State 1, where an unanticipated positive world stock market shock has a significantly 

negative effect on stock return.    
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of the low volatility state conditioned on past and contemporaneous information in the sample. The plots 

are in general agreement with the values of the RCM which indicate lower values produce better fitting 

models. The stock market index of each market is also included in Figure 4.  

There is a growing literature that examines whether oil-market shocks (in particular, oil price shock) 

have a symmetric or asymmetric impact on stock returns – see Alsalman and Herrera (2015) and the 

references therein. For example, Herrera et al. (2011) showed that asymmetry (or possibly nonlinearity) 

of the effect between oil price shocks and stock returns may arise due to industries’ asymmetric response 

patterns in energy use intensity. To check for the possibility of whether the various structural oil-market 

shocks and world stock returns have symmetric or asymmetric effects on stock returns in oil-exporting 

countries, we tested for ‘symmetry of coefficients’ between States 1 and 2 for the Markov-switching 

estimates reported in Table 3. The null hypothesis is that the estimated coefficients for States 1 and 2 are 

symmetric, against the alternative hypothesis that they are asymmetric. The test follows a Chi-square 

distribution and a rejection of the null hypothesis is therefore interpreted as evidence of asymmetric (or 

nonlinear) effects of the various structural shocks on stock returns. Table 5 presents the results of the test 

of symmetry. For oil-supply shocks, evidence of asymmetry is found for Kuwait and UAE.  

Flow oil-demand shocks have significant asymmetric effects on stock returns in Norway, Kuwait, and 

the UAE; while idiosyncratic oil-market shocks have significant asymmetric effect on stock return in 

Norway, Saudi Arabia, and the UAE, at the 5% significance level with the exception of Norway at the 

10% level only. Oil-inventory shocks have significant asymmetric effects in Canada and the UAE only. In 

contrast, changes in world stock returns have significant asymmetric effect on stock returns in five of the 

eight markets. Since the relationship between world stock return and domestic return is positive in both 

States 1 and 2 (as seen in table 3), the asymmetry is about the magnitude of the response of stock returns 

to changes in world return conditional on being in a particular state. For example, world stock return has a 

positive and significant impact on stock returns of Russia in both low and high volatility regimes, but the 

impact is higher in the high-volatility regime. Finally, except for Canada, the null hypothesis of 
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symmetric coefficient on ‘sigma’ is rejected for the remaining seven countries, implying that the level of 

stock return volatility is significantly different between two the two regimes.   

 

5.2 What drives the regime transition? 

In order to get an indication of the factors contributing to the volatility of stock market returns in oil-

exporting countries, we make use of the estimated transition probability obtained from the Markov 

switching model.  More specifically, we use the filtered probability associated with each country’s low 

volatility state as the dependent variable, and regress it on two global factors: the TED interest rate spread 

and the global economic policy uncertainty index. By focusing on the low volatility state, we are able to 

examine how changes in the global factors affect volatility when stock markets are relatively calm. 

Our first global measure is the TED spread, a measure of financial fear, that is defined as the 

difference in yields between the three-month US dollar LIBOR (“unsecured” top-rated interbank credits) 

and Treasury bills (“riskless” credits).21 The TED spread helps to warn investors of potential market 

downturns and volatility. For example, when the TED spread is increasing, it tells us that the interest rate 

on unsecured loans is increasing, driving up LIBOR and triggering a flight to quality towards Treasury 

bills. This leads to sudden liquidity dry-ups, which according to Brunnermeier and Pedersen (2009) 

results in a destabilizing spiral between market liquidity and funding liquidity. Boudt et al. (2017) 

investigated the transition between stabilizing and destabilizing funding liquidity states based on the TED 

spread. We follow their suggestion and use the TED spread as an explanatory variable for the transition 

from a tranquil (low-volatility) to a jittery (high-volatility) markets.22 

Our second measure is the global economic policy uncertainty (EPU) index of Baker et al. (2015).  

