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This paper presents a model of quantity regulation aimed at mitigating externalities from

over-use of a commons: for example, restrictions on use of automobiles, fisheries, computer

networks and electronic stock quotation systems with high-frequency traders. The model

provides a counter-intuitive answer to the question of what happens when quantity restric-

tions are legislated but enforcement is imperfect. If the probability of enforcement depends

on both violation rates and enforcement expenditures, then equilibrium congestion can be-

come worse as the quantity restriction becomes more severe. Stricter regulation causes more

agents to violate the regulation which consequently reduces the probability of detection.

Aggregate payoffs respond nonmonotonically to stricter regulatory rules. We find an interior

near-optimal solution which is neither too permissive nor too strict. We show, however, that

this near-optimal quantity regulation falls short of achieving socially optimal levels of use.

Moreover, socially optimal levels of use can never be achieved in the sense that there exist

some agents who rationally choose to violate the regulation if the regulator sets the restricted

activity level at the socially optimal level. We also discuss optimal enforcement.
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1 Introduction

Some activities generate such severe negative externalities that they are prohibited in any

positive quantity. Other activities, however, such as using one’s car, are normally regarded

as socially acceptable even though they generate negative externalities that motivate gov-

ernments to attempt various forms of regulation. In such cases, the entity responsible for

designing and enforcing regulation sometimes chooses to enact rules that restrict quantities

of the externality-generating activity.

This paper focuses on quantity regulation in the context of congestion problems that are,

in essence, a tragedy of the commons resulting from congestion or other negative over-use

externalities. Real-world examples of regulations aimed at mitigating over-use of a commons

include restrictions on automobile use in Bogota, Sao Paulo, Mexico City, Athens, Seoul,

Beijing, and Tianjin; legislated limits on carbon emissions in countries such as Australia

and New Zealand; catch limits in the seafood industry; and private owners of computer

bandwidth that restrict quantities of information flow (e.g., proposed restrictions on stock

trades and/or network bandwidth by high-frequency traders).1

Congestion pricing can, in theory, be implemented by using Pigouvian taxes as an alter-

native to quantity restrictions.2 There are substantial challenges, however, facing regulatory

entities seeking to implement Pigouvian taxes in real-world regulatory environments, which

could explain why both public and private regulators frequently opt for quantity restrictions

instead. Congestion pricing schemes have the effect of increasing costs on all users, which

may limit political support for their implementation. Another challenge for regulators at-

1Although over-use of a commons is not usually the motivation for restricting illegal drugs, laws on

marijuana possession in some places in the U.S. that allow possession up to a positive quantity threshold

provide yet another example of a relatively permissive quantity regulation that the model in this paper

shows may counter-intuitively function well at moderating aggregate levels of use. Other relevant examples

might include the permissiveness of bank regulators’ approach to enforcing asset requirements (i.e., lenient

accounting rules that allow for marking illiquid bonds at par) in the U.S. and Europe (under Basel III), as

well as the Securities and Exchange Commission’s permissiveness regarding investment firms’ use of high-

frequency trading algorithms that impose externalities on other users of bandwidth in electronic trading

networks.
2In the dilemma analyzed by Weitzman (1974) between price regulation (e.g., Pigouvian taxes) versus

quantity limits dictated by the regulator, the slopes of the marginal benefit and marginal cost curves are

identified as the main determinants that decide which of these two regulatory approaches maximize ex-

pected social welfare—under uncertainty and information asymmetries that block the feasibility of first-best

regulation (and, consequently, equivalence of price and quantity regulation) in a perfect-information world.

Weitzman’s work gave rise to a vast literature dealing with how best to regulate externalities in the presence

of uncertainty (Roberts and Spence, 1976; Yohe, 1978; and many others).
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tempting to implement Pigouvian taxes is the information required regarding social marginal

benefit and cost curves. Uncertainty about the position and shapes of these curves leads to

uncertainty about the likely responses to different pricing schemes by agents who generate

the externality.3

In contrast, quantity regulation—which directly restricts activity levels—requires far less

information. All that is required is the regulator’s desired level of activity (i.e., without

requiring knowledge about the shapes of the benefit and cost curves that are required for

congestion pricing or other approaches based on Pigouvian taxes). In cases where policy

makers want to avoid exceeding a catastrophic threshold level of over-use of a commons, the

attractiveness of outright quantity restrictions over the uncertain responses to taxation may

be especially compelling. Regardless of the validity of policy makers’ views of the political

and informational challenges to implementing Pigouvian tax schemes, the prevalence of real-

world regulations that restrict quantities serves as the primary motivation for studying them.4

This paper analyzes the optimal quantity regulation under the assumption of a benevolent

regulator who attempts to maximize aggregate payoffs associated with use of a commons

while accounting for the negative externalities it generates. Over-use and congestion in the

examples above are instances of the strategic interaction referred to by Hardin (1968) as the

“Tragedy of the Commons.” The mechanism generating negative externalities in Hardin’s

classic work serves as a frequently cited justification for regulators attempting to reduce

aggregate quantities of use of the commons. The effectiveness of regulation that takes the

form of an announced threshold that restricts the allowable range of an aggregate quantity

3The Economist (Feb. 24, 2011) observes that quantity regulation (i.e., command-and-control regulation)

is preferred over Pigouvian taxes or tradable permits (e.g., cap-and-trade regulation), because: “people

generally prefer rules telling them something is not allowed (quantity regulation), rather than charges making

them pay for it, even if the latter are clearly more efficient at maximizing social value.” That article suggests

that aversion to taxes is among the primary reasons for the preference.
4Quantity regulation schemes in the real world include both cap-and-trade (CAT) and command-and-

control (CAC) approaches that legislate maximum or minimum quantities of particular activities by private

agents. It is known that CAT provides economic incentives for private actors to engage in mitigation and,

with some auxiliary conditions, can, in theory, efficiently achieve emissions targets. Insofar as there are

a relatively small number of polluting firms, the information requirements for CAT schemes to achieve

efficiency appears more plausible to some observers. The feasibility of such information-intensive price

regulation would seem, however, relatively more limited in the case of the traffic congestion. There is a large

number of potential automobile users, who typically know little about each other’s valuations and do not

make frequent decisions about investing in congestion-reducing technology, although some authors such as

Verhoef et al. (1997) and Kornhauser and Fehlig (2002) have made interesting proposals about how price

regulation could be implemented in this setting.
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of economic activity is not easy to anticipate, however, because enforcement is typically

imperfect (i.e., the chance that violators are caught is strictly less than 1).

