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1. Introduction 

This study contributes to the empirical literature on intra-urban house-price dynamics.  

A demand shock affects metropolitan-area house prices, but the effect of the shock varies 

across neighborhoods.  For example, in a relatively recent paper, Guerrieri et al. (2013) 

provide evidence that the variation in house-price appreciation across the census tracts in 

relatively large US cities is greater than the variation across cities overall; the intra-city 

standard deviation in house prices is about 0.5 relative to the inter-city standard deviation of 

about 0.2.  Of interest is why this happens.  More specifically, this paper contributes to the 

literature that addresses the question of how and why the effects of a demand shock flow 

through the metro-area housing market. 

The key data needed for this kind of analysis consist of price indices at relatively small 

geographic scales.  Guerrieri et al., for example, use annual Case-Shiller repeat-sales indices 

at the zip code level.  They also use much less frequent information from the decennial 

census at the smaller census tract level.  In this study we use observations on estimates of 

median house value on 1 July in each of 111 census ‘area units’ – similar to US census tracts 

– in Auckland, New Zealand from year 2000 through 2016.  This gives us relatively high 

spatial resolution and, conveniently, this time period covers a general boom, a mild bust, and 

then another boom in house prices. 
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A novel methodologic aspect of this study is that we use a cluster analysis technique to 

identify four clusters of census area units in each of which house values follow a similar 

pattern of price appreciation over the 15-year time period.  That is, we let the variation in the 

trends in the house value data at a relatively small geographic scale reveal spatial 

relationships and the propagation of price shocks over time across the urban area. 

Not surprisingly, area units with similar price paths tend to cluster geographically.  Or, 

to put it another way, areas that are similar in relevant aspects are large relative to census area 

units.  In terms of the most easily observed of these aspects, the clusters are distinguished by 

house price and distance from the CBD.  In order of house price and distance, the four 

clusters are: (1) high-price, centrally-located: (2) middle-high price, close-in; (3) several 

distinct middle-price suburban areas, and (4) a lower-price, more distant suburban area. 

Of interest is that during the boom of the early 2000s, rates of price appreciation appear 

to flow over time from high-priced centrally located neighborhoods progressively through the 

house-price/distance tiers.  This seems sensible in that the boom resulted from rapid growth 

in ability to pay for houses: the most desirable areas would be targeted first, others would 

follow motivated by changes in relative prices.  Appreciation rates appear least volatile in the 

suburban middle-priced neighborhoods, consistent with a relatively elastic supply response.  

They appear most volatile in the distant lower-priced cluster, perhaps reflecting modest 

boom-time gentrification and subsequent bust-time distress. 

The remainder of the paper is organized as follows.  Section 2 develops the conceptual 

foundation in the context of the existing literature.  Section 3 describes the Auckland context.  

Section 4 describes the data.  Section 5 cluster methodology and the resulting clusters.  

Section 6 reports statistical analyses of the distinguishing characteristics of each cluster and 

of the propagation of price shocks through the house-price/distance tiers.  Section 7 

concludes the paper.  
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2. Conceptual foundations 

Well established by now is that land and house prices vary across an urbanized area.  A 

typical empirical hedonic house-price function includes, in addition to structural 

characteristics of the house and lot, measures that vary over space, e.g., measures of location 

relative to employment centers and measures of neighborhood characteristics that influence 

local public goods.  The theoretical foundations for systematic intra-urban variation in house 

prices are the Alonso-Muth-Mills monocentric-city model and the Tiebout model of spatial 

household sorting.  Results reported in probably hundreds of cross-sectional analyses of sale 

prices verify that sale prices vary systematically across an urbanized area. 

The question that arises is: Do rates of change in house prices over time also vary 

systematically across an urbanized area?  On the face of it, a house and lot are effectively 

capital assets.  If asset markets are efficient and asset buyers rational, well-informed, and 

risk-neutral, then we would expect the market to yield equal total returns to housing equity, 

all else constant.  If rates of house-value appreciation vary spatially, then there must be some 

unanticipated shocks that affect parts of an urban area more than others and/or there is at least 

some delay in the reactions of market participants.  The existing literature consists either of 

purely empirical estimates of spatial variation in rates of house-price appreciation or of a 

description of a type of shock and an empirical test usually with results consistent with the 

impacts of the described shock. 

Archer et al. (1996) argue that the foundations of standard empirical hedonic model 

specifications for investigating intra-urban variation in house sale prices can also provide 

rationales for intra-urban variation in rates of house-price appreciation.  In the basic mono-

centric city model, for example, an improvement to a radial transportation system or a general 

increase in incomes should lead to a relative increase (faster appreciation) in land values 

farther from the city center.  A demand shock to a particular household demographic type 
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affects demand for house sizes and neighborhood amenities, which affect relative 

appreciation rates.  And systematic spatial variation in the characteristics of existing houses 

can affect appreciation rates: e.g., the newer houses in the suburbs depreciate faster than older 

houses closer in, which slows observed appreciation rates in the suburbs. 

