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ABSTRACT. This study explores the value of information transmission in training het-

erogeneous Artificial Neural Network (ANN) models to identify patterns in the growth 

rate of aggregate per-capita consumption spending in New Zealand. A tier structure is 

used to model how information passes from one ANN to another. A group of ‘tier 1’ 

ANNs are first trained to identify consumption patterns using economic data. ANNs in 

subsequent tiers are also trained to identify consumption patterns, but they use the pat-

terns constructed by ANNs trained in the preceding tier (secondary information) as in-

puts. The model’s results suggest that it is possible for ANNs downstream to outper-

form ANNs trained using empirical data directly on average. This result, however, var-

ies from time period to time period. Increasing access to secondary information is 

shown to increase the similarity of heterogeneous predictions by ANNs in lower tiers, 

but not substantially affect average accuracy. 
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1. INTRODUCTION 

 

Artificial neural networks (ANNs) are mathematical algorithms that transform in-

put data into output data. Because they are flexible in structure and can incorporate a 

high degree of non-linearity, they can be trained to identify very complex relationships 

in data. As such, they prove to be useful for solving a variety of pattern recognition, 

optimization and forecasting problems in economics and finance.
1
  

When it comes to reproducing aggregate consumption patterns, the value of ANN 

models has been studied by Church and Curram (1996) and Farhat (2012). Church and 

Curram show that although ANNs are flexible in nature and do not require a large num-

ber of data points to produce accurate patterns, they do not outperform standard econo-

metric methods significantly. Farhat (2012) shows that pattern reproduction can be im-

proved substantially by training heterogeneous ANNs (done by using different combi-
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nations of in-sample data in the training process), then forming a weighted average of 

the outputs. Several methods for computing this weighted average are compared with 

the intention of informing future systemic simulation models
2
 as to the right ‘social 

rules’ for reproducing consumption patterns in an artificial economy. 

This study expands on Farhat (2012) by exploring the value of adding information 

transmission from some heterogeneous ANN models to other heterogeneous ANN 

models. In the grand model presented below, a group of ANNs use economic data di-

rectly to reproduce patterns in aggregate per-capita consumption in New Zealand. These 

‘tier 1’ ANNs can be thought of as ‘primary data processors’: the patterns they produce 

are based entirely on empirical properties of the economy. Next, another group of 

ANNs are trained to reproduce aggregate per-capita consumption patterns. Instead of 

using empirical data, however, they use the patterns generated by a sample of ANNs 

from tier 1. These ‘tier 2’ ANNs can be thought of as ‘secondary data processors’: they 

recycle the patterns produced by others to form their own predictions. This tier structure 

continues (tier 3, tier 4, …) with the ANNs in any tier d using a sample of estimates 

from the ANNs in the previous tier, d-1, to produce their own estimates. 

Three questions arise. First, are the patterns produced by ‘lower’ tier ANNs less 

accurate on average than those produced by tier 1 ANNs? (In other words, does using 

secondary information lead to wrong-minded predictions?) Second, do lower tier ANNs 

produce a greater diversity of patterns than those produced by tier 1 ANNs? (In other 

words, does using secondary information lead to confusion or cohesion?) Third, can an 

ANN in any tier produce more accurate patterns by relying on a greater amount of in-

formation from the proceeding tier? (In other words, is having more secondary infor-

mation better to having less?) 

Results suggest that lower tier ANNs are not always less accurate than tier 1 

ANNs. This result, however, varies depending on the period being forecasted. Interest-

ingly, the average performance of ANNs worsens as information is transmitted down-

stream, but then subsequently improves in many cases. The grand model also shows that 

increasing the number of secondary sources used by ANNs in lower tiers reduces the 

variability of patterns produced. However, using more secondary sources does not sub-

stantially improve accuracy. 

In the remainder of this article, the structure of the artificial neural networks used 

in this project is first described. The tier structure defining how information is transmit-

ted between ANNs is then presented. Simulation results are then shown and subsequent-

ly discussed. The article concludes with the model’s main implications and directions 

for future research. 