The premise for this paper’s model of quantity regulation is the real-world observation

that enforcement of rules restricting quantities of economic activity tends to be imperfect: a

proportion less than 100 percent of those who violate the regulation is caught and required to

face penalties. For any fixed expenditure on enforcement by a regulator, the probability that

violators face penalties is, in many cases, a decreasing function of the number, or proportion,

of violators in the population, referred to in this literature as the crowding effect. Intuitively,

when everyone violates the standard, the enforcement expenditure is stretched thinly and the

chance of getting caught decreases. Therefore, our model describes equilibrium properties of

quantity restrictions in an environment where the probability that violators get caught and

actually pay the fine depends on the regulator’s enforcement expenditures and the proportion

of other agents who violate the regulatory standard.5 Counter-intuitively, the model shows

that more permissive quantity restrictions generate smaller violation rates and, consequently,

can reduce costly over-use or congestion.

A similar result was obtained by Viscusi and Zeckhauser (1979) who studied a quantity

restriction on pollution assuming incomplete enforcement. Similar to out paper, they showed

that tightening of the regulatory standard may lower overall performance, but the mechanism

driving their result is different. In our model, a more stringent quantity standard leads

to more violators, and this lowers the probability of detection because of the crowding

effect. This reduction in the probability of detection, in turn, incentivizes some agents, who

optimally choose not to use the commons under the looser standard, to use the commons. In

contrast, the reason why there are some firms in Viscusi and Zeckhauser’s (1979) model that

would have chosen to invest to meet a looser standard but instead stop investing in pollution

abatement under the tighter standard is because the investment becomes more costly under

the tighter standard. The mechanism favoring more permissive quantity regulation in their

model is independent of the detection probability. Costs of compliance and non-compliance

represent the distinct mechanisms in their model and ours. In their model, compliance costs

are higher when the quantity standard is strict, whereas in our model the non-compliance

cost is smaller when the quantity standard is strict (without any change in the cost of

compliance).

Harford (1978), Malik (1990a) and Montero (2002) also studied the effect of incomplete

5Bar-Gill and Harel (2001) provide detailed justifications and implications of this assumption (i.e., the

probability that a violator gets caught depends on both enforcement expenditures and the proportion that

chooses to violate the standard).
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enforcement on quantity regulation. Harford showed that the direction of change in waste

production with respect to a change in the allowable range of waste levels is ambiguous,

depending on the curvature of the expected penalty schedule. Because he considers regulation

of a monopolist, the crowding effect does not come into play. Montero (2002) compared

the performance of price regulation and quantity regulation with incomplete enforcement,

showing that they perform equally if benefits and costs are known, but that quality regulation

performs better when benefits and costs are uncertain. Copeland and Scott (2009) analyzed a

dynamic model of renewable resource management with incomplete or imperfect enforcement.

And Villegas-Palacio and Coria (2010) examined the choice between price- versus quantity-

based regulation of emissions and the effects of this choice on compliance incentives (i.e.,

decisions about whether to invest in abatement technology in the presence of incomplete

enforcement).

As a heuristic intended to apply more generally to the regulation of many problems of

over-use of a commons, we consider a continuum of agents making binary decisions about

whether or not to use their cars. The greater the mass of agents who decide to use their cars,

the greater is the external congestion cost facing each agent. In a decentralized environment,

we first show that the unregulated Nash equilibrium divides potential drivers into two groups:

those who use a car and those who do not. The subpopulation of agents who choose to use

their cars consists of those whose private valuation from driving exceeds the personal costs

of traffic congestion; and the non-driving subpopulation of potential drivers consists of those

whose value of using their cars is lower than the cost of traffic congestion that they face.

Once the quantity regulation is imposed, two cases are considered. In the first case, the

probability that a violator is caught and pays a fine depends only on enforcement expendi-

tures, as is commonly assumed (e.g., Polinsky and Shavell, 1979, 1984, 1991; Malik, 1990b;

and many others). This case serves as a benchmark against which to compare the second

case. In the second case, the enforcement probability is assumed to depend on enforcement

expenditures and the violation rate.

The model shows that, when the enforcement probability depends on both regulatory

expenditures and the violation rate, there is a discontinuity in the population’s aggregate

best-response quantity, or intensity of use of the commons (as a function of the regulated

quantity). In the heuristic interpretation of agents as automobile owners and the over-use

externality as traffic congestion, the population’s aggregate quantity of binary best-response

decisions is interpreted as the volume of traffic or the congestion level. The abrupt reduction

in traffic volume just to the right of the discontinuity in the mapping from regulated quan-

tities into best-response volumes of traffic is shown to determine the near-optimal quantity
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regulation.

As long as the regulator’s primary objective is to maximize aggregate net payoffs by miti-

gating over-use (of freeways or public roads), tightening the quantity regulation is ineffective

over a large and dense subset of the model’s parameter space: traffic congestion counter-

intuitively increases in response to the stricter quantity standard, and the population is,

in the aggregate, worse off. Regardless of whether the enforcement probability depends on

enforcement expenditures alone, or both enforcement expenditures and the number of viola-

tors, tightening the allowable quantity winds up incentivizing some non-violators to become

violators and therefore fails to decrease aggregate levels of use of the commons. When the

enforcement probability also depends on the violation rate, this increase in over-use of the

commons (as a response to stricter regulation) becomes more severe, rising discontinuously in

the neighborhood of the near-optimal quantity restriction, and rising continuously thereafter

as the quantity standard is tightened further.