Archer et al. use a standard repeat sales approach to estimate appreciation rates for each 

of 78 census tracts independently from 1971 to 1992 in the Miami, Florida MSA; only sales 

of houses within each census tract contribute to the tract’s price index.  However, the sample 

consists only of those houses that sold at least twice, which may not be representative of the 

population of houses and reduces the precision of the estimates.  Appreciation rates for 

roughly half of these census tracts differ significantly from the overall urban-area rate.  They 

conclude that “house price appreciation appears to vary spatially; that is, it varies by 

municipality and with distance from the CBD, with the level of house prices, as well as with 

local changes in population, housing units, and in ethnic mix.” 

Interestingly, Geotzmann and Spiegel (1997) and McMillen (2003) develop distance 

weighted repeat sales approaches that treat the imprecision in the Archer et al. estimates.  

McMillen finds higher appreciation rates from 1990 to 1996 in low-income census tracts 

close to the Chicago city center.  Geotzmann and Spiegel find “widely differing rates of 

return” across San Francisco Bay Area zip codes over the period 1980 to 1994.  Zip codes 

with lower household incomes and better educated households had better returns.  They also 

find that “contiguous zip codes typically ‘lump’ together in the same capital appreciation 

quartile, due to continuities in socioeconomic variables within the region”. 

Some papers focus on the propagation of house price appreciation across an urban area.  

Clapp and Tirtiroglu (1994) find empirical support for the hypothesis that a demand-induced 

increase in sale prices in one area provides local information that then diffuses or propagates 

across the larger urban area; when house prices increase in one neighborhood, house prices in 
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neighboring areas rise with a lag of about a year.  More recently, Ho et al. (2008) report 

evidence that a demand shock specifically to the low-quality end of an urban-area housing 

market flows upward over time through the quality tiers.  Guerrieri et al. (2013) provide 

evidence from Chicago that lower-priced housing near higher-priced neighborhoods tends to 

appreciate faster in response to a positive demand shock, consistent with gentrification. 

Bostic et al. (2007) argue that house-price appreciation rates following a demand shock 

should be positively correlated with the value of land as a proportion of the market value of 

the bundle of land and structure.  The argument is that because urban land is more inelastic in 

supply than are structures, most of the long-run change in the market value of the house-land 

bundle is in the price of land.  The implication is that the effect of a given percentage shock 

to land values will have a smaller effect on the market value of properties in which the value 

of land is a smaller proportion of the value of the house-land bundle.  Empirical support is 

provided using data from Wichita Kansas.  Davis et al. (2017), however,  

Genesove and Han (2013) provide evidence that house prices tend to appreciate more 

slowly in suburban than in central areas and interpret this as a result of higher housing supply 

elasticities in areas with easier opportunities for development.  In nation-wide samples, 

Ferreira and Gyourka (2012) also find central areas appreciating faster, and Glaeser et al. 

(2012) note that central areas with low-income households appreciate faster. 

Finally, the recent period of demand-shock boom and bust in housing markets around 

the world has attracted attention.  Liu et al. (2014), for example, report that relative prices 

across house-size tiers in Phoenix, Arizona were stable during the mid-2000s boom, but the 

prices of smaller houses depreciated faster during the subsequent bust, consistent with more 

distressed sales.  In contrast, Waltl (forthcoming) reports that appreciation rates in Sydney, 

Australia over the recent boom-bust cycle were highest for relatively low-priced housing in 

suburban areas and lowest for high-priced inner-city housing. 
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3. Auckland in the New Zealand context 

We observe house prices over the boom-bust-boom period from year 2000 to 2016.  

Figure 1 shows the trend in the average annual growth rate in house prices for the nation overall.  

New Zealand in year 2000 was gradually recovering from a recession in the late 1990s caused 

by the financial crisis in NZ’s Asian trading partner countries.  Once the recovery started, 

however, it proceeded with vigor, which is reflected in house prices during the early mid-2000s.  

The global financial crisis affected NZ in the late 2000s.  The economy recovered quickly, 

however, aided in part by government spending in response to the earthquake in February 2011 

that destroyed the Christchurch central business district and destroyed or damaged 

infrastructure and a large number of houses.  The economy has since performed well. 

Figure 1.  Average percent change in NZ house prices. 

