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ABSTRACT 

The relative standard deviation of win percentages, the most widely used measure of 

within-season competitive balance, has an upper bound which is very sensitive to 

variation in the numbers of teams and games played. Taking into account this upper 

bound provides additional insight into comparisons of competitive balance across leagues 

or over time.  
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1.  Introduction 

Competitive balance in sports leagues, i.e., how evenly teams are matched, is reflected 

in the degree of inequality in match and championship outcomes. Because of its pivotal 

role in the economic analysis of professional sport, considerable effort has gone into 

measuring competitive balance. By far the most commonly used measure is the relative 

standard deviation of win percentages. This compares the actual (ex post) standard 

deviation of win percentages with the standard deviation of win percentages in the 

‘idealized’ case in which each team has an equal chance of winning each game. 

The relative standard deviation of win percentages is widely regarded as the most 

useful measure of competitive balance “because it controls for both season length and the 

number of teams, facilitating a comparison of competitive balance over time and between 

leagues” (Fort, 2007, p. 643). Although it explicitly incorporates season length and the 

number of teams, it does not control for these variables in the sense of partialling out their 

effects. Moreover, the league’s playing schedules impose an upper bound on the value of 

the relative standard deviation, which is also sensitive to season length and the number of 

teams. Ignoring its feasible range of outcomes limits the usefulness of the relative standard 

deviation for comparing within-season competitive balance across leagues or over time if 

the numbers of teams and/or games played are not constant, which in practice is usually the 

case. Additional insights can be gained by using a normalized standard deviation measure 

that takes into account variations in the relevant upper bound. 

 

2. Measuring competitive balance with actual and relative standard deviations 

Competitive balance in a sports league is a multi-faceted concept. The different 

dimensions include the distribution of wins across teams in the league within a single 
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season, the persistence of teams’ record of wins across successive seasons over time, and 

the degree of concentration of overall championship wins reflected in teams’ shares of 

championship wins over a number of seasons (Kringstad and Gerrard, 2007).  

The ex post or ‘actual’ standard deviation (ASD) of teams’ win ratios (or, equivalently, 

win percentages) in a single season is a natural measure for the first of these dimensions. 

This can be represented as  
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in which N equals the number of teams in the league, and wi  and Gi are, respectively, the 

number of wins accumulated and the number of games played by team i in a season. A 

smaller standard deviation of win ratios across teams in a season indicates a more equal 

competition. However, when comparing values of ASD, either for the same league over 

time or across different leagues, N and/or G are typically not constant. Other things equal, 

ASD tends to decrease as G increases because there is likely to be less random noise in the 

final outcomes. Hence, it is common to compare ASD to a benchmark ‘idealized standard 

deviation’ corresponding to an ex ante representation of a perfectly balanced league in 

which each team has an equal probability of winning each game.
1
 In the absence of ties 

(draws), the idealized standard deviation, ISD = 0.5/G
0.5

 can be derived as the standard 

deviation of a binomially distributed random variable with a (constant) probability of 

success of 0.5 across independent trials (Fort and Quirk, 1995).
2
 The relative standard 

                                                 
1
 The use of a relative measure involving a benchmark standard deviation corresponding to an ex ante 

perfectly balanced league is attributable to Noll (1988) and Scully (1989), but became popular following its 

use by Quirk and Fort (1992) and Fort and Quirk (1995). 
2
 If ties are possible, ISD can be applied to absolute total points or the percentage of points, with amendments 

to account for different possible points assignments for wins, ties and losses (e.g., Fort, 2007). 
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deviation, RSD is expressed as ASD/ISD. As G increases, any reduction in ASD will be 

compared against the reduced value of the benchmark ISD. 

RSD is a ‘static’ measure based on the variation of (final) win ratios across teams in a 

single season. Its evolution can be plotted over time, but it does not capture championship 

concentration or persistence of performance of individual teams over successive seasons. 

Given the multidimensional nature of competitive balance, it is generally considered 

unrealistic to expect any single measure to reflect all of its different dimensions. This apart, 

the RSD measure has met with widespread acceptance. It is the most widely used 

competitive balance measure in the sports economics literature; e.g., see Fort (2006a, Table 

10.1). 