The idea that enforcement probabilities depend on violation rates as well as enforcement

expenditures is not new. The dependence of the enforcement probability on the violation

rate (or number of violators) is referred to as the crowding effect, and its implication of

the possibility of multiple equilibria appears in previous studies such as Ehrlich (1973), Lui

(1986), Schrag & Scotchmer (1997) and Bar-Gill and Harel (2001), Ferrer (2010) and Kim

(2013), but none of these papers endogenized the regulator’s decision of what is legal versus

illegal.

Ferrer’s (2010) model bears special relevance to our model. She considers two externali-

ties: a crowding effect (i.e., enforcement probabilities decline as a result of greater numbers

of violators) and a neighborhood involvement effect (i.e., higher crime rates impose exter-

nal costs that decrease activity levels identified by Ferrer as lower levels of neighborhood

involvement). Given these two features, Ferrer shows that multiple equilibria naturally arise

in a model with an exogenous legal standard. Ferrer applies risk dominance to select among

these multiple equilibria and then computes an optimal enforcement policy. In most of her

analysis, however, she maintains the assumption that all individuals obtain the same benefit

from a violation and use pure strategies, which lead to the crime rate equal to either 0 or 1.

Kim (2013) similarly investigates optimal enforcement policy in the presence of a crowding

effect, but considers both enforcement expenditures and the fine (that violators who are

caught must pay) as jointly chosen policy variables. In that setup, Kim finds that maximal

fines are in general sub-optimal. Bar-Gill and Harel (2001) discuss the implication of the

crowding effect in a more general setting. They also consider the problem of the optimal

fine, but rather concentrate on the case in which sanctioning is costly and pay little attention
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to the case where higher fines lower the crime rate.6 They therefore failed to recognize the

general feature that the optimal fine is not maximal if there are multiple equilibria.

This paper can be distinguished from those just mentioned in two respects. First, quantity

regulation is introduced as the primary policy variable of interest. And second, the main

outcome that measures the effectiveness of different quantity restrictions is the aggregate

quantity of the externality-generating activity rather than the violation rate per se. Although

the question is analyzed extensively in the public economics literature as to whether over-use

of a commons should be addressed by decentralized privatization or centralized regulation,

the enforcement of regulation is frequently taken for granted in many such models, as if

the regulator possessed a zero-cost enforcement technology.7 A detailed specification of

imperfect enforcement technology and its effects on externality-generating behavior has yet

to be incorporated into models of regulating over-use of a commons as this paper attempts

to do.

It is perhaps worth emphasizing that the main issue this paper addresses is the enforce-

ment of regulation rather than law enforcement of completely prohibited actions. The law

enforcement literature typically takes as exogenously given the acts that are regarded as

illegal. In contrast, this paper models the regulatory question of determining which acts

should be regarded as illegal. Its main contribution is to endogenize socially acceptable acts

in the context of a tragedy of the commons problem.

The paper is organized as follows. Section 2 describes the model setup and computes

the unregulated equilibrium outcome and the social optimum which serve as two important

benchmarks. Section 3 introduces the policy of interest, which takes the form of a regu-

lation that limits quantities of an economic activity, motivated by the goal of maximizing

social welfare (i.e., maximizing aggregate payoffs with a Benthamite social welfare function

interpretation). The ineffectiveness of stricter quantity regulation is demonstrated. Section

4 addresses the issue of optimal enforcement. Section 5 presents a concluding discussion.

2 Basic Model

The model assumes there is a continuum of agents. Each agent makes a binary decision of

whether to use his or her car. The more agents choose to use their cars, the more severe the

6See Proposition 2 of Bar-Gill and Harel (2001).
7Ostrom (1990) proposed a different approach attempting to resolve the common pool problem by de-

signing durable cooperative institutions organized and governed by the resource users themselves.
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congestion costs are, which should be thought of as an analogy that applies more generally

to over-use of a commons.

The following definitions introduce the notation used to describe the model:

• v = private value obtained by an agent who uses a car (i.e., gross payoff without net-

ting out congestion costs, fees and fines);

• x = proportion or volume of agents who choose to use their cars (i.e., traffic congestion

or aggregate use of the commons x ∈ [0, 1]);8

• c(x) = congestion cost function that maps delay, stress and inconvenience into payoffs

forgone (c′ > 0, c′′ > 0 and c ≥ 0 for all x ∈ [0, 1]);

• g(v) = probability density function for v (g > 0 for all v ≥ 0);

• G(v) = cumulative distribution function corresponding to g(v) (G(v) ∈ [0, 1] for all

v ≥ 0).

Here, v is the value and c(x) is the cost of using a car, where other costs such as fuel,

insurance and capital depreciation are normalized to zero. This society consists of a con-

tinuum of agents (i.e., all potential drivers) indexed by their valuations of having access to

the commons, v. We make use of the continuum version of Nash equilibrium: each agent is

assumed to maximize his or her net benefit from using a car, given the mass of other agents

who choose to use their cars.

First, consider the private optimum achieved in a decentralized environment with no

regulation. Let xN be the (Nash) equilibrium proportion of agents who choose to use their

cars as a best response to the traffic volume in the commons represented by xN . In the

absence of fines or fees required of agents who use their cars, an agent chooses to drive iff

v ≥ c(xN). If an equilibrium exists, then it can be characterized as the threshold valuation

vN such that all agents with v ≥ vN choose to drive, where:

vN = c(xN) and xN = 1−G(vN). (1)

8The capacity of the commons is normalized to one.
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Now we consider the properties of a social optimum, denoted xS. The first efficiency

requirement is that, given any mass of traffic xS, the agents who use their cars should be

those with the largest valuations. Therefore, the aggregate level of use of the commons,

xS, must be generated by an action profile in which this mass of agents is comprised of

agents who have the highest valuations for driving. Given that the infimum valuation among

agents whose driving decisions comprise xS is given by vS, the social optimum, (vS, xS), is

determined by maximizing the sum of individual valuations net of total external costs, that

is, by solving the following optimization problem:

max
v̂
V =

∫ ∞
v̂

(v − c(x))g(v)dv, such that x = 1−G(v̂). (2)

The objective function is the total net surplus from driving.