 

The population of NZ has grown over the sample period from about 3.9 to about 4.7 

million people, or by just over 20%.  The population of the urbanized area of Auckland grew 

correspondingly from 1.17 to nearly 1.5 million, or by about 33%.  The likely reason for 

Auckland’s relatively fast population growth is agglomeration economies.  Auckland is by far 
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NZ’s largest city, with national capital and the North Island’s southern regional service center 

Wellington currently in second place at about 470,000 and the South Island’s largest city and 

central regional service center, Christchurch, in third place at about 370,000.  Auckland is 

where the employment opportunities are greatest and where the bulk of growth has occurred 

among NZ’s larger urban areas as shown in Figure 2 below. 

Figure 2.  Growth in population of NZ’s six largest urban areas 

 

More people implies greater demand for housing.  However, the purchasing power of 

these people has also increased markedly.  Figure 3 shows that real disposable income per 

person rose by about 33% from 2000 to 2016.  This large increase in income came in the wake 

of large-scale liberalization of the NZ economy in the late 1980s and corresponds with a more 

than 40% increase in the number of people employed. 
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Figure 3. Real disposable income per person 

 

In addition, as shown in Figure 4, interest rates have recently been at historic NZ lows.  

Home buyers in NZ can take usually up to a 30-year mortgage, but common practice is to fix 

the interest rate for periods of less than five years, often two years or floating as shown in the 

Figure.  As elsewhere, banks in NZ were generous in their lending in an environment of rising 

property prices in the early-mid 2000s boom.  Mortgage rates, however, rose with restrictive 

monetary policy and then fell with easing of monetary policy in the wake of the GFC. 

Figure 4. Trend in mortgage interest rates 
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All of the above indicate rising demand for housing nation-wide and especially in 

Auckland beginning in the early 2000s, due especially to a general rise in ability to pay 

(effectively a rise in income).  On the other side of the market, supply is arguably constrained, 

at least in the short run.  Figure 5 below shows that natural constraints in the form of bays 

hinder land development.  Regulatory constraints also likely constrain development to some 

extent.  Auckland had until recently an urban growth boundary, referred to as the Metropolitan 

Urban Limit (MUL) that may have been a binding constraint on land development.  Single-

family zoning predominates in Auckland which at least discourages densification in residential 

areas.  Finally, new development requires improvements or extensions to public utilities, which 

can take time.  Overall, supply is likely inelastic over a reasonably generous short run. 

Figure 5. View of Auckland from satellite imagery 
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4. Data 

The unit of analysis in this study is the NZ census “area unit”, similar to a US census 

tract, with an average population of about 4000.  Census area units have a couple of advantages 

as a unit of observation.  The first is that detailed data from the census of households are 

reported at the area-unit level.  The census normally is taken at 5-year intervals in New Zealand.  

In our time frame, censuses were taken in 2001 and 2006.  Unfortunately the census scheduled 

for March of 2011 was not taken due to disruption caused by the damaging earthquake in 

Christchurch in February 2011.  That census went ahead in March of 2013, with the next one 

scheduled for March 2018.  So, we have data from three censuses. 

The second advantage is that area units are geographically relatively small in areas such 

as Auckland that are developed at urban densities.  Yet they are sufficiently large for 

observations of house sales that contribute to estimation of price indices.  To help ensure 

sufficient numbers of sales, our sample consists of the 111 area units that contain at least 400 

detached single family dwellings as identified in the most recent (2013) census of population 

and that were reasonably fully developed prior to the year 2000 (we excluded from the sample 

8 distant suburban area units that developed over the course of the sample time period).  This 

set of census tracts includes those areas that are normally thought of as single-family residential 

areas.  Excluded are area units with large amounts of commercial and multi-family residential 

development. 

Census tract price indices 

Our area-unit price indices consist of an estimate of the median house value in each of 

the sample area units as at 1 July each year from year 2000 through 2016.  The data come from 

CoreLogic New Zealand, the leading commercial supplier of property information and analysis 

in New Zealand.  CoreLogic maintain an “automated valuation model” based on “recent, 

nearby comparable sales in the area” to value every house in Auckland once a month, thereby 
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taking advantage of the most recent sales.  Thus, every house in every area unit, regardless of 

whether or not it sold, receives an updated market value each month.  The data in our sample 

consist of this median estimated house value at mid-year for each of seventeen years, which 

yields estimates of the median annual percent increase in median area-unit house value. 

There clearly can be concerns about these data.  To start, the nature of the “model” that 

analysts at CoreLogic use to estimate house values is not described in detail on the company 

website, presumably due to commercial sensitivity.  The US and Australia sites, however, 

discuss hedonic valuation models, but again not in detail, so at this stage we do not know the 

type or specification of the model used by CoreLogic New Zealand.  Thus, it is difficult to 

evaluate the quality of the price indices.  

