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Ethnic variation in mortality and whether this variation can be explained by socioeconomic status are of sub-
stantive interest to social epidemiologists. The authors consider the analysis of mortality data for a mixture of
majority and minority ethnic groups. Such data are likely to be coarsely cross-classified by age and socioeconomic
status and yet, even then, in some cells of this cross-classification the observed mortality rate will be an imprecise
estimate of the underlying rate. The authors illustrate conventional and Bayesian approaches to analysis with data
from the 1996 census used by the New Zealand Census-Mortality Study. A conventional approach is exploratory
data analysis first followed by Poisson regression. The authors use spline smoothing within a generalized additive
model framework as an exploratory data analysis, following a strategy of adding just enough model structure to
gain a sensible picture. A Bayesian approach is modeling first and then a description of posterior estimates using
exploratory data analysis techniques. The authors use hierarchical Poisson regression and then illustrate their
posterior estimates of the mortality rate using the same spline smoothing as before. The advantage of the hierar-
chical Bayesian approach is that it assesses uncertainty about a Poisson regression model proposed a priori; the
conventional approach assumes that the fitted Poisson regression model is correct. All analyses use software that

is available at no cost.

ethnic groups; hierarchical model; mortality; nonparametric regression; Poisson regression; smoothing;

socioeconomic factors; spline

Abbreviations: Cl, credible interval; nMnPI, non-Maori, non-Pacific Island.

Ethnic variation in mortality and whether this variation
can be explained by socioeconomic status are of substantive
interest to social epidemiologists (1, 2). To develop more
realistic models for ethnic and socioeconomic variation in
mortality, Kaufman et al. (3) recommended a nonparametric
exploratory data analysis. They used kernel smoothing to
create a contour plot of the observed mortality rate across
dimensions of age and income for each combination of gen-
der and ethnicity. Kaufman et al. imposed as few assump-
tions as possible so that the data speak for themselves. For

this reason, they considered mortality rates for only the main
ethnic groups in the United States (Blacks and Whites), even
though there were 27,239 Hispanics in the nationwide sur-
vey on which their study was based.

It is not obvious how to apply this strategy to mortality
data for a mixture of majority and minority ethnic groups.
Such data are likely to be coarsely cross-classified, either to
ensure confidentiality when releasing official statistics or
where ordinal measures of socioeconomic status are used
with few categories. Even then, the observed mortality rate
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may be an imprecise estimate of the underlying rate because
of the relatively small number of deaths in some cells of this
cross-classification. In addition, conventional statistical
inference—the process of generalizing from these data by
point or interval estimate—is hard to justify where data are
collected without either a randomly assigned intervention or
random sampling (4). Without randomization, statistical in-
ference in an observational study has to rely on subjective
judgments of exchangeability (5), and then it is logical to
take a Bayesian approach to statistical inference.

We consider conventional and Bayesian approaches to
modeling mortality data for a mixture of majority and mi-
nority ethnic groups. We describe an example where the
observed mortality rates for a major ethnic group and two
minorities are cross-classified by gender, age, and highest
educational qualification. We first illustrate a conventional
approach: exploratory data analysis using generalized ad-
ditive models prior to conventional Poisson regression. We
then consider this example from a Bayesian perspective, fit-
ting a hierarchical Poisson regression model and using gen-
eralized additive models to illustrate our posterior estimates
of the mortality rate. We finish by comparing the two ap-
proaches and giving details of the software used in our
analyses.

THE NEW ZEALAND CENSUS-MORTALITY STUDY

In this study, New Zealand census data collected every
5 years are anonymously and probabilistically linked to
persons who died within the 3 years following each census
(6). We use data from the 1996 census for those aged 25—
74 years, with 78 percent of subsequent mortality records
linked to a census record (7). Mortality rates and person-
years at risk are shown for a 240-cell cross-classification of
three ethnic groups by gender, age in 5-year categories, and
highest educational qualification in four ordered categories
(Web appendix A). (This information is described in the first
of two supplementary appendices; each is referred to as
“Web appendix” in the text and is posted on the website
of the Journal (http://aje.oxfordjournals.org/).) The three
ethnic groups are two minorities, Maori (the indigenous
people of New Zealand) and Pacific Island (those of Pacific
Island descent), and the non-Maori, non-Pacific Island
(nMnPI) majority (mostly those of European descent). The
ethnic group was categorized as Maori if this was given as
one of up to three responses to the census question on eth-
nicity; otherwise, it was categorized as Pacific Island if this
was given as one of the three responses; otherwise, it was
categorized as nMnPI (8).

The mortality rate y;in the ith cell of this cross-classification
is estimated from the #; persons in the cell as:

7
L 21 Wifij

1 n,» . “7
Zj:lwljel]

(1)

where z;; is one if the jth person dies in the 3 years after the
census and zero otherwise; e;; is the number of years be-
tween the census and death for those that die and three
otherwise; and wy; is the person’s linkage weight (the inverse
of the probability of linkage). Not all mortality records can
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be linked back to a census record, and so mortality and
person-years at risk are weighted to account for linkage bias
(9). The denominator of equation 1 is a weighted estimate of
the person-years at risk e;.

To measure socioeconomic status, we assume the follow-
ing order among the four categories of highest educational
qualification: none, secondary school, trade or vocation, and
tertiary. Thus ordered, the highest qualification is then
transformed into a ridit score (10): Within each 5-year age
category, the educational score associated with a given
qualification is the midpoint of the percentages covered by
that qualification in the cumulative distribution of qualifica-
tions. A ridit transformation is