The global EPU index has three underlying components: newspaper coverage of policy-related 

uncertainty, uncertainty regarding the path that the federal tax code will take in the future, and the 

                                                 
21 Boudt et al. (2017). 
22 For some markets, especially Canada and Mexico, the TED spread may be less relevant. To account for this 

possibility, we also consider the spread between short- and long-term yields on Treasury bills (the so-called “yield 

curve”) as a substitute of the TED spread. 
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disagreement among economic forecasters about policy-related macroeconomic variables. In a nutshell, 

the global EPU index is an attempt to quantify political uncertainty and its impact on the economy.  In the 

empirical application of their paper, Baker et al. (2015) found strong effects of policy uncertainty on 

stock volatility, investment and employment. The global EPU index is available in current-price GDP and 

PPP-adjusted GDP measures. We considered both measures in our empirical analysis. Finally, both the 

global EPU and the TED spread are lagged by one period to avoid any endogeneity bias with the 

dependent variable. 

We estimate the following probit regression: 

𝑃(𝑑𝑡 = 1) = Φ(𝛽𝑖𝑇𝐸𝐷𝑡−1, 𝛾𝑖𝐸𝑃𝑈𝑡−1),  (8) 

where 𝑑𝑡 = 1 when the state probability of stock market returns or volatility is greater than 50%, and 

𝑑𝑡 = 0 otherwise; it is the cumulative distribution function of the standard normal distribution.23 Tables 

6-8 present probit estimates of the relationship between the global factor and filtered probabilities. Tables 

6 and 7 present the results of the effects of the TED spread and global EPU separately, while Table 8 

presents their joint effects.  Results indicate that a jump in the previous month’s TED spread lowers the 

probability of being in a low-volatility regime in all but one stock market (see Table 6). This result is 

consistent with the earlier finding of Brunnermeier and Pedersen (2009), who document that a decreased 

funding liquidity, or equivalently an increased TED spread, lowers market liquidity, leading to higher 

volatility.24 Put differently, this result suggests a role for short-term bank credit risk as a trigger for stock 

market volatility transition in oil-exporting countries. Our result also complements the finding in 

González-Hermosillo and Hesse (2009), who find that, among several global market conditions, the TED 

spread stays in the high-volatility state for the longest period when determining financial volatility and the 

likelihood of a crisis. In contrast, using the one-month lagged U.S. yield curve as an alternative 

explanatory factor produces less significant and mixed results. Unlike the TED spread, an increase in the 

yield curve slope leads to an improving economy, improving recovery rates, and decreasing credit risk 

                                                 
23 The specification of the probit model follows the work of Angelidis et al. (2015). 
24 Brunnermeier and Pedersen (2009) measure volatility by VIX and allow volatility to be time-varying. 
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(Fama and French, 1989). However, this explanation is far from satisfactory, because it is only an 

adequate description for the U.S. economy, and cannot be used to explain the significantly positive impact 

the yield curve has on the filtered probabilities for some countries.25 

On the other hand, an increase in global EPU index26 in the previous month increases the probability 

of being in the low-volatility regime in the current month (in six out of eight countries)—a rather 

surprising result (Table 7). However, this effect is statistically significant for three countries only.  A 

likely explanation for this result is that, by construction, the global EPU index is less sensitive to events 

with a strong financial and stock market connection such as the Asian financial crisis, the WorldCom 

fraud, and the Lehman Brothers collapse. Furthermore, the global EPU index involves no specific time 

horizon, unlike, say, the VIX which reflects implied volatility over a 30-day look-ahead period (see Baker 

et al., 2015). 

Table 8 reports the joint effects of the TED spread and the global EPU index on the filtered 

probabilities. The results largely echo the findings suggested by Tables 6 and 7. That is, an increase in the 

TED spread lowers the probability of being in a low volatility regime, while an increase the global EPU 

index stimulates expected duration in a low volatility regime.  