However, despite its resounding endorsement as “the tried and true” measure of within-

season competitive balance (Utt and Fort, 2002, p. 373), RSD has properties that limit its 

usefulness in comparisons of competitive balance involving different numbers of teams 

and/or games. Firstly, RSD has an upper bound. The league’s playing schedules impose an 

upper limit on the variance of the distribution of wins; this has implications for interpreting 

RSD that have not been recognized.
3
 A second distinctive feature of RSD is the different 

measures of ‘sample size’ that appear in its numerator (N, the number of teams) and 

denominator (G, the number of games played by each team). If each team plays the other 

teams several times in a season, then N and G can differ markedly from each other. These 

characteristics can complicate the interpretation of exactly the sorts of comparisons of 

competitive balance (involving scenarios with different N and/or G) for which RSD is 

                                                 
3
 The implications of the league’s schedule of matches for interpretation of the Gini coefficient and the 

Herfindahl-Hirschman index applied to wins are examined by Utt and Fort (2002) and Owen et al. (2007) 

respectively. Given these measures’ emphasis on teams’ shares of wins, their focus is primarily on the fact 

that teams can not win games in which they do not play. 
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usually advocated (e.g., Fort, 2006b, pp. 175-177; Leeds and von Allmen, 2008, pp. 156-

157).  

 

3. The upper bound of the relative standard deviation 

The upper bound of RSD can be derived by considering the ex post ‘most unequal 

distribution’ of win ratios (Fort and Quirk, 1997; Horowitz, 1997; Utt and Fort, 2002). 

This involves one team winning all its games, the second team winning all except its 

game(s) against the first team, and so on down to the last team, which wins none of its 

games. For ease of exposition, consider balanced schedules of games in which each of the 

N teams plays every other team the same number of times, K, with no ties (draws) or with 

ties (draws) treated as half a win. Each team plays Gi = G = K(N − 1) games.  

The actual (ex post) variance of win ratios (AVAR) across the N teams in a season 

(with the mean win ratio equal to 0.5 for any degree of competitive balance) is given by: 

AVAR = 22
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In a perfectly unbalanced league, its upper bound, AVAR
ub

, is given by: 
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Note that the K
2
 terms cancel, implying that AVAR

ub
, and hence the corresponding upper 

bound for ASD, are invariant to the number of rounds played if schedules are balanced. 

Simplifying this expression, 
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Taking the square root, the upper bound for ASD, denoted ASD
ub

, is given by: 

 

ASD
ub

 = [(N + 1)/{12(N − 1)}]
0.5

 (2) 

 

Substituting G = K(N − 1) into the expression for ISD, and noting that the ex ante ISD 

measure is unaffected by the actual outcome for ASD, gives: 
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The upper bound of RSD in Eq. (3) depends not only on the number of teams in the 

league, N, but also on the number of times they play against each other, K. Increases in N 

and/or K lead to increases in RSD
ub

, conventionally interpreted as implying a decrease in 

competitive balance. However, given we are considering the upper bound, wins are initially 

as unequally distributed as they can be and remain that way. Thus, RSD captures the scale 

effect arising from the dependence of ISD on the number of games played but, by ignoring 

its upper bound, RSD does not reflect competitive balance relative to its feasible maximum. 

The upper bound of ASD in Eq. (2) also depends on N, with expansions in N leading to 

a decrease in ASD
ub

.
4
 However, RSD

ub
 is much more sensitive than ASD

ub
 to variations in 

N. This is illustrated in Fig. 1, and is apparent from a comparison of Eqs (2) and (3). For 

large N, the (N + 1) and (N – 1) terms approximately cancel out, so that, in the limit, ASD
ub

 

tends to (1/12)
0.5

 = 0.289.
5
 For smaller values of N, as in most sports leagues, the 

                                                 
4
 It is straightforward to show that ∂ASD

ub
/∂N < 0 if N  ≥ 2. 

5
 This asymptotic result is consistent with ASD corresponding more closely to a pure inequality measure, such 

as IGE(2), a member of the family of generalized entropy measures of inequality (Bajo and Salas, 2002). 
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dependence on N is not removed entirely, but is relatively modest, with, for example, 

ASD
ub

 varying from 0.327 for N = 8 to 0.298 for N = 30 (a decrease of 8.8%). In contrast, 

RSD
ub

 → ∞ as N → ∞ and, for commonly observed values of N, the increase in RSD
ub

 is 

more dramatic than for ASD
ub

, varying (for K = 1) from 1.732 for N = 8 to 3.215 for N = 30 

(an increase of 85.6%). 

Variation in the upper bounds can be explicitly incorporated in a normalized measure of 

competitive balance, such as 

 

 RSD* = RSD/RSD
ub

 = ASD/ASD
ub

 = ASD* (4) 

 

The normalized measure, ASD* (= RSD*), lies in the interval [0, 1], with 0 representing 

perfect parity and 1 maximum imbalance.
6
 Goossens (2006) also suggests using the 

equivalent of ASD*, although she calculates ASD
ub

 numerically for different values of N 

rather than deriving a general expression. Goossens’s argument for preferring ASD* to RSD 

is that RSD can be less than 1 (if ASD < ISD). This is not surprising given the ex ante 

probabilistic nature of ISD, in comparison to the ex post minimum (0) and maximum 

(ASD
ub

) values for ASD. However, given the properties discussed above, the additional 

insights from comparing RSD or ASD relative to their upper bounds provide a more 

fundamental justification for the use of a normalized standard deviation measure, especially 

in cases involving different N and K values. 

