

Transforming existing drugs; one more step in the fight against cancer

Khaled Greish MD, Ph.D Khaled.greish@ otago.ac.nz

New Zealand Cancer Registry 2011

- ✓ Cancer was the most common cause of death for both males and females in New Zealand in 2011, accounting for nearly a third of all deaths.
- ✓ The most commonly registered cancer was colorectal (3030 registrations), followed by prostate cancer (3023 registrations), together accounting for 28.8% of registrations. Breast cancer and melanoma were the next most commonly registered cancers.

Raloxifene is a Selective Estrogen Receptor Modulator

- Non-steroidal ligand of the estrogen receptor
- Has estrogen-like effects in some tissues (bone)
- Blocks estrogen effects in other tissues (breast, endometrium)
- Evista® (raloxifene HCl 60 mg/day) is approved for the prevention and treatment of osteoporosis

Raloxifene is approved for the prevention and treatment of osteoporosis

Raloxifene encapsulation

- □ Poor bioavailability (~2% due to extensive metabolism by glucuronidation in intestine and liver
- SMA micellar formulation results in :
 - ✓ High water solubility
 - ✓ Higher concentration in the plasma by protection from metabolic enzymes
 - ✓ Enhanced tumor (inflammatory tissues) concentration due to enhanced permeability in these tissues

Enhanced Permeability and Retention Effect in inflammation and cancer

S. Taurin, H. Nehoff, K. Greish, Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?, Journal of controlled release, 164 (2012) 265-275.

Effect of raloxifene on apoptosis in breast cancer cells in vitro

otago.ac.nz/cancer-research

Taurin, S.; Nehoff, H.; Van Aswegen, T.; Rosengren, R. J.; Greish, K. A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer. *BioMed Research International*(2014), 2014, 14.

SMA-raloxifene reduces tumor spheroid viability

Taurin, S.; Nehoff, H.; Van Aswegen, T.; Rosengren, R. J.; Greish, K. A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer. *BioMed Research International* (2014), 2014, 14.

SMA-Raloxifene enhances intracellular drug accumulation in tumor cells

otago.ac.nz/cancer-research

Pritchard T, Rosengren RJ, Greish K, Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. Journal of Drug Targeting. 2015:1-9.

SMA-raloxifene alters the expression of proteins essential for tumor proliferation and survival

Taurin, S.; Nehoff, H.; Van Aswegen, T.; Rosengren, R. J.; Greish, K. A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer. *BioMed Research International* (2014), 2014, 14.

SMA-raloxifene suppresses angiogenesis

Huvec

Rat aortic ring

otago.ac.nz/cancer-research

Taurin, S.; Nehoff, H.; Van Aswegen, T.; Rosengren, R. J.; Greish, K. A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer. *BioMed Research International* (2014), 2014, 14.

SMA-raloxifene reduces the growth of PC3 xenograft prostate tumours

otago.ac.nz/cancer-research

Pritchard T, Rosengren RJ, Greish K, Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. Journal of Drug Targeting. 2015:1-9.

SMA-raloxifene reduces the growth of MDA-MB-231 breast tumours

Cannabinoids for management of cancer

otago.ac.nz/cancer-research Velasco G, Sánchez C, Guzmán M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer. 2012;12:436-44.

SMA-WIN for management of cancer

- WIN 55,212-2 is a potent cannabinoid receptor agonist that has been found to be a potent analgesic in neuropathic pain
 - Poorly water soluble
 - ☐ Target both CB1 and CB2
 - Side effect;

> Psychoactive effects

[include euphoria, alteration of sensory perception, sensation of relaxation / calmness, loss of sense of time and space, higher perception of colour and sound, and flight of ideas]

otago.ac.nz/cancer-research

XIAN S, PARAYATH NN, NEHOFF H, GILES NM, GREISH K. The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55, 212-2 for the Treatment of Cancer. Anticancer Research. 2015;35:4707-12.

otago.ac.nz/cancer-research

XIAN S, PARAYATH NN, NEHOFF H, GILES NM, GREISH K. The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55, 212-2 for the Treatment of Cancer. Anticancer Research. 2015;35:4707-12.

Why Oral Chemotherapy

- Non-invasive reduces patient trauma
- Sustained pharmacokinetic profile
- Economical
- Interest to the pharmaceutical industry

Most anticancer drugs exhibit poor oral bioavailability
Paclitaxel on oral administration showed less than 1% bioavailability.

(Eiseman, J., et al., Cancer Chemotherapy and Pharmacology, 1994. 34(6): p. 465-471)

Oral Anticancer Nanomedicine

- Nanocarrier protects the drug from harsh GI environment
- Reduced toxicity
- Can increase oral absorption
- Tumor targeting through EPR effect

To date - No Oral Anticancer Nanomedicine in clinical use.

Tumor accumulation of oral SMA- micelles in tumor tissues

Haematoxylin staining

SMA-Dil Flourescence

Parayath NN, Nehoff H, Müller P, Taurin S, Greish K. styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery—dual uptake through enterocytes and M-cells. International journal of nanomedicine. 2015;10:4653.

Tumor accumulation of oral SMA- micelles in different tissues

otago.ac.nz/cancer-research

Parayath NN, Nehoff H, Müller P, Taurin S, Greish K. styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery—dual uptake through enterocytes and M-cells. International journal of nanomedicine. 2015;10:4653.

Maximum tolerated dose (MTD) of SMA-PTX micelles following oral administration

Single dose MTD

Healthy female BALB/c mice n = 6 Mice survival and variation in body weight

Repeated dose MTD

Healthy female BALB/c mice n = 4 Mice survival and variation in body weight

6	MTD in BALB/c mice	PTX (Ebewe)	SMA-PTX
•	Single dose	60 mg/kg	120 mg/kg
4	Repeated dose (doses every alternate days for 8 days)	30 mg/kg	60 mg/kg

Antitumor efficacy of SMA-PTX following oral administration in orthotopic colon cancer model

Safety of SMA-PTX following oral administration in orthotopic colon cancer model

Acknowledgments

Collaborators:

Sebastian Taurin

Rhonda Rosengren

Funding:

- Health Research Council (HRC)
- University of Otago Research Grants (UORG)
- Otago Medical Research Foundation(OMRF)

Graduate Students:

- Hayley Nehoff
- Neha Parayath
- Tara Prichard
- Susan Xian