Substituting the constraint x = 1 − G(v̂) into the objective function, the regulator’s

choice variable v̂ then appears twice. Taking the derivative with respect to v̂, the first order

condition can be written as:

∂V

∂v̂
=
[
c(xS) + c′(xS)

∫ ∞
v̂

g(v)dv − vS
]
g(vS) = 0.

Because the term in brackets must be zero at an interior optimum, the solution to the

benevolent regulator’s problem is defined implicitly by the shapes of c(x) and g(v) in the

following relation:

vS = c(xS) + c′(xS)
∫ ∞
vS

g(v)dv. (3)

Equation (3) has the usual interpretation that the marginal social benefit from an increase

in traffic equals the marginal social cost due to congestion. The second term on the right-

hand side is the aggregate cost of negative externalities from legal driving. Thus, cS(x) ≡
c(x) + c′(x)

∫∞
vS g(v)dv is the social cost associated with traffic generated by agents choosing

to use their cars.

Comparing the social optimum xS with the Nash equilibrium xN , it is easy to see that

xN > xS. This follows from equations (1) and (3). Because c′(x) > 0 for all x, equation (3)

implies that the minimum value of driving among agents who choose to drive in the social

optimum (vS) is strictly greater than the personal cost (c(xS)). This inequality, vS > c(xS),

in turn, implies that xN > xS, because vN = c(xN) from equation (1) and c′(x) > 0.

Therefore, there is too much driving (i.e., congestion or over-use of the commons) in the

Nash equilibrium relative to the social optimum, as illustrated in Figure 1.

Figure 1 plots the convex cost function c(x) and the valuation function v(x) = G−1(1−x),

based on the definition of the distribution function and the equilibrium relationship given in

9



equation (1) (i.e., x = 1−G(v)). The unregulated Nash equilibrium in which agents do not

internalize the external costs of their driving decisions is given by the intersection of the two

curves at x = xN . The social optimum depicted in Figure 1 xS, which reflects the inequality

vS > vN , corresponds to a strictly smaller volume of traffic xS < xN . This result is simply

a continuum version of the tragedy of the commons.9

3 Regulation

We consider a regulator who wants to mitigate over-use of the commons (which shows up

in the context of driving as traffic congestion) by directly controlling the aggregate quantity

of agents who use the commons. The problem with quantity regulation is that it is difficult

to tell who should be penalized when traffic exceeds the regulated quantity. A theoretical

solution is to give permits only to individuals with sufficiently high valuations. But agents’

individual valuations may not be easy to observe ex ante. This would, however, not cause

any serious problem so long as individual valuations are ex post observable. Thus, for our

analysis of quantity regulation, we assume that the regulatory authority knows the valuation

of each heterogeneous agent.10

The following notation is introduced to analyze the regulation problem in more detail:

• z = the regulator’s policy variable that sets the allowed quantity (or proportion) of

agents permitted to drive;

• p = the probability that a violator is detected and caught;

9Strategic interactions involving costly contributions of information that facilitate group payoffs (shared

by all players) are interpreted as an extended version of the tragedy of the commons problems in the social

psychology and biology literatures. See Kameda, Tsukasaki, Hastie and Berg (2011) for further examples

of interpretations of tragedy of the commons in strategic problems in social groups relevant to the model

presented in this paper.
10Consider a situation in which the regulator randomly inspects drivers and can determine based on

their valuations, which are revealed ex post, whether or not they violate the regulation (i.e., whether their

valuations exceed the regulatory requirement). For example, on College Entrance Examination day in Korea,

to reduce congestion, the government prohibits everyone from operating automobiles from 8 a.m. to 9 a.m.

except for those dropping off students to their exams. Whether or not a particular vehicle carries a student

is not observable ex ante; it is, however, observable ex post, which makes the regulation enforceable.
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• r = the quantity of violators or population-wide rate of violation (which measures the

mass of agents who violate the regulation); 11

• e = enforcement expenditures exogenously allocated to the regulator for enforcement

of the quantity regulation;

• f = the fine paid by violators who are caught;

• w(x) ≡ c(x) + pf , the expected total cost of driving for an agent who chooses to drive

illegally;

• x∗(z) = equilibrium traffic volume when the regulation level is z.

The benevolent regulator chooses the allowable quantity of drivers by selecting the infi-

mum valuation that solves the following optimization problem:

max
z
V =

∫ ∞
v(x∗(z))

(v − c(x∗(z)))g(v)dv. (4)

Under a regulatory regime that imposes a fine of f and detects violators with probability

p, agents who are prohibited from driving face the decision of whether to violate the regu-

lation. Prohibited agents compare their personal valuation v with the expected cost w(x).

By definition of the regulation z, quantities of traffic that exceed it (x > z) are not allowed,

while quantities of traffic below the regulatory limit (x ≤ z) are allowed.

The quantity of violators r is defined by r = x − z if x − z ≥ 0 and zero otherwise:

r = max{x − z, 0}. Although it is usual to define the violation rate by the number of

violators divided by the number of potential violators, with a continuum of agents on the

11Because the continuum of agents who are potential drivers (i.e., the population) is normalized to a mass

of measure 1, the quantity of agents who drive (denoted x) and the quantity of agents who drive in violation

of the regulation (denoted r) can be described as quantities or rates. These variables measure quantities

as the sizes of masses of agents. They simultaneously measure population-wide rates. The population-wide

violation rate (averaging the mass of violators over the mass of both drivers and non-drivers, which is unity)

is not the same as the violation rate among those who drive, which would be given by the formula r/x. The

term “number of agents” is not technically correct, since the model features infinite numbers of agents in

each subpopulation category with strictly positive mass.
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unit interval (i.e., with mass of 1), the quantity of violators and violation rate are one in the

same. This distinction does not matter in the law enforcement literature because the entire

population is considered to be potential criminals. In the context of regulation, however,

the number of potential violators (i.e., the mass of agents in the denominator) varies with

the standard. Since it is the difference x − z that directly affects the detection probability,

we adopt this definition of the measure of violation and refer to it interchangeably as the

number, volume or rate of violation.