The limitations of RSD and the usefulness of also examining the normalized version of 

RSD or ASD are easiest to demonstrate in cases in which N or K is varied and the degree of 

imbalance is controlled, as in the case of the upper bounds. However, additional insights 

                                                                                                                                                 
IGE(2) = CV

2
/2, where CV is the coefficient of variation. If the mean of the win ratios in a season equals 0.5, 

variation in CV applied to win ratios corresponds to variation in ASD. 
6
 Trivially, this adjustment also removes the dependence of the upper bound of RSD on K.  
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are not confined to the case of perfect inequality. For example, consider increasing K while 

‘scaling up’, i.e., reproducing exactly the corresponding set of results for the original 

league. As a concrete example, consider a league with balanced schedules (N = 16, K = 2, 

G = 30) in which ASD is 0.037 and RSD is 0.408.
7
 Assume K is increased to 4 (with each 

team playing every other team twice at home and twice away) and that the additional home 

and away results are identical to those in the actual two rounds played. This scaled-up set 

of results displays unchanged win ratios (and the same value for ASD); however, RSD 

increases to 0.577. Because the upper bound for RSD increases as K increases (as in Eq. 

(3)), the normalized measure, RSD* (= ASD*) remains unchanged, reflecting what is, in a 

relative sense, an unchanged competitive balance situation. By comparison, the increase in 

RSD, for an unchanged ASD, reflects the scale effect of more games decreasing ISD. 

If N varies across time for a given league, ASD* can again offer useful additional 

insights. For example, in the First Division of New Zealand Rugby Union’s National 

Provincial Championship (NPC) K =1 in round-robin play (prior to the semi-finals) but N 

has varied over time. The RSD of win ratios (with draws, which are relatively rare in rugby, 

counting as 0.5 of a win) was 1.763 in 1990 compared to 1.633 in 1994, suggesting a 

higher level of competitive imbalance in 1990. The upper bounds for RSD were, 

respectively, 2.000 (N = 11) and 1.826 (N = 9); RSD was therefore closer to the upper 

bound reflecting complete inequality in 1994 (ASD* = 0.894) than in 1990 (ASD* = 0.882). 

The improvement in competitive balance between 1990 and 1994 signaled by RSD reflects 

the effect of reduced N; ASD* reverses the ranking in terms of relative competitive balance, 

but, more importantly, shows how close to perfect imbalance the NPC was in both years. 

                                                 
7
 These results apply to what is widely believed to be one of the most competitive league outcomes in 

association football: the 1983-84 season in the somewhat obscure Romanian Divizia C, Seria a VIII-a league 

(see http://www.rsssf.com/miscellaneous/even.html). 
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When comparing competitive balance across different leagues, the differences in N and 

K are often considerably greater than for a single league over time, so the relevant upper 

bounds of RSD can differ markedly. Because of the sensitivity of RSD
ub

 to K and N, it is 

feasible for the observed values of RSD in one league (with 0 < RSD < RSD
ub

) to be greater 

than the value of RSD
ub

 in another. For example, the upper bound for RSD for the NPC 

noted above (1.826 to 2) is less than many of the calculated RSD values for the ‘big four’ 

US leagues reported in Fort’s (2006b) Table 6.3, especially basketball for which all 

reported values are greater than 2 and many are greater than 3. Therefore, the numerical 

value of RSD provides no guidance on how that outcome compares to the relevant 

completely unequal distribution; ASD* (= RSD*) provides this information. However, 

relying solely on the normalized measure may not identify cases of imbalance that are 

worse in an absolute sense. For example, consider a less than completely unequal 

distribution of wins in baseball (with 162 games per team) in which the weakest team loses, 

say, 140 games. Even though ASD* < 1, this may reasonably be regarded as a more 

concerning case of imbalance than a completely unequal distribution of wins in the NPC 

(in which ASD* = 1 but, with N = 11, the weakest team loses only 10 games). 

 

4. Conclusion 

In the sports economics literature there is a widespread belief that the idealized standard 

deviation provides a ‘common standard’ (Leeds and von Allmen, 2008, p. 156) against 

which to compare the actual standard deviation of win ratios. However, the resulting 

relative standard deviation measure has an upper bound, and hence a range of feasible 

values, which varies markedly in response to variation in the number of teams and/or 

number of games played. When making comparisons across leagues or over time, using 
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RSD, but ignoring its upper bound, provides at best a partial view of competitive balance 

that emphasizes the scale effects of different values of N and/or G. The added insights 

obtained by considering the upper bound of RSD provide a much more compelling reason 

than previously advanced for also using a relative measure, such as the normalized 

standard deviation, when evaluating within-season competitive balance. 
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Fig.1. Variation in the upper bounds of RSD and ASD with N and K 