2. METHOD 

2.1. Artificial Neural Networks 

Beltratti et al. (1996), Jain and Mao (1996), Warner and Misra (1996), Cooper 

(1999), Gonzalez (2000), and Detienne et al. (2003) provide easy-to-follow introductory 

guides on ANN algorithms. While these algorithms can become very complex, the 

ANN used in this study is a rather common and simple feed-forward neural network 

(see fig. 1). In this basic model, K different pieces of input data (Xk, k = 1...K) are 

weighted, summed together with a ‘bias term’
3
 and then transformed by H separate 

functions (known as activation functions). The results from these transformations are 

themselves weighted and summed with another bias term to produce an output,  ̂. In the 

ANN shown in fig. 1,     denotes the weight placed on input k in activation function h, 
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    is the bias term in activation function h, h is the weight placed on the result from 

activation function h, and 0 is the bias term for the activation functions in computing 

the final output (  = 1…K and   = 1…H). A compact, mathematical representation of 

the ANN in fig. 1 is: 

nh     h   ∑   h  
 
  1  (1) 

Nh = A(nh) (2) 

 ̂    
 
   ∑  

h
Nh

2
h 1  (3) 

 

[Figure 1 here] 

 

We can create larger ANNs by adding additional hidden layers (where the output, 

 ̂, is passed on as an input to other neurons) if we wish, however the simple structure 

described by fig. 1 will be quite sufficient (and computationally efficient) for this 

study.
4
 Kuan and White (1994) note that passing weighted inputs directly to the con-

struction of the output with no transformation makes the model above more relatable to 

many standard linear econometric analyses. This will be done in this study via the first 

activation function, A1.
5
 The other activation functions will be hyperbolic tangent (tanh) 

sigmoid functions:  

A n
h
)   

enh  - e-nh

enh   e-nh
 (4) 

This sort of function is useful to use when the inputs (and outputs) can be either positive 

or negative. Nh will be bounded by  1. 

‘Training’ the ANN to produce acceptable outputs involves determining appro-

priate values for the weights ( 's and ’s). To do this, an algorithm similar to that de-

scribed by Aminian et al. (2006) is employed. First, all available data is divided into 

three sets: a training set, a validation set, and a forecasting set. The training set and the 

validation set together form the in-sample data used to derive the weights. The forecast 

set is used to test the out-of-sample performance of the ANN. Note that in the case of 

time-series data, these sets need not be time-ordered (i.e. we can randomly select time 

periods into each set). This is done for the training and validation sets: the in-sample 

data is randomly allotted with approximately 70% allocated to the training set and the 

remaining 30% to the validation set.
6
 The forecast set will always consist of the final 

periods in the available data (here, the final 24 periods are used). 

Next, a back-propagation (BP) algorithm is implemented. In this algorithm, data 

from the training set is fed into the ANN to produce outputs. A measure related to the 

sum of squared errors over the training set is computed. The model weights are then 

updated so as to minimize this measure. This process then repeats. If the algorithm runs 

ad infinitum, the ANN will start to memorize the training set patterns   nown as ‘over-

fitting’) and out-of-sample forecasting will be poor. To prevent this, data from the vali-

dation set is also fed through the ANN to produce outputs and a measure related to the 

sum of squared errors of the validation set is computed as the BP algorithm runs. The 

BP algorithm is forced to quit updating weights when the sum of squared errors for the 

validation set starts to rise. Out-of-sample prediction is thus improved.
7
 Once the 

weights are found, the forecast set data can be fed through the ANN to test the model’s 

performance. 
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In this study, large batches of identically-structured ANNs are trained using BP. 

These ANNs produce heterogeneous outputs thanks to the random allocation of the in-

sample data into the training and validation sets.  

2.2. Information Transmission and ANN Training 

The tier structure used to model information transmission in this study is as fol-

lows. Denote D as the total number of tiers. In the first tier (d = 1), a population of J 

ANNs use empirical data from the New Zealand economy to predict patterns in the 

growth rate of final private consumption expenditures per worker (ct). Members of this 

tier can be thought of as ‘experts’ who base their understanding of consumption spend-

ing on empirical analysis of the economy directly. The data they use as inputs include 

the growth rate of final private consumption expenditures per worker in the previous 

period (ct-1), the growth rate of GDP per worker (yt), the point change in the unemploy-

ment rate (ut), the point change in the money market interest rate (rt), the CPI inflation 

rate (pt) and the point change in the nominal effective exchange rate (qt). These varia-

bles are commonly seen in both theoretical and empirical business cycle studies in rela-

tion to the household sector. All data pertains to the New Zealand economy, 1992Q2 – 

2011Q3, and is re-scaled before use.
 8

 Data for interest rates and exchange rates are 

sourced from the International Monetary Fund (2011) while all other data are sourced 

from the OECD (2011). The out-of-sample data is fixed to be the last 24 periods 

(2005Q4 – 2011Q3) of this data set (for this and all other tiers). After each of the J 

ANNs in the first tier is trained using the in-sample data, the inputs from both the in-

sample and out-of-sample data are re-fed through the network to produce a sequence of 

estimates for ct which cover the entire time span. 