Regarding the probability that violators are detected and forced to pay the fine, we

consider two cases. In case 1, the detection rate depends only on enforcement expenditures:

p = p(e). In case 2, the detection rate depends on both expenditures and the mass of agents

who violate the standard: p = p(e, r). In both cases, we assume that greater enforcement

expenditures, all else equal, lead to higher rates of detection: p1 = ∂p/∂e > 0. And in case

2, we assume that p2 = ∂p/∂r < 0. The assumption that ∂p/∂r < 0 is referred to in the

literature mentioned earlier as the crowding effect. This captures the idea that the detection

rate declines, the more violators there are.

Case 1 (in which the probability of detection depends only on enforcement expenditures)

serves as a benchmark against which to compare case 2 (where the probability of detection

depends on both enforcement expenditures and the violation rate). Case 2 is the main

focus of this paper. Additionally, we assume that p = p(e, r) satisfies the Inada conditions:

p22(e, r) > 0, limr→0 p2(e, r) = −∞ and limr→1 p2(e, r) = 0 for any given e > 0.

We assume that e and f are fixed quantities that all agents regard as exogenously given.

This enables us to focus on the regulated quantity z as the primary policy variable under

consideration, which our model endogenizes, and provides a context for analyzing population-

level reactions to changes in the regulated quantity based on individual-level best-response

behavior. If e and f were simultaneously chosen in the regulator’s optimization problem,

then we would already know there exists a unique value of p(e)f that implements the social

optimum xS. By the well-known argument of Becker (1968), the optimal fine f should be

set at the maximum level possible. In the real-world policy contexts addressed by our model

that were discussed in the introduction, however, the allocation of resources for enforcement

is determined by someone other than the entity responsible for enforcement.
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3.1 Detection probability that depends only on enforcement ex-

penditures

To focus on the role of the quantity regulation (z) as a tool for limiting over-use of the

commons, we assume that e and f are sufficiently small to guarantee that v(xS) > w(xS).

This inequality implies that there exists a mass of violators whenever the regulator attempts

to set z at the socially optimal level. We refer to it (the inequality, v(xS) > w(xS)) as the

assumption of weak enforcement, drawing motivation from the many real-world settings in

which the regulator’s problem is challenging in the sense that his or her first-best solution

cannot be implemented as a straightforward legislative command. The weak enforcement

inequality also implies that p(e)f < v(xS)−c(xS).12 If law enforcement is strong in the sense

that law enforcement policies e and f can be so chosen to satisfy p(e)f = v(xS) − c(xS),

then the social optimum is trivially achieved.

Figure 2 illustrates that, if agents face expected fines (pf) in addition to congestion costs,

then quantity regulation succeeds at reducing aggregate use of the commons below the level

that prevails in the un-regulated Nash equilibrium, but generally fails to reduce congestion to

the socially optimal quantity. There is a threshold value of the regulation, denoted z = x0,

that is the strictest regulation (i.e., smallest value of z) that can be implemented with a

zero rate of violation. Consider the quantity restriction set at this value, z = x0, which

lies somewhere between the larger unregulated Nash level and the smaller socially optimal

level, where xS < x0 < xN . If this regulation achieves a zero violation rate, then x∗ = z,

which results from agents with valuation v choosing to drive if and only if v ≥ v0, where

x0 = 1−G(v0). This can be seen in Figure 2 by virtue of the position of the w(x) curve. For

agents with v < v0, the value of using a car is less than the expected cost of driving illegally,

because v < v0 = w(x0). In the regulatory equilibrium depicted in Figure 2, no one violates

the regulation.13

12We consider the case of weak enforcement, because it conforms with observed real-world problems of

coordinating policy-making and enforcement, although it turns out not to be essential for the model to

work. Budgets set by legislatures that meet infrequently, when combined with political pressure and other

factors that slow decision making by those responsible for setting enforcement budgets, would imply that e

is difficult and/or slow to adjust.
13The decision of the agent whose valuation is precisely on the threshold value v0 is not straightforward.

This agent is not indifferent between driving and not driving, even if v0 = w(x0). In the absence of expected

regulatory fines, this agent would strictly prefer to drive, because v0 = w(x0) > c(x0). Under the quantity

regulation’s threat of being fined, however, the agent with v < v0 strictly prefers not driving (i.e., not

violating) to driving (i.e., violating), because v < v0 = w(x0). There is a discontinuity in the cost of driving

at v0, because this is where the regulation begins to bind and expected fines jump from zero (for those with

13



We now consider a stricter regulatory standard, z = x1, where xS < x1 < x0, as depicted

in Figure 2. It is straightforward to see that tightening the quantity regulation z without

changing fines or enforcement expenditures leaves w(x) in exactly the same position and,

consequently, equilibrium traffic remains unchanged at x0. The policy tightens from z = x0
to z = x1 < x0, but the equilibrium traffic or congestion level does not respond. In the range

z < x0, changes in quantity regulation have no effect on behavior. The result is that the mass

of agents with measure x0 − x1 chooses to violate the regulation, which can be explained as

follows. Let v1 satisfy x1 = 1−G(v1), and take any agent with v ∈ (v0, v1]. When this agent

(with valuation v ∈ (v0, v1]) considers driving in violation of the regulation, the agent sees

that her valuation exceeds cost, because v > v0 = w(x0). Therefore, this agent chooses to

violate the regulation. Because any regulation standard z stricter than x0 (i.e., z < x0) has

the same effect of increasing congestion, we refer to v0 and x0 as the marginal individual and

marginal quantity, respectively, and refer to the regulation z = x0 as marginal regulation.