To be fair, however, estimating price indices at small geographic scales is difficult.  

McMillen (2012), for example, nicely describes issues in estimating price indices for small 

geographies using both hedonic and repeat-sales approaches.  In the present sample, the 

estimate is of the median of the population of houses in the area unit rather than of those that 

sold, and so is representative of the characteristics of the population of houses.  The estimates 

cannot be regarded as a constant-quality index as the trend in prices will reflect trends in both 

depreciation and renovation in the area unit.  And the estimates are influenced by sales nearby 

but outside the area unit, which will tend to blur any boundaries between neighborhoods 

identified by trends in prices.  However, census area unit boundaries were not chosen to reflect 

differences in house values or appreciation rates.  As a practical matter, CoreLogic claims 

reasonable levels of predictive accuracy and these estimated house values are widely used by 

local governments in New Zealand for property tax assessment.  As an additional practical 

matter, using these estimated median values is a cost-effective way to explore the usefulness 

of our cluster analysis methodology; we avoid the high cost of purchasing information on a 

very large number of transactions. 
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Figure 6 shows the trend in the sample average census tract median appreciation rates 

over the sample period.  The trend is similar to that shown for NZ overall in Figure 1.  Prices 

rise considerably prior to the effects of the GFC, fall modestly for a couple of years, and then 

rise increasingly quickly in the early 2010s.  The effects of the GFC were relatively brief. 

Figure 7 superimposes each of the individual 111 area-unit trends in annual price-

appreciation rates.  Not surprisingly, the overall trend is similar to that shown in Figure 6.  

However, there is clearly significant variation in appreciation rates in any given year.  

Moreover, there appears to be considerable variation in the timing of relative peaks and troughs 

in the trends in appreciation rates; prices appear not to rise and fall tightly in tandem across the 

area units in urban area.  Less clear from this superimposition is the extent to which the sizes 

of the peaks and troughs in appreciation rates vary across the area units. 

5. Cluster analysis 

Our approach is to identify ‘clusters’ of area units with similar patterns in relative price 

appreciation over the entire time period.  If Auckland is typical of the other metropolitan areas 

studied in the literature, rates of price appreciation vary across Auckland ‘submarkets’, where 

a submarket is defined as an area across which prices appreciate at similar rates.  Our unit of 

analysis is an area unit, and we expect that area units are small relative to the size of submarkets 

as defined, though this is an empirical question.  The clustering exercise, then, can be thought 

of as identifying submarkets as groups of area units with similar patterns of annual price 

appreciation rates from year 2000 through 2016.  This subsection reports the results of this 

cluster analysis. 

We use the k-means clustering routine in Stata statistical software.  The ‘k’ in k-means 

stands for the number of clusters, which is chosen by the researcher.  The clustering routine 

starts by choosing the 16-year price-appreciation vectors of k participants at random from the 
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Figure 6. Trend in the mean of the sample annual price appreciation rates 

 

Figure 7. Variation across area units in the trend in annual price appreciation 
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111 area units in the sample and using these vectors as the initial centroids of the k clusters.  

Each of the remaining n−k area units are then assigned to the cluster with the centroid closest 

in Euclidean distance to their own 16-year price-appreciation vector.  From there the routine 

iterates: once all area units are assigned to one of the k clusters, the vector of cluster-average 

values becomes the new centroid and each area unit is again allocated to the cluster with 

centroid closest in Euclidean distance to their own price-appreciation vector.  The routine 

continues iterating until there are no further movements of area units among the clusters.1  The 

end result is k clusters of area units with each area unit allocated to the cluster with mean pattern 

of price appreciation closest in Euclidean distance to their own pattern. 

An important parameter is the number of clusters, k, which is chosen by the researcher.  

The routine works quickly, so the researcher can easily inspect the results from various values 

of k.  It is not clear that there is an ‘optimal’ number of clusters as one can evaluate a cluster 

solution in a variety of ways: the distinctiveness of the clusters, the stability of the solution 

over repeated trials, and how interesting or informative the results are.  After experimentation 

we chose to study the 4-cluster solution as it is stable, with clusters that are relatively distinctive 

in terms of the pattern of price appreciation, and, perhaps of most interest, that consist mostly 

of spatially contiguous sets of area units that comport plausibly to distinct regions as defined 

in terms other than price appreciation rates, such as distance to the CBD. 