In subsequent tiers (d = 2…D), populations of J ANNs are once again trained to 

form predictions for ct. In these tiers, however, the ANNs do not use the empirical data 

directly as inputs. Instead, they collect predictions for ct generated by M randomly-

selected ANNs trained in the tier that came directly before them. All in-sample data and 

is randomly divided between the training and validation set as described above. Once 

the ANN is trained, the inputs from both the in-sample and out-of-sample data sets are 

again fed through the ANN to produce a sequence of estimates for ct covering the entire 

time span. ANNs in the next tier may then call upon this information when producing 

their own patterns. Members of these ‘lower’ tiers can be thought of as users of second-

ary information – they base their understanding of ct on predictions made by others. As 

a result of this structure, ANNs trained in more distant tiers are reliant on highly-

processed information compared to ANNs trained in higher tiers.  

3. RESULTS 

In the simulation results that follow, the following calibrations are used: 

 

H = number of activation functions = 3. A1 makes no non-linear transformations; A2 

and A3 are tanh sigmoid functions. Farhat (2012) suggests that a low number of non-

linear activation functions is sufficient for generating significant improvements in 

pattern production for ct over a linear benchmark model (albeit over a shorter fore-

cast set). 
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D = number of tiers = 12. While a larger number of tiers can be explored, this value 

provides a sufficient starting point for observing the impact of transmitting estimates 

‘down-stream’. 

 

M = number of randomly-selected input patterns from the previous tier for tiers d = 

2…D = 2, 5 and 10 (experimented with separately). 

 

J = number of ANNs trained in each tier = 500. This number is much lower (per tier) 

than Farhat (2012), it provides a useful starting point for looking at the impact of 

heterogeneously processed information on pattern production. If J is too large rela-

tive to M, the patterns produced by any single tier 1 ANN would have little impact on 

the subsequent tiers  as the probability it’s patterns are used by a tier 2 ANN are 

low).  

 

How well an ANN replicates out-of-sample patterns is measured by the error between 

its estimate for the output variable and the empirical value of the output variable in each 

period of the forecast set. Since the data for ct is re-scaled when used in the ANN train-

ing process, these errors are also ‘adjusted’ measures  i.e. measured in terms of number 

of empirical standard deviations from the empirical mean of ct).  

 

3.1. Experiment 1: Tier 1 ANN Performance 

Fig. 2 shows how a batch of tier 1 ANNs performs at out-of-sample pattern pro-

duction for each period in the forecast set. The average scaled errors, shown by bars in 

the figure, represent overall accuracy. In several periods, patterns are produced quite 

accurately on average (see 2006Q2, 2007Q1 – 2007Q3 and 2009Q4). In other periods 

the model has difficulty reproducing ct (see 2008Q4 as the most obvious example). The 

spread of predictions across tier 1 ANNs is shown by adding ± 2 standard deviation 

points to the figure (shown as a dotted line). This serves as an illustration of cohesion 

(or dissention) amongst ANNs. Several periods indicate a modest degree of cohesion 

(for example, 2006Q3 and 2010Q1 – 2010Q3) while other periods showed a high de-

gree of variation (for example, 2006Q2 and 2010Q4). The longest period with intense 

variability (2008Q2 – 2009Q1) coincides with the Great Recession reaching New Zea-

land, perhaps reflecting the ability of the ANN approach described in this study to iden-

tify periods of confusion and uncertainty. These results are consistent with those in Far-

hat (2012). 

[Figure 2 here] 

 

3.2. Experiment 2: Information Transmission with M = 5 

The analysis is now extended to lower tiers. Figs. 3-4 show how the ANNs trained 

in each tier perform when input data is collected from 5 randomly-selected sources from 

the preceding tier (except for tier 1 which uses primary data). The results are mixed. For 

some time periods, lower tier ANNs perform worse on average than higher tier ANNs 

(see 2007Q1 for the most obvious example). There are several cases, however, where 

average accuracy increases as estimates are transmitted downstream. When this occurs, 

it is common for average errors to worsen before they improve as patterns are passed 

from one tier to another (2006Q2 is a clear example of this). For most time periods, 

lower tier ANNs generate a larger variety of estimates than tier 1 ANNs (2010Q4 is an 

extreme instance). This suggests that distortion occurs and is exacerbated as information 

is passed. 
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[Figure 3 & 4 here] 

 

3.3. Experiment 3: Information Transmission with M = 2 

Figs. 5-6 show how ANNs trained in the ‘lower’ tiers perform when input data is 

collected from only 2 randomly-selected ANNs from the preceding tier. Although the 

ANNs are using fewer sources of information, the general trends observed when M = 5 

continue to hold: for some periods lower tier ANNs perform worse on average than tier 

1 ANNs while in other periods they perform better; for most periods there is the spread 

of errors is greater in lower tiers.  