Figure 3 shows the equilibrium traffic volume as a function of the regulator’s choice of z.

The graph has a flat region representing the unresponsiveness of traffic volume to regulation

when the regulated quantity is set strictly below the marginal regulation x0 and a positively

sloped region with zero violation when z > x0. Figure 3 demonstrates that the social

optimum xS cannot be implemented for any quantity regulation z, so long as enforcement is

weak in the sense that p(e)f < v(xS)− c(xS).

This result suggests that regulating traffic more strictly than the marginal regulation is

ineffective, because more stringent restrictions on quantities do not reduce over-use of the

commons. Therefore, the marginal regulation z = x0 is the best regulation the regulator

can choose (assuming, as always, that the regulator regards regulation-violating behavior as

socially undesirable and wants to reduce it).

3.2 Detection probability that depends on the violation rate and

enforcement expenditures

We now assume that the detection probability depends on the violation rate, implying that

the detection probability also depends on the regulation z. In this case, the expected cost

of violation (w(x)) also depends on z.

valuations nearby, but driving legally) to strictly positive expected fines (for those with arbitrarily nearby

valuations, but driving illegally because their valuations happen to lie on the wrong side of the epsilon ball

about the regulatory threshold). Such discontinuities are typical in economic models of legal standards where

an exogenously given costly sanction kicks in abruptly for agents who cross a critical threshold.
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This crucial feature whereby p and w(x) both depend on z is what distinguishes this

version of the model from those analyzed previously and leads to this paper’s main results.

When p and w(x) depend on z, the regulator can no longer choose z simply by consulting

w(x), because w(x) represents the expectation of agents who first condition their expected

cost (of illegally using the commons) on the regulator’s choice of z. The regulator must

therefore try to anticipate how the aggregate level of use of the commons will respond to

the announcement of z. Thus, we introduce the notation w(x | z), which is defined as an

un-permitted agent’s expected cost of driving, conditional on the regulation policy z, which

is announced by the regulator before agents make decisions about whether or not to drive.

The shape of w(x | z) provides the mechanism that drives the counter-intuitive result

that follows. Because of the Inada conditions given earlier, we know that as x approaches

the regulated quantity z from the right, the slope of p(e, x−z) with respect to x goes to −∞
and so, too, does the slope of w(x | z), since w(x | z) = c(x) + pf . As x increases, the slope

of p(e, x− z) with respect to x eventually converges to zero. Therefore, the slope of w(x | z)

converges to the slope of c(x). Since c′(x) > 0, the curve of w(x | z) must eventually rise,

implying that w(x | z) is U -shaped.

Figure 4 illustrates the consequences of the U -shaped expected cost functions w(x | z).

The three bolded plots of w(x | z) in the figure represent conditional expected cost functions

corresponding to three different choices by the regulator of z (which, as always, represents

the maximum allowable aggregate quantity of use of the commons). We consider three in-

creasingly tighter (i.e., stricter) policies: z = zA corresponding to equilibrium point A in

Figure 4; z = zB corresponding to equilibrium point B; and z = zC = xS corresponding

to equilibrium point C. Figure 4 shows that the policy choices and equilibrium traffic vol-

umes move in opposite directions. The figure demonstrates the counter-intuitive result that

equilibrium congestion increases (xA < xB < xC) in response to stricter regulatory policies

(zA > zB > zC).

The bottom-most bolded curve in Figure 4, w(x | z = xS), is generated by a regulator

who announces the policy zC = xS, which is violated severely so that equilibrium traffic

(the x-component of the point labeled C) is much greater than the maximum allowable

quantity chosen by the regulator. The policy z = xS therefore represents a policy maker

who announces that the socially optimal level of traffic will be permitted under the naive

expectation that all unpermitted agents will follow the regulation. If z = zC = xS, then

equilibrium traffic volume (as determined by the intersection of v(x) and w(x | xS)) is

denoted xC , which lies far to the right of xS (and just to the left of xN) in Figure 4. The

distance by which actual traffic xC exceeds permitted traffic xS measures the corresponding
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violation rate generated by the policy: xC − xS.

The middle bolded curve in Figure 4 labeled w(x | zB) (just above the lowest bolded

curve) corresponds to the more permissive policy zB > zC = xS. If the regulator decides

to increase the quantity of permitted traffic from zC to zB, then equilibrium traffic xB is

determined by the intersection of v(x) and w(x | zB); the violation rate decreases from xC−zC

to xB − zB; and the equilibrium traffic volume decreases from the horizontal component of

point C (xC) to that of point B (xB). Note that x′, which lies on the curve w(x|zB), cannot

be an equilibrium traffic volume by the following proposition.

Proposition 1 Given z, the equilibrium traffic volume satisfies (i) v(x) = w(x | z) and (ii)

v′(x) < w′(x | z).

If v′(x) > w′(x | z), as is the case at x′, then the marginal driver prefers driving because the

marginal benefit is greater than marginal cost.

Figure 4 shows that the less stringent regulation zB > zC winds up reducing aggregate

use of the commons (i.e., leads to a smaller equilibrium traffic volume and smaller volume of

violators) than under the strictest policy (zC) shown in Figure 4. In this instance, congestion

is mitigated by more permissive quantity regulation. Decreases in traffic volume as desired by

the regulator are achieved when the regulator chooses more permissive regulated quantities,

up to the traffic level at which the two curves, v = 1−G(x) and w(x) = c(x) + p(e, r)f , are

tangent to each other. The tangent point is illustrated as A in Figure 4. Let the regulation

quantity inducing the tangent point be denoted z∗. Then, in this figure, z∗ = zA. We observe

that the violation rate is continuously decreasing along the policy path of successively more

permissive policies that approach zA from the left. Just to the right of the policy that

induces equilibrium A, however, there is an interesting discontinuity in traffic volume (not

shown in Figure 4). If the regulator chooses a policy slightly more permissive than zA, say

z = zA +ε, ε > 0, then traffic volume falls discontinuously, and thereafter increases smoothly

as an increasing function of z for z > zA as shown in Figure 5.