Figure 8 shows each of the four clusters of price-appreciation vectors.  The labels 

assigned to each reflect their locational characteristics as mapped in Figure 9.  The group of 

area units shaded in red in Figure 9 are the most centrally located.  The area units shaded in tan 

in the figure correspond to ‘close in’ suburban areas.  The effectively three separate groups of 

area units shaded in light blue are typical suburban residential areas.  And the area in the south 

shaded in dark blue is a residential area relatively distant from the CBD. 

                                                           
1 See, for example, Fielding (2007) for details. 
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Figure 8.  Four cluster solution 

 

Figure 9.  The spatial arrangement of the clusters. 
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Table 1 provides summary statistics.  The column labelled ‘Mean’ shows the difference 

of each cluster’s overall mean appreciation rate from that of the sample mean.  For example, 

the mean appreciation rates over the sixteen years in the Southern and Suburban clusters are 

slightly less than the sample mean appreciation rate.  The mean appreciation rates in the 

Close-in and Central clusters are slightly correspondingly higher than the sample mean 

appreciation rate.  The means do not sum to zero because the numbers of area units varies 

across the clusters.  As shown in the second row corresponding to each cluster (labelled ‘n’ in 

the right-hand column), the Suburban cluster is largest with 55 area units and the Central 

cluster is smallest with 13 area units. 

 

Looking across the clusters in Figure 8, the area-unit trends in the Central cluster 

appear perhaps to fit less well together than in the other clusters.  This is borne out by the 

‘Between’ standard deviations in Table 1, which indicate the similarity among the individual 

trends in each cluster.  The Southern and Suburban clusters have the lowest ‘Between’ 

standard deviations, though both show some variability.  The Southern cluster stands out with 

Table 1. Summary of adjusted price appreciation series by cluster 

  Mean* Std. Dev. Obs  

Central Overall 0.001720 0.05725 208 N 
 Between  0.00940 13 n 

 Within  0.05653 16 T 

Close-in Overall 0.003226 0.04000 432 N 
 Between  0.00629 27 n 

 Within  0.03951 16 T 

Suburban Overall -0.001941 0.03512 880 N 
 Between  0.00458 55 n 

 Within  0.03482 16 T 

Southern Overall -0.000958 0.07185 256 N 
 Between  0.00478 16 n 

 Within  0.07170 16 T 

*Overall mean relative to the urban-area mean. 
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the highest ‘Within’ standard deviation, consistent with the relatively high volatility over 

time in appreciation rates.  Figure 10 superimposes the plots of the mean appreciation rates of 

the trends in each cluster (again relative to the overall sample mean appreciation rates).  The 

trend in the Southern cluster, shown in blue, appears more volatile than the others throughout 

the time period. 

Figure 10.  Mean in the trend of each of the cluster relative to the sample mean 

 

The trends in cluster means in Figure 10 also suggest, working from left to right, that 

spikes in price-appreciation rates may ripple through time from the central cluster away from 

the city center to the more distant suburbs.  Early in the period at least, these spikes appear to 

be about a year apart.  In the next section we test this and other hypotheses concerning 

systematic spatial variation price appreciation. 

 

  

Southern 

Close in 
Suburban 

Central 
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6. Tests of systematic spatial variation in patterns of price appreciation 

In this section we report the results of statistical tests of several hypotheses suggested 

by the spatial patterns in the clusters shown in Figure 9.  We begin by exploring the extent to 

which house prices and demographic characteristics predict assignment to each cluster.  Of 

relevance is that Auckland differs from older, historically manufacturing cities in other 

developed countries in that some of the highest income and highest amenity residential areas 

are near the city center.  We expect that house prices and demographic characteristics 

associated with income and wealth will predict assignment to clusters. 

Given these results we estimate a distributed lag model to test the significance of a 

‘ripple effect’ of price appreciation propagating from the Central through to the Southern 

clusters, i.e., from the highest to the lowest priced neighborhoods.  We might expect that a 

positive income/purchasing-power demand shock beginning in the early-2000s to affect 

house prices in the most desirable area first, and then to ripple outwards to less desirable 

areas.  In the case of Auckland that rippling would proceed from the center outward toward 

the more distant suburbs. 

Predictors of assignment to clusters 

In this subsection we report estimates from multinomial logit analyses of the 

association of first house prices and then census demographic characteristics on assignment 

of area units to each of the four clusters. 

