

Balancing the energy trilemma

- Modelling the NZ electricity system out to 2050

Dr Jen Purdie & Grant Telfar

Cost

Decarbonising the NZ energy system

Overview

- Model
- Two scenarios

Model inputs:

- electricity demand
- wind and water
- technology cost declines

Model outputs

- generation plant changes
- price
- % renewable
- electricity emissions

Tools - LPCon NZ power system model

- Two-phase simulation and optimisation model of the NZ power system, owned by Meridian Energy
- Uses a linear programming construct to match demand and supply on a fine temporal and spatial scale, to produce an efficient least cost energy system.
- Spatial resolution nodal (285 nodes) / regional (22 regions) / island (2).
- 30 year lead time.
- Weekly granularity, but 15 block load duration curve representation of within week variation (day/night/peak/off peak).
- 86 years of hydrological data and wind for every hydro catchment or area.
- Includes representation of:
 - **Prices**, cost to generate, offers into the electricity market.
 - **Generation capacity**: hydro, wind, coal, gas, geothermal, solar, both current & projected.
 - Hydro storage, inflows (past and future), hydrological constraints, cascading releases, minimum flows, consent conditions, spill.
 - Electricity **demand** projections
 - **Transmission** network, line flows, line losses and constraints.
 - Dynamic system risk and fast and slow **reserves**.
 - Planned and forced **outages** for all plant and transmission lines.
 - **Demand response**

Two scenarios: Evolution and Revolution

Evolution: Adaptive BAU scenario

- Modest decarbonisation / emissions reduction.
- Some gas peaking plant remains
- Renewable share \$\infty\$ 95+%
- Carbon price \$50/t CO₂e

Revolution: Low carbon scenario

- Strong decarbonisation / emissions reduction.
- No thermal plant remains
- Renewable share \Longrightarrow 100%
- Carbon price ⇒ \$100/t CO₂e

Demand projections

- Consensus that demand will rise.
- Baseline demand:
 - increases in population
 - increases in GDP
 - offset by efficiency gains.
- PLUS "climate change impacts":
 - Electrification of transport & industrial heat processes.
 - Increased air conditioning load
 - Decreased heating load
 - Increased irrigation load East Coast
- Large uncertainties.

Demand side changes: the need for additional generation

Supply side changes: cost of new builds

Supply side changes: modelled changes to inflows by 2050

Supply side changes: modelled changes to wind farm capacity factor

Generation Summary

Percent renewable electricity

- 100% renewable possible IF:
 - existing power system flexibility is fully utilised (hydro, geothermal)
 - new and flexible technologies emerge,
 eg. dispatchable demand, batteries

Supply side changes: carbon emissions from electricity generation

Price

- On average, prices projected to be same or lower.
- BUT much more volatile than in the past, due to increasing proportion of intermittent renewables in the system.
- Demand response, hydro flexibility, and batteries will become increasingly important to manage this volatility.

Summary

Our modelling indicates that:

- The electricity system will continue to decarbonise itself as this is the most efficient outcome.
- The electricity system will also enable the decarbonisation of a significant portion of transport and industry.
- Significant new generation build planning and investment is needed, with reasonable lead times.
- Increasing intermittency will require firming from:
 - Some gas peaking plant over the medium term.
 - Retention of hydro capability and flexibility, particularly hydro storage (as the "battery bank").
 - Demand side participation and batteries (incl. V2G) essential.
- BUT! We believe the energy trilemma CAN be kept in balance.