The reasoning just described leads to the conclusion that a benevolent regulator should

choose z = z∗ + ε, with ε chosen as small as possible, where z∗ is the regulation quantity

that achieves the tangency condition. We will refer to this policy as “near-optimal” regula-

tion, because there exists no maximum aggregate payoff. The discontinuity at z∗ forces the

regulator to choose ε as small as possible to achieve an aggregate payoff that is arbitrarily

close to the least upper bound on the aggregate payoff function.

Beyond this small technicality, the key point is that the optimal (i.e., near-optimal)

quantity regulation cannot be xS, and in fact should be much more permissive, so long as

16



w(xS | xS) < v(xS).

Proposition 2 If enforcement is weak (i.e., p(e)f < v(xS) − c(xS)), the socially opti-

mal (i.e., aggregate-payoff-maximizing) regulation standard cannot be implemented using any

quantity regulation regardless of whether the probability of detection depends on enforcement

expenditures alone or on both expenditures and the number of violators.

The intuition for this proposition is that any agent whose valuation is very close but just

below the threshold vS, which is the minimum valuation among all agents permitted to drive

under the quantity regulation, would rather violate the regulation because of weak enforce-

ment technology. Agents’ best response function conditional on stricter quantity regulation

results in traffic levels that, on the range of z to the left of the discontinuity point z∗, are

either non-responsive (when the probability of detection depends only on enforcement ex-

penditures) or, counter-intuitively, increasing in strictness (when the probability of detection

depends on both expenditures and the violation rate).

Proposition 3 If enforcement is weak, equilibrium traffic volume x∗(z) is nonmonotonic

with respect to the quantity regulation z. Beginning from the strictest policy z = 0, equilib-

rium traffic volume is a decreasing function of permissiveness for 0 ≤ z < z∗; it then drops

discontinuously at z = z∗; and to the right of z∗, traffic volume increases in z for z > z∗.

Proof. From the discussion above, it suffices to show that, for all z > z∗, equilibrium traffic

volume is x∗(z) = z. It is clear that all agents with v ≥ v(z) choose to drive cars. For any

agent with v < v(z), his or her expected cost as a violator exceeds the benefit of driving,

since w(x | z) > v(x) for all x > z. This implies that agents who are not permitted to drive

have no incentive to deviate when z is strictly greater than z∗. Therefore, equilibrium traffic

level is x∗(z) = z.

Figure 5 illustrates the equilibrium traffic level over the full range of quantity regulations

(z) for the case of detection technology p that depends on both expenditures and the mass of

violators. The figure shows that more stringent limits on quantities of use (i.e., lower values

of z) result in nonmonotonic responses in traffic levels as described in the proposition.

Proposition 4 If enforcement is weak, the near-optimal regulation minimizing traffic vol-

ume is z = z∗ + ε, where z∗ is the regulation inducing the tangent point defined by v′(x∗) =

w′(x∗ | z∗) denoted as point A and ε is a positive number chosen as small as possible.

Proof. It directly follows from Proposition 3.
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This proposition holds even when there are multiple equilibrium traffic volumes. Figure 6

illustrates the possibility of multiple equilibria and the resulting optimal policy,14 and Figure

7 shows the equilibrium correspondence as the policy changes.

Because traffic volume varies non-monotonically as a function of the regulation standard

z, identifying the optimal standard is not as straightforward as in models where maximum

harshness or stringency is found to be optimal. Nevertheless, the incentive structure that

determines this near-optimal regulation is quite clear. If the regulated quantity is sufficiently

large (i.e., a relatively permissive allowable aggregate traffic volume z), then the detection

probability remains relatively large because there are few violators. To maintain this suffi-

ciently large detection probability and its consequence of a sufficiently large expected fine

that would-be violators face, the near-optimal regulation requires the regulator to select the

harshest quantity standard that induces zero violation.

It is worthwhile stressing that the assumption of weak enforcement maintained in the

hypotheses of all propositions stated above (in combination with other assumptions in each

proposition) is a sufficient condition for the results. The next section suggests that this

assumption is not a necessary condition, however.

4 Discussion on Optimal Enforcement

So far, we assumed that the expected penalty for being caught while using the commons

illegally is determined by exogenously given levels of expenditures on enforcement and the

fine. In addition, we assumed weak enforcement (i.e., pf < v(xS) − c(xS)) to focus on the

case of imperfect law enforcement.

We now consider the question of what happens in our model if the government can choose

e and f as policy variables jointly when choosing z in the case where the detection probability

depends on the violation rate as well. One might conjecture that the social optimum xS could

be achieved by choosing the regulation z = xS and large enough values of e and f to support

the social optimum with strong enforcement satisfying p(e, 0)f = v(xS)−c(xS), as illustrated

in Figure 8. This policy does not induce an equilibrium, however.

Under the regulation z = xS, the traffic volume x = xS cannot be an equilibrium. To see

this, consider the driving decision of an individual with v = vS − ε for some small ε > 0. If

14By virtue of Proposition 1, we know that there are two equilibria. The slope condition excludes the other

two intersection points as possible equilibria. An equilibrium in this model requires this extra condition,

unlike previous models in this literature (e.g., Ferrer [2010], Kim [2013]), because one of the axes in Figure

6 measures the valuation of an individual.
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she drives (illegally), the small increase in x when she is added to the mass of legal drivers

results in a disproportionately large drop in the detection probability because of the Inada

Condition. The result is that v > w(x): therefore, this agent finds it rational to drive illegally,

and the conjectured equilibrium unravels (i.e., is not an equilibrium). As long as the slope

of w(x) is smaller than v(x) at xS, this is true until the traffic volume reaches x∗. Therefore,

the policy pair (e, f) satisfying p(e, 0)f = v(xS) − c(xS) cannot implement the desired no-

violation equilibrium. This problem would not occur if the enforcement probability were

independent of the violation rate.