Table 2 provides summary statistics for median area-unit house prices.  Mainly for 

convenience, the mean for each cluster is the natural log of the median price of each area unit 

averaged over the area units in the cluster and over the 17-year time period, i.e., year 2000 – 

2016.  So the number of observations for each cluster is the number of years (17) times the 

number of area units in the cluster.  As a result, the standard deviations and ranges reflect 

both variation across area units and (more so) over time. 
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Table 2. Summary statistics for natural log of median area-unit house prices by cluster 

Cluster Mean (Level) Std. Dev Min Max Obs 

Central 13.65 ($847.5k) 0.497 12.46 14.78 221 

Close in 13.33 ($615.4k) 0.470 12.18 14.46 459 

Suburban 13.12 ($499.0k) 0.496 12.02 14.56 935 

Southern 12.52 ($273.8k) 0.429 11.69 13.55 272 

Not surprisingly, prices fall with distance from the city center, though the magnitude of 

the drop from the Central to Southern clusters surely reflects more than the cost of 

commuting.  Table 3 reports the results of a multinomial logistic analysis of cluster 

membership on area unit median sale price in each area unit and year.  We report estimates 

using the Close-in cluster as the base (omitted) category and using the Suburban cluster as the 

base so that the significance of differences can easily be seen.  In this case, the standard 

errors are all relatively small, so median area-unit sale price does significantly predict cluster 

membership. 

Table 3. Multinomial logistic regression of cluster membership on sale price 

Figure 11 plots the estimated probabilities (with 95% confidence bands) of assignment 

to each cluster as a function of log median sale price.  The pattern is clearly consistent with 

that expected given the numbers in Tables 2 and 3 above. 

Predictor variable Central Close in Suburban Southern 

 
Natural log of cluster 
median house value 

2.213  
(0.175)* 

0.842  
(0.120)* 

 
-2.769  

(0.189)* 
1.372  

(0.180)* 
 

-0.842  
(0.120)* 

-3.610  
(0.212)* 

* p-value < 0.05    Pseudo R2 0.141    # obs = 1887 
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Figure 11. Estimated probabilities of cluster membership w/AU median price 

 

 

In addition to distance from the central business district, house prices (and house and 

neighborhood characteristics) reflect the characteristics of householders.  Table 4 reports 

descriptive statistics for demographic characteristics of sample area units obtained from the 

national censuses of 2001, 2006, and 2013.  The variables include a measure of income, in 

this case the natural log of personal income; education level as measured by the proportion of 

those with a tertiary degree; two measures of household composition, and an admittedly 

crude, but commonly-used measure of variation in ethnicity.  The number of observations 

varies with the number of area units in the cluster and the number of censuses in which data 

are available: data on education level and child-bearing are available only from the 2006 and 

2013 censuses. 

  

Central Close in 

Suburban 

Southern 
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Table 4. Selected area unit demographic characteristics 

 Mean Std Dev Min Max Obs. 

Central cluster      

Ln personal income 10.235 0.377 9.240 10.960 39 

Proportion w/tertiary degree 0.439 0.066 0.296 0.540 26 

Proportion single 0.509 0.104 0.392 0.761 39 

Proportion of females w/children 0.443 0.155 0.115 0.603 26 

Proportion w/NZ European ancestry  0.617 0.146 0.319 0.906 39 

Close-in cluster      

Ln personal income 10.304 0.278 9.540 10.810 81 

Proportion w/tertiary degree 0.399 0.079 0.210 0.541 54 

Proportion single 0.513 0.067 0.317 0.615 81 

Proportion of females w/children 0.494 0.120 0.201 0.662 54 

Proportion w/NZ European ancestry  0.664 0.155 0.252 0.932 81 

Suburban cluster      

Ln personal income 10.158 0.279 9.409 10.795 165 

Proportion w/tertiary degree 0.313 0.084 0.117 0.530 110 

Proportion single 0.568 0.066 0.283 0.601 165 

Proportion of females w/children 0.593 0.060 0.363 0.689 110 

Proportion w/NZ European ancestry  0.598 0.174 0.156 0.939 165 

Southern cluster      

Ln personal income 9.760 0.202 9.409 10.111 48 

Proportion w/tertiary degree 0.107 0.052 0.041 0.239 32 

Proportion single 0.475 0.038 0.454 0.600 48 

Proportion of females w/children 0.561 0.027 0.519 0.633 32 

Proportion w/NZ European ancestry  0.189 0.125 0.068 0.648 48 

 

Worth noting is the relatively large variation in demographic characteristics across the 

area units within each individual cluster.  In particular, standard deviations and ranges tend be 

lowest for the Southern cluster.  Some ranges seem surprisingly large: e.g., in the Central 

cluster, which has the highest house prices, the proportion of households with children ranges 

across the 13 area units in the cluster from 11.5% to 60.3%.  The corresponding range in the 
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Close-in cluster is nearly as large.  Much of the explanation for these large ranges is that the 

Central and Close-in area units are centrally located and therefore contain relatively large 

areas of higher-density housing, e.g., apartment complexes.  The demographics in these 

higher-density areas likely differ from those in the single-family residential areas.  For this 

reason, data from single-family residential blocks would likely be superior, though much 

more costly to collect (a task perhaps for the future). 