When we carefully compare figs. 5-6 to figs. 3-4, we see that reducing the amount 

of secondary information used has had an impact in only a few time periods. Accuracy 

has been noticeably reduced in 2006Q2, 2007Q2, 2008Q2, 2008Q4 – 2009Q2, whereas 

accuracy has increased in 2007Q1, 2009Q3 and 2010Q4 – 2011Q1. Reducing the num-

ber of input patterns has noticeably increased variation in periods 2006Q2, 2007Q1 – 

2007Q2, and 2008Q4-2009Q1. Notably, variation has been reduced in 2006Q1, 

2009Q3, 2010Q2 and, most obviously, in 2010Q4. 

 

[Figure 5 & 6 here] 

 

3.4. Experiment 4: Information Transmission with M = 10 

Figs. 7-8 illustrate performance when lower tiers collect input data from are larger 

number of randomly-selected sources from the preceding tier (M =10). In this case, 

there is a general tendency for lower tier ANNs to be more accurate than tier 1 ANNs. 

As with M = 5, things tend to worsen before they improve as we move down the tiers. 

Examples of this trend appear in 2006Q3, 2007Q3, 2008Q1 – 2008Q3, and 2011Q1. 

There are many instances where lower tier ANNs generate less accurate results, but only 

mildly so (2006Q1 – 2006Q2, 2008Q4 – 2009Q1, and 2010Q1 – 2010Q3 are examples 

of this). 

When we carefully compare figs. 7-8 to figs. 3-4, we see that increasing the 

amount of secondary information used to construct patterns for ct has increased accura-

cy in 2006Q1, 2007Q1, 2007Q4, 2009Q3 and 2010Q4 – 2011Q1 for ANNs in lower 

tiers. Further, variation has been reduced in 2006Q1 – 2006Q2, 2007Q4 – 2009Q3, 

2010Q1 – 2011Q1, and 2011Q3 (particularly amongst ANNs in lower tiers). As one 

might expect, this result indicates that consensus tends to occur as ANNs rely on a larg-

er amount of similar information to produce patterns. 

 

[Figure 7 & 8 here] 

 

4. DISCUSSION 

The questions posed above can now be addressed. First, are the patterns produced by 

lower tier ANNs less accurate on average than those produced by tier 1 ANNs? The 

answer varies from time period to time period in the forecast set and how far down-

stream we go. There are many cases when lower tier ANNs exhibit increased accuracy 

compared to tier 1 ANNs. However, it should also be noted that not all lower tier ANNs 

outperform higher tier ANNs. There are several cases where average performance first 

worsens as predicted patterns are transmitted down the tier structure, but then begins to 

improve for more distant tiers. In these cases, using second-hand information does not 

lead to wrong-minded predictions for those extremely detached from the empirical data. 
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Second, do lower tier ANNs vary greatly in their predictions compared to tier 1 

ANNs? The answer to this depends on the number of sources a low-tier ANN relies on. 

When M is modest (here, 2 or 5), it is most common for the diversity of predictions to 

rise downstream (note this is not uniformly the case, see 2011Q2 for example). When 

the number of sources is large (M = 10), lower tiers tend to produce relatively uniform 

predictions. It is likely that this effect is due to the dilution of errant sources and in-

creased information overlap. Interestingly, the tier structure seems to amplify homoge-

neity of pattern prediction in lower tiers compared to tier 1 ANNs despite elements of 

randomness in the training process.  

Finally, can an ANN in any tier produce more accurate patterns by relying on a 

greater amount of information from the proceeding tier? While increasing M from 5 to 

10 has definitely reduced the variety of predictions produced in lower tiers as noted 

above, it has had relatively little impact on the accuracy. While there are some time pe-

riods where improvements in accuracy definitely occur for lower tier ANNs (see 

2006Q1 and 2990Q3 as examples), these are few. For the most part, increasing the 

number of sources does not greatly enhance pattern production (nor does it severely 

diminish it for that matter). In other words, more secondary information is important for 

reducing the variability of estimates from any tier, and not the average accuracy of those 

predictions. 