If the regulator chooses a stricter regulation z < xS together with an even stronger

sanction such that p(e, 0)f > v(xS)− c(xS), then the social optimum could be implemented.

To see this, we start from a very strict regulation z0 < xS and a very low enforcement e0
expenditure at which there is severe congestion. Then, either a less stringent regulation

z′ > z0 or a more intensive enforcement activity e′ > e0 will reduce congestion. It will be

more efficient, however, for the regulator to use the option of choosing a more permissive

(i.e., larger value of) z, because z and e are substitutes, and z is less costly than e.

This insight enables us to conjecture that the regulation could implement an equilibrium

very near the social optimum even with minimal enforcement activity. The possibility of

multiple equilibria given z might complicate the problem, but we believe that the insight will

remain qualitatively unaffected as long as there is a unique optimal value of z. This suggests

that the effect of quantity regulation crucially depends on whether regulation enforcement

is determined exogenously or endogenously.

5 Conclusion and Caveats

Traffic and network congestion are serious real-world concerns in many sectors of the econ-

omy. The intuition behind the model presented in this paper is that whenever the probability

of catching violators of a quantity regulation moves inversely with the number of violators,

then tighter restrictions on access to congestion-prone commons may counterintuitively lead

to increased congestion. If tighter regulation implies larger numbers of violators and there-

fore smaller chances that they will face sanctions, then permissive regulation can, in the

context of our model, reduce congestion more effectively than strict limits on levels of eco-

nomic activity. This intuition potentially applies to resources used in common, such as

public roads, fisheries, computer bandwidth and electronic price quotation systems in finan-

cial markets. The model in this paper suggests that quantity restrictions in the contexts just

mentioned may counter-intuitively aggravate congestion problems due to the crowding effect.
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On the other hand, quantity regulation has potential as a cost-effective tool for regulating

externality-generating activity, because it is relatively simple (compared to price regulation

schemes such as Pigouvian taxes) and easily understood by those affected.

The potentially unstable effectiveness of enforcement, however, raises the possibility in-

vestigated in this paper that stricter regulation may lead to greater-than-anticipated use of

the commons, thereby imposing unnecessarily high external costs on other users of the com-

mons. It will therefore be worthwhile to consider the characterization our model provides of

near-optimal quantity, which requires a regulatory standard that is sufficiently permissive to

elicit very few attempts at violating the regulation. As a result, the limit on activity that is

sufficiently permissive, but no more so than necessary, elicits a very high rate of compliance

and, consequently, high rates of detection of those violating the regulatory standard.
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Figure 1: Tragedy of the commons with continuum-valued cardinality (e.g., the volume 

of traffic congestion) 
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The decentralized Nash equilibrium xN occurs at the intersection of the private 

value and cost functions where v(x) = c(x). The social optimum xS occurs at 

the intersection of the private value and social cost functions: v(x) = cS(x). 

Because cS(x) > c(x) at each value of x, the figure demonstrates that xS < xN: 

there is always over-use of the commons (i.e., x is too high) from the point of 

view of a regulator whose first-best outcome is xS. 
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The regulator tightens the quantity regulation by shifting from x0 leftward to x1. 

Because the probability of detection p and fine f are, by assumption, unaffected, 

the equilibrium traffic volume remains at x0. Thus, p and f, together with the 

shapes of c(x) and v(x), jointly determine the equilibrium traffic volume, under the 

assumption that p = p(e) (i.e., p is independent of x). The assumed independence of 

p from x implies that tightening the quantity regulatory standard has no effect on 

congestion, which cannot be brought below x0. 

x1 x0 

Figure 2: The effect of quantity regulation when the probability of 

detection depends only on enforcement expenditure: p = p (e) 
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Figure 3: Equilibrium traffic volume as a function of the regulator's choice of 

quantity regulation z, assuming the probability of detection, p = p(e), depends on 

expenditures but not on the mass of violators  
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For sufficiently permissive policies (z > x0), the simple enforcement technology 

enables the regulator to implement whichever quantity limit is desired in this range. 

Below the threshold x0, however, the regulator's tightening of the policy has no 

effect on the equilibrium traffic volume. In other words, changes in quantity 

regulation in the range (z < x0) have no effect on over-use of the commons. 
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Figure 4: The effect of quantity regulation when the probability of detection, p = p(e, r), 

depends on the quantity of violators r and, consequently, on the regulatory standard z  
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This Figure demonstrates the counter-intuitive result that holds whenever the 

probability of detection depends on the regulatory standard z: moving from weaker 

to stricter regulated quantities zA > zB > zC = xS corresponds to equilibria A, B and 

C, which exhibit progressive worsening levels (from the regulator's point of view) 

of congestion xA < xB < xC. These three points of intersection between w(x|z) and 

v(x) move in the opposite direction relative to the verticals marking the regulator's 

choice of the maximum allowable aggregate quantity. In other words, tightening 

the maximum allowable quantities results in the unintended effect of increased 

congestion. Equivalently, when the allowable regulated quantity becomes more 

permissive, then aggregate use of the commons in equilibrium decreases.  
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Figure 5: Discontinuity in equilibrium traffic volume as a function of the regulator's 

choice of the maximum allowable volume z, when the detection probability p = p(e, r) 

depends on the violation rate r 
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Figure 6: The possibility of multiple equilibria (x* and x** are both equilibrium traffic 

volumes) 
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Figure 7: Equilibrium traffic volume correspondence at different values of the 

regulatory standard z when p = p(e, r) 
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Figure 8: Strong enforcement  
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