Table 5 reports multinomial logistic regression estimates of area-unit level census 

demographic characteristics as predictors of cluster membership.  Again, for convenience, the 

values of the demographic characteristics are the averages of those available across the 2001, 

2006, and 2013 censuses.  The coefficient estimates that are bolded are significant predictors, 

at the 5% level, of cluster membership relative to the omitted category.  Again, we report 

results from omitting the Close-in and Suburban clusters independently to ease interpretation 

of significant differences in estimated coefficients. 

The signs on the coefficients of personal income surprisingly appear opposite to 

expectations as a predictor of cluster membership: the sign is negative on the Central cluster 

where house prices are highest, and relatively large and positive (though insignificant) on the 

Southern cluster.  As shown in Table 4, average incomes are in fact highest in the Central and 

Close-in clusters, smaller in the Suburban cluster and lowest in the Southern cluster.  The 

most likely explanation of these unexpected results is that other predictor variables are 

correlated with, and picking up the effects of, income. 

The prime example is the proportion of householders with a tertiary (e.g., university) 

qualification.  As expected this proportion, which is correlated with income and house prices, 

is a strong and significant predictor of cluster membership.  Indeed, the Central cluster 

appears to be distinguished by its level of higher education, which is reflected in the high 

quality of the primary and secondary schools located in that area. 
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Table 5. Multinomial logistic regression of cluster membership demographic traits 

 

The coefficients on the proportions of singles appears to distinguish the Close-in and 

Suburban clusters.  This is likely to reflect the population of young, mostly professionals who 

live in conveniently located, higher-density dwellings and perhaps elderly singles who prefer 

to stay in their high-quality close-in neighborhoods.  The negative coefficient on the 

Suburban cluster reflects the family nature of these suburban areas. 

The signs and magnitudes of the coefficients on the proportion of households with 

children are consistent in that they are opposite in sign to those on the proportion of singles.  

The coefficients are especially large in the Southern cluster, though insignificant.  Their 

insignificance likely reflects the negative correlation with proportion single. 

The defining demographic characteristic of the Southern cluster is its relatively low 

average proportion of households who claim European ancestry.  The mean proportion is less 

 Central Close in Suburban Southern 

 
Ln personal income 

-4.39 
(2.91) 

1.95 
(1.96) 

 11.11 
(6.73) 

-6.34* 
(2.57) 

 -1.95 
(1.96) 

9.16 
(6.96) 

 
Proportion w/tertiary 
qualification 

40.67* 
(8.39) 

6.56 
(4.35) 

 -32.71* 
(15.9) 

34.11* 
(8.17) 

 -6.56* 
(4.35) 

-39.28* 
(16.46) 

 
Proportion single 

9.08 
(10.2) 

20.45* 
(7.32) 

 16.81 
(25.3) 

-11.37 
(9.97) 

 -20.45 
(7.32)* 

-3.64 
(26.1) 

 
Proportion w/children 

-7.27 
(6.66) 

-5.52 
(5.67) 

 29.31 
(25.0) 

-1.75 
(5.20) 

 5.52 
(5.67) 

34.84 
(25.6) 

 
Proportion with European 
ancestry  

-2.68 
(4.42) 

4.19* 
(2.67) 

 -22.75* 
(9.30) 

-6.87 
(4.25) 

 -4.19* 
(2.67) 

-26.94* 
(9.66) 

* p-value < 0.05   # of observations: 222   Pseudo R2: 0.543 
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than 20% of the population, whereas the mean proportion in other clusters equals or exceeds 

60% of the population (though still with considerable within-cluster variation). 

These results as a whole are consistent with results from earlier studies that house-price 

appreciation rates, and in this case, patterns in house price appreciation rates, vary 

statistically in plausible ways with variation in house and household demographic 

characteristics. 

Tests of a “ripple effect” 

The trends in cluster-mean area-unit appreciation rates superimposed in Figure 10 

above suggest that changes in price appreciation start in the Central cluster and then ripple 

consecutively through the Close-in, Suburban, and Southern clusters.  To de-clutter the trends 

somewhat, Figure 12 plots them in pairs.  The ripple effect appears most clearly in the 

Central vs. Close-in clusters.  There may be something similarly in the other pairs but it 

seems less clear in the plots. 