 

6. Conclusion 

We applied a two-state Markov-switching model in order to determine the impact of shocks 

originating in the global oil market on the stock market performance of oil-exporting countries.  For this 

purpose we picked eight oil-exporting countries with relatively well-functioning stock markets:  Canada, 

Mexico, Norway, Russia, the UK, Kuwait, Saudi Arabia, and the United Arab Emirates.  We used a two-

step approach where the first step is the identification of structural oil shocks from an SVAR that models 

global oil supply and demand as in Kilian and Murphy (2014).   

                                                 
25 The estimates of the yield curve are not reported here to save space, but are available from the authors.  
26 The discussion that follows is based on the PPP-adjusted GDP measures. The results based on the current-price 

GDP measure are very similar to those reported in Table 7.  
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Flow oil-demand shocks have a statistically significant impact on stock returns in Canada, 

Norway, Russia, Kuwait, Saudi Arabia, and the UAE. Idiosyncratic oil-market shocks affect 

stock returns in Norway, Russia, Kuwait, Saudi Arabia and UAE. Speculative (oil-inventory) 

shocks have statistically significant impacts on stock returns in Canada, Russia, Kuwait and the 

UAE. Oil-supply shocks matter for the UK, Kuwait, and UAE, because the shocks show 

statistical significance in at least one state.   Mexico is the only country where stock returns are 

unaffected by oil shocks. This can be explained by the fact that Mexico has no large publically traded oil 

and gas companies. International and domestic investors need to be aware that oil shocks affect stock 

markets in most of the oil exporting countries studied. The signs and magnitudes of the oil shocks are 

country specific. 

Our results support the presence of regime switching for the effects of oil shocks on stock returns in 

oil-exporting countries. Furthermore, a jump in the previous month’s TED spread increases the 

probability of being in a high-volatility regime, for all but one of the countries studied.  On the other 

hand, an increase in global economic policy uncertainty in the previous month lowers the probability of 

the stock market transitioning to a high-volatility regime in the current month, although compared to the 

TED spread the estimated coefficients are rather small. 
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Table 1. Summary statistics 

 

Variable Obs Mean Std. Dev. Min Max PP DF-GLS 

εs 475 0.000 0.893 -3.310 2.321 -21.711a -13.305a 

εd 475 0.000 0.893 -4.646 2.916 -21.664a -3.396a 

εidi 475 0.000 0.893 -3.140 4.076 -21.704a -12.703a 

εinv 475 0.000 0.893 -3.811 3.132 -22.038a -1.993 

can_r 475 0.362 5.828 -31.449 19.264 -20.565a -4.830a 

mex_r 332 1.098 8.881 -42.332 24.947 -16.667a -0.673 

nor_r 475 0.370 7.963 -40.643 19.434 -19.563a -2.208b 

rus_r 248 0.566 15.476 -93.458 47.284 -13.402a -2.338b 

uk_r 475 0.472 5.496 -24.748 20.077 -21.028a -4.672a 

kuw_r 123 -0.073 6.594 -21.333 19.624 -8.475a -3.457a 

sau_r 123 -0.158 8.599 -29.357 18.878 -9.944a -2.751a 

uae_r 123 -0.180 9.980 -33.066 23.385 -9.937a -2.709a 

world_r 475 0.415 4.256 -21.046 10.710 -20.170a  -9.966a 

Monthly data are from February 1976 to December 2015. PP is the Phillips-Perron Z(t) unit root test. DF-GLS is the Dickey-Fuller GLS unit root test with lag 

length selected using the Schwarz Bayesian Information Criterion (SBIC). A rejection of the null hypothesis by both tests suggests that the variable in question is 

stationary (contains no unit root). The variables ending with _r denote excess stock market returns. Significance at the 1% (a) and 5% (b) levels is reported for 

unit root tests. 
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Table 2. BDS tests for nonlinearity in excess stock returns 

 

Country/em  ε(0.5) ε(0.75) ε(1.0) 

CAN 

   2.000 0.001 0.002 0.001 

3.000 < 0.001 < 0.001 < 0.001 

MEX 

   2.000 < 0.001 < 0.001 < 0.001 

3.000 < 0.001 < 0.001 < 0.001 

NOR 

   2.000 0.198 0.327 0.184 

3.000 0.075 0.099 0.067 

RUS 

   2.000 < 0.001 < 0.001 < 0.001 

3.000 < 0.001 < 0.001 < 0.001 

UK 

   2.000 < 0.001 < 0.001 < 0.001 

3.000 < 0.001 < 0.001 < 0.001 

KUW 

   2.000 0.024 0.026 0.011 

3.000 0.025 0.009 0.002 

SAU 

   2.000 < 0.001 < 0.001 < 0.001 

3.000 < 0.001 < 0.001 < 0.001 

UAE 

   2.000 0.124 0.094 0.023 

3.000 0.204 0.091 0.018 
Bootstrap p-values are shown for the BDS test computed using 5000 bootstraps. The BDS test is 

computed on the residuals from an AR(1) model of monthly excess stock returns. The embedding 

dimension is denoted em and the distance is ε. 
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Table 3. Markov-switching estimates with oil shocks 

 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 CAN MEX NOR RUS UK KUW SAU UAE 

STATE 1         

εs -0.303 -0.0432 -0.549 2.238 -0.901b 3.759a -3.560 -18.20a 

 (-0.47) (-0.10) (-1.55) (0.46) (-2.45) (3.48) (-0.95) (-130.45) 

εd 1.189c 0.448 0.558b 0.587 0.0521 -2.359a 3.793 3.575a 

 (1.94) (1.42) (2.15) (0.14) (0.12) (-7.12) (1.47) (114.30) 

εidi 0.551 -0.00757 0.846a -2.502 0.559 2.321b -7.852a -10.40a 

 (1.34) (-0.03) (2.76) (-0.81) (1.21) (2.13) (-3.41) (-145.13) 

εinv -0.684 0.0129 0.125 -2.866 0.344 1.875a -1.241 -11.74a 

 (-1.58) (0.03) (0.30) (-0.74) (1.05) (2.61) (-0.39) (-127.42) 

World 1.385a 1.207a 1.356a 3.278a 1.128a 0.943a -0.388 -0.778a 

 (8.93) (15.86) (15.26) (3.64) (15.88) (14.18) (-0.50) (-54.55) 

Constant -1.513b 0.400 0.445 -1.069 0.122 -0.196 -6.781a -13.73a 

 (-2.02) (0.82) (1.37) (-0.40) (0.39) (-0.42) (-3.74) (-174.91) 

Sigma 3.407a 

(5.982) 

3.857a 

(7.340) 

3.581a 

(15.691) 
19.765a 

(11.822) 

4.480a 

(18.819) 

1.258a 

(2.599) 
9.104a 

(10.270) 

0.151a 

(4.020) 

STATE 2         

εs 0.106 -0.536 0.268 0.480 -0.339c -1.302 -0.0999 -0.748 

 (0.31) (-0.46) (0.66) (0.64) (-1.76) (-1.34) (-0.13) (-0.68) 

εd 0.445 0.135 2.170a 1.831a 0.0624 1.235b 0.921c 1.608a 

 (1.42) (0.10) (4.60) (3.29) (0.54) (2.13) (1.71) (2.72) 

εidi 0.219 0.0534 -0.170 1.102b 0.0159 0.360 0.504 0.424 

 (1.06) (0.04) (-0.40) (2.25) (0.12) (0.63) (1.02) (0.79) 

εinv 0.576b -0.0572 0.283 1.409c -0.105 0.484 1.030 2.482b 

 (2.46) (-0.06) (0.56) (1.94) (-0.51) (0.48) (1.26) (2.15) 

World 0.818a 1.072a 1.170a 1.410a 0.937a 0.493a 0.620a 0.975a 

 (9.35) (4.16) (10.09) (11.70) (28.44) (3.67) (4.32) (8.23) 

Constant 0.655c 1.025 -0.571 0.258 -0.0240 -0.294 0.536 -0.151 

 (1.78) (1.09) (-1.22) (0.47) (-0.19) (-0.47) (0.90) (-0.23) 

Sigma 3.129a 

(12.546) 
9.916a 

(5.579) 

6.860a 

(19.926) 

7.007a 

(20.887) 

2.082a 

(20.960) 
5.702a 

(8.971) 

4.944a 

(12.319) 
6.997a 

(15.159) 

Log likelihood -1270.3 -1066.9 -1465.8 -915.6 -1185.7 -375.6 -400.4 -408.4 

N 475 332 475 248 475 123 123 123 

SBIC 5.556 6.707 6.379 7.739 5.200 6.733 7.137 7.267 

Coefficients in boldface refer to the high volatility state.  t statistics are given in parentheses and are calculated using robust standard errors.  c p < 0.10, b p < 

0.05, a p < 0.01.  
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Table 4. Summary statistics for Markov-switching estimates with oil shocks 

 

  CAN MEX NOR RUS UK KUW SAU UAE 

dur 1 1.000 243.567 40.780 173.510 390.494 1.000 27.265 1.000 

dur 2 1.882 218.750 43.980 273.245 447.928 3.392 102.195 12.567 

P11 0.000 0.996 0.975 0.994 0.997 0.000 0.963 0.000 

P12 1.000 0.004 0.025 0.006 0.003 0.999 0.037 1.000 

P21 0.531 0.005 0.023 0.004 0.002 0.295 0.010 0.080 

P22 0.469 0.995 0.977 0.996 0.998 0.705 0.990 0.920 

RCM 70.840 13.216 37.440 8.731 10.607 37.819 10.040 2.402 
Values in boldface indicate a high volatility regime. dur 1 and dur 2 refer to expected duration (in months) in a regime, and is 

computed as Pij = 1/(1-pij), where 𝑝𝑖𝑗 are the estimated transitional probabilities. RCM is the Regime Classification Measure of 

Ang and Bekaert (2002). 

 

 

Table 5. Tests for symmetry between states for Markov-switching estimates  

 

  CAN MEX NOR RUS UK KUW SAU UAE 

εs 0.208 0.171 2.570 0.127 1.784 12.457 0.842 245.967 

 

(0.649) (0.679) (0.109) (0.722) (0.182) (0.000) (0.359) (0.000) 

εd 0.754 0.048 8.823 0.093 0.001 25.739 1.192 11.010 

 

(0.385) (0.827) (0.003) (0.760) (0.981) (0.000) (0.275) (0.001) 

εidi 0.508 0.003 3.479 1.307 1.236 2.521 12.682 394.70 

 

(0.476) (0.960) (0.062) (0.253) (0.266) (0.112) (0.000) (0.000) 

εinv 5.691 0.004 0.053 1.175 1.338 1.070 0.505 150.172 

 (0.017) (0.949) (0.818) (0.278) (0.247) (0.301) (0.477) (0.000) 

world 6.175 0.249 1.426 4.169 6.035 8.758 1.635 214.77 

 

(0.013) (0.618) (0.232) (0.041) (0.014) (0.003) (0.201) (0.000) 

sigma 0.142 89.190 80.205 115.177 155.332 17.292 22.508 222.104 

 (0.706) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
The table reports chi-squared values and associated p-values (in parentheses) of testing symmetry between each state. A p-

value higher than 0.05 indicates the rejection of the null hypothesis of symmetry at the 5% level of significance. 
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Table 6. Probit model estimates for the impact of TED spread on filtered probabilities (low volatility state) 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 CAN MEX NOR RUS UK KUW SAU UAE 

TEDt-1 -0.119 -0.797a -1.444a -0.818a -0.982a -0.0155 -3.091a 0.358 

 (-0.70) (-3.04) (-6.26) (-2.70) (-4.27) (-0.07) (-5.07) (1.34) 

         

Constant 1.019a 0.468a 1.064a 0.928a 1.158a -0.712a 2.128a -1.601a 

 (7.83) (3.11) (7.58) (5.64) (7.57) (-4.18) (8.21) (-6.71) 

Log likelihood -162.6 -218.2 -208.3 -146.0 -197.1 -67.18 -43.54 -33.82 

N 355 332 355 248 355 123 123 123 

SBIC 337.0 448.1 428.4 303.1 406.0 144.0 96.71 77.26 
t statistics are given in parentheses. The t statistics are calculated using robust standard errors. c p < 0.10, b p < 0.05, a p < 0.01. 

 

 

Table 7. Probit model estimates for the impact of global economic policy uncertainty (EPU) on filtered probabilities (low volatility state) 

 

 (1) (2) (3) (4) (5) (6) (7) 

 CAN MEX NOR RUS KUW SAU UAE 

Log EPUt-1 -0.165 1.422a 0.212 1.681a 0.0136 1.799a -0.660 

 (-0.57) (5.22) (0.85) (5.62) (0.04) (3.91) (-1.21) 

        

Constant 1.686 -5.691a -0.554 -6.805a -0.783 -7.689a 1.632 

 (1.28) (-4.63) (-0.49) (-5.08) (-0.48) (-3.70) (0.66) 

Log likelihood -103.2 -113.8 -142.7 -108.2 -67.18 -61.21 -33.63 

N 223 223 223 223 123 123 123 

SBIC 217.2 238.4 296.3 227.1 144.0 132.1 76.89 
See Table 6.  
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Table 8. Probit model estimates for the impact of TED spread and global policy uncertainty (CUR) on filtered probabilities (low volatility state) 

 

 (1) (2) (3) (4) (5) (6) (7) 

 CAN MEX NOR RUS KUW SAU UAE 

TEDt-1 -0.264 -0.703a -1.936a -1.099a -0.016 -5.735a 0.452 

 (-1.22) (-3.32) (-4.78) (-4.48) (-0.07) (3.81) (1.46) 

Log EPUt-1 -0.155 1.480a 0.046 1.905a 0.014 5.690a -0.853c 

 (-0.54) (5.38) (0.19) (5.91) (0.04) (3.93) (-1.89) 

        

        

Constant 1.770 -5.570a 1.186 -7.167a -0.780 -21.414a 2.247 

 (1.35) (-4.51) (1.03) (-4.99) (-0.48) (-3.85) (1.08) 

Log likelihood -102.5 -109.1 -114.4 -97.3 -67.1 -18.6 -32.4 

N 223 223 223 223 123 123 123 

SBIC 221.2 234.5 245.1 210.9 148.7 51.7 79.3 
See Table 6.  
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Figure 1.  Oil rents (% of GDP), annual figures

 
 

Oil rents are the difference between the value of crude oil production at world prices and total 

costs of production. The annual data for the period from 1976 to 2013 (the latest year available)  

are from the World Development Indicators web site at http://wdi.worldbank.org/table/3.15. 

Data for Russia are not available before 1989.  
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Figure 2. Time series plots of the stock indices 

 

 
 

 

Figure 3. Time series plots of oil shocks 

 

 
  The graph shows structural shocks to the global market for crude oil as discussed in Kilian and  

  Murphy (2014). For improved visibility, the shocks are presented at the annual frequency by  

  averaging the monthly structural innovation for each year.  
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Figure 4. Filter probabilities for low volatility state from symmetrical Markov Switching model 
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