 

5. CONCLUSION 

The study above relies on heterogeneous artificial neural networks to reproduce 

aggregate per-capita consumption growth in New Zealand. The ANNs are arranged in a 

tier structure which allows information to be transmitted from ‘tier 1’ ANNs  which are 

trained using empirical data directly) to ‘lower’ tier ANNs  which are trained using es-

timates from randomly-selected ANNs from the preceding tier). The grand model’s 

main purpose is to identify how the use of secondary information affects the accuracy 

and variability of consumption patterns.  

The study shows that lower tier ANNs are not always less accurate than tier 1 

ANNs. While this result varies depending on the forecast period, it suggests that allow-

ing an ANN model to source input information from an already-trained model will not 

necessarily affect accurately adversely. Interestingly, ANNs on much lower tiers can, in 

some cases, perform better than higher-tier ANNs. The model also shows that increas-

ing the number of secondary sources used by ANNs trained in lower tiers leads to en-

hanced cohesion of produced patterns. However, there is little impact on accuracy when 

the amount of secondary information used rises. These results may change if we allow 

more complicated ANN structures or if we incorporate additional features to the tier 

structure which impact how information is shared downstream. Exploring these is left 

for future work.  

With social and economic simulation becoming a more widely-used form of mod-

eling, the results in the study here lead to relevant insights for models of the household 

sector. If consumers spend time on information processing and pattern recognition be-

fore they form expectations or make decisions within a simulation model, allowing 

them to share their results with each other may have benefits. Some agents can rely on 

secondary information to identify patterns in the economy, yet still make reasonable 

predictions compared to those ‘experts’ who rely on primary data. Further, how similar 

the estimates of these ‘second-hand data users’ become can be influenced by changing 

the number of sources  i.e. ‘peers’) they interact with. Incorporating these ideas into a 

full macroeconomic agent-based simulation framework is a worthwhile endeavor left 

for future research. 
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6. FIGURES 

 

 

 

 

Fig. 1. A simple feed-forward artificial neural network 

 

Fig. 2. Forecast set average errors [bars] with ± 2 standard deviations [lines] for tier 1 ANNs 
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Fig. 3. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 5 

 

Fig. 4. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 5 (cont.) 
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Fig. 5. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 2 

 

Fig. 6. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 2 (cont.) 
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Fig. 7. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 10 

 

Fig. 8. Forecast set average errors [bars] with ± 2 standard deviations [lines] by tier when M = 10 (cont.) 

 



12 

 

7. REFERENCES 

Aminian, F., Suarez, E. D., Aminian, M. & Walz, D. T. (2006). Forecasting economic 

data with neural networks. Computational Economics, 28(1), 71-88. 

Barron, A. (1993). Universal approximation bounds for superpositions of a sigmoidal 

function. IEEE Transactions on Information Theory, 39(3), 930-945. 

Beltratti, A., Margarita, S., & Terna, P. (1996). Neural Networks for Economics and Fi-

nancial Modelling. London: International Thomson Computer Press. 

 hurch,  . B. &  urram, S. P.  1996). Forecasting consumers’ expenditure: A compari-

son between econometric and neural network models. International Journal of Fore-

casting, 12(2), 255-267. 

Cooper, J. C. B. (1999). Artificial neural networks versus multivariate statistics: An ap-

plication from economics. Journal of Applied Statistics, 26(8), 909-921. 

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals and Systems, 2(4), 303-314. 

Detienne, K. B., Detienne, D. H. & Joshi, S. A. (2003), Neural networks as statistical 

tools for business researchers. Organizational Research Methods, 6(2), 236-265. 

Farhat, D. (2012), Artificial neural networks and aggregate consumption patterns in New 

Zealand, Economics Discussion Papers 1205, September. 

Gaffeo, E., Delli Gatti, D., Desiderio, S., & Gallegati, M. (2008). Adaptive microfounda-

tions for emergent macroeconomics. Universita Degli Studi Di Trento Working Paper 

No. 2/2008. 

Gatti, D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati, M., & Palestrini, A. (2005). A 

new approach to business fluctuations: heterogeneous interacting agents, scaling laws 

and financial fragility. Journal of Economic Behavior and Organization, 56(4), 489-

512. 

Gonzalez, S. (2000). Neural networks for macroeconomic forecasting: A complementary 

approach to linear regression models. Department of Finance Canada Working Paper 

2000-07. 

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neu-

ral Networks, 4(2), 251-257. 

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are 

universal approximators. Neural Networks, 2(5), 359-366. 

Hornik, K., Stinchcombe, M. & White, H. (1990). Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks. Neural 

Networks, 3(5), 551-560. 

International Monetary Fund [IMF] (2011). e-Library Data. Available at http://elibrary-

data.imf.org/. 

Jain, A. K. & Mao, J. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-

44.  

Kourentzes, N. & Crone, S. (2010). Advances in forecasting with artificial neural net-

works. Lancaster University Management School Working Paper 2010/023. 

Kuan, C.-M. & White, H. (1994). Artificial neural networks: An econometric perspective. 

Econometric Reviews, 13(1), 1-91. 

Mirowski, P. (2007). Markets come to bits: Evolution, computation and markomata in 

economic science. Journal of Economic Behavior and Organization, 63(2), 209-242. 

Organisation for Economic Co-operation and Development [OECD] (2011). 

OECD.StatExtracts. Available at http://stats.oecd.org. 

Raberto, M., Teglio, A. & Cincotti, S. (2008). Integrating real and financial markets in an 

agent-based economic model: An application to monetary policy design. Computa-



13 

 

tional Economics, 32(1-2), 147-162. 

Tesfatsion, L. & Judd, K. (eds) (2006). Handbook of Computational Economics, V.2: 

Agent-based Computational Economics. Amsterdam: Elsevier. 

Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from 

the bottom up. Artificial Life, 8(1), 55-82. 

Tesfatsion, L. (2005). Agent-based computational modeling and macroeconomics. ISU 

Economic Report 05023: July 2005. 

Vellido, A., Lisboa, P. J. G. & Vaughan, J. (1999). Neural networks in business: A survey 

of applications (1992 – 1998). Expert Systems with Applications, 17(1), 51-70. 

Warner, B. & Misra, M. (1996). Understanding neural networks as statistical tools. The 

American Statistician, 50(4), 284-293.  

Zhang, G., Patuwo, B. E. & Hu, M. (1998). Forecasting with artificial neural networks: 

The state of the art. International Journal of Forecasting, 14(1), 35-62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

8. NOTES 

                                                           
1
  See Zhang et al. (1998), Vellido et al. (1999), and Kourentzes and Crone (2010) for 

examples and descriptions of the main advantages and disadvantages of using ANNs. 

2
  Farhat (2012) explicitly mentions applications to agent-based models. Agent-based 

models (ABMs) are computational simulation models where populations of hetero-

geneous agents, each with their own characteristics and information, interact with 

each other in a virtual space. Their interactions and decisions are determined by a 

prescribed set of rules chosen by the researcher. As they relate to each other at the 

local level (micro-interaction), aggregate (macroscopic) phenomena emerge. For ex-

amples of this work, see Tesfatsion (2002, 2005), Tesfatsion and Judd (2006), Gatti 

et al. (2005), Mirowski (2007), Gaffeo et al. (2008) and Raberto et al. (2008). 

3
  A ‘bias term’ is a in to the ‘constant term’ in regression analyses. 

4
  Hornik et al. (1989) and Hornik (1991) show that ANNs can approximate any func-

tional relationship between inputs and outputs with arbitrary precision provided that 

there are a sufficient number of hidden layers  hence, they are  nown as ‘universal 

approximators’).  yben o  1989), Horni  et al.  199 ), and Barron  1993) note that 

ANNs with a single layer (like fig. 1) may also be universal approximators provided 

that the activation functions used in the model satisfy certain properties (namely, 

smoothness) and the number of activation functions (H) is large enough. 

5
  A1 makes no transformation to the input data and γ1 is fixed to 1. The ANN is, in ef-

fect, a linear econometric model of the form  ̂ = γ
 
   ∑   1  

K
 =1  augmented by a 

non-linear function, ∑  γ
 
        ∑      

K
 =1  H

 =2 . 

6
  In this study, when an ANN is trained multiple times, the training set and validation 

set always differ across simulation due to the random allocation of the data. The 

forecast set, however, will be the same across trained ANNs to make them compara-

ble. 

7
  See Beltratti et al. (1996) or Warner and Misra (1996) for a more detailed description 

of the weight updating process for the basic BP algorithm. 

8
  Data for 1992Q1 is used for the first value of ct-1. The standard score (or z-value) for 

each data point is used in place of the actual data. As a result, each re-scaled data 

point is measured as the number of standard deviations the raw data is above its se-

ries mean. Using data re-scaled in this way improves the efficiency of the ANN train-

ing process. 
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