Figure 12. Pairwise plots of cluster trends 
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We use a simple distributed-lag regression model to test the ripple hypothesis 

statistically.  Specifically, we estimate: 

𝑟𝑗,𝑡 = 𝑎 + 𝛽0𝑟𝑗+1,𝑡 + 𝛽1𝑟𝑗+1,𝑡−1 + 𝜀𝑗,𝑡 

where r is the appreciation rate, j is cluster, and t is year.  Suppose, as an example, that j is the 

Central cluster and j+1 is the Close-in cluster.  The estimated coefficient 𝛽0 in this case 

represents the fraction of Close-in’s contemporaneous appreciation rate to Central’s.  If our 

hypothesis is that changes in price appreciation rate radiate outward from the center, then the 

estimate of 𝛽1 is the coefficient of interest: it represents the contribution to Close-in’s 

current-year appreciation rate of last year’s Central appreciation rate, i.e., the influence of 

Central’s appreciation rate lagged one year. 

Table 6 reports the average over the entire time period of estimating the model above 

for each of the pairs of trends in Figure 12.  The lag term is positive and significant at the 5% 

level for each of the pairs of clusters, which supports the hypothesis of a ripple effect on 

average over the time sample time period. 

Table 6. OLS estimates of lag in adjacent cluster 

 β0 β1 R2 Durbin Watson 

Central vs. Close-in 0.865* 
(0.122) 

0.338* 
(0.118) 

0.831 1.64 

Close-in vs. Suburban 0.737* 
(0.090) 

0.197* 
(0.088) 

0.847 1.37 

Suburban vs. Southern 0.866* 
(0.210) 

0.540* 
(0.196) 

0.771 2.50 

p-value < 0.05* 

What might explain the ripple effect from central, high-income, high-house-price areas 

ultimately to distant, low-income, low house-price areas?  Returning to the context described 

in Section 3, the explanation seems to be an increase in demand driven by immigration and 

greater willingness and ability to pay combined with imperfect foresight.  Coming out of the 
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recession of the late 1990s, desirable central areas become more affordable and attractive, 

bidding up prices there.  Prices in close-in neighborhoods then look more attractive, followed 

by more distant suburbs, and then finally by distant, lower-income suburbs. 

This explanation raises the question of whether the same pattern holds throughout the 

boom-bust-boom cycle.  That is, does the bust and subsequent boom in appreciation rates 

start in the center and work outward?  As we have only annual observations on appreciation 

rates, we explore the time-consistency of the trend by estimating the nine-year moving 

average in 𝛽1 for each of the cluster pairs reported in Table 6. 

The series of three plots on the left of Figure 13 plot the trends in the estimated moving 

average of 𝛽1 for each pair of clusters moving from Central through to Suburban.  Thus, the 

plots show the variation over time around the estimates of 𝛽1 reported in Table 6 above.  The 

horizontal axis indicates the sequence of eight nine-year samples; the first one centers on the 

beginning of 2005 and the other seven center on the beginning of each subsequent year to 

2013.  The right-hand side of the plots depict the trend in the t-statistic associated with each 

of the estimates in the corresponding left-hand diagram.  Note that the scaling on the vertical 

axes vary as one proceeds top to bottom on both sides of the figure. 

The trend in the estimates of 𝛽1 is generally downward over time from Central to 

Close-in and from Suburban to Southern, consistent with a waning ripple effect.  In contrast, 

the lagged effect from Close-in to Suburban is small and insignificant during the first boom 

and grows just enough to become significant in the second boom.  Why this difference from 

the other two is unclear, though the Suburban cluster is spatially much larger and more 

dispersed than any of the other clusters with perhaps more variation in the timing of influence 

of central-area prices.  Taken together, these results suggest that the ripple effect persists over 

the boom-bust-boom period (at least over successive nine-year averages), but diminishes 
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overall, which would be expected if home buyers gradually gain an understanding of the 

spatial dynamics. 

Figure 13. Moving average estimates of 𝜷𝟏 and corresponding t-statistic. 

Central to Close-in 

 

Close-in to Suburban 

  

Suburban to Southern 
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7. Conclusions 

The novelty of this paper is in the use of cluster analysis to identify areas in which 

house-price appreciation follows a similar trend over an interesting boom-bust-boom cycle.  

The k-means cluster analysis methodology appears to have worked reasonably well.  The four 

cluster solution is stable and the trends in each cluster appear to fit reasonably well 

throughout the time period.  The clusters also seem sensible geographically in that they 

follow a sensible pattern of house values and demographic characteristics. 

We find evidence of a ripple effect from central, high-income, high-house-price areas 

through ultimately to distant, low-income, low-house price areas.  This seems explainable as 

a result of a substantial increase in population and especially in purchasing power combined 

with limited foresight: prices in the most attractive areas were bid up first, flowing fairly 

quickly toward less desirable areas.  There is evidence however that the ripple effect 

diminished over time, consistent with participants in the housing market better anticipating 

this effect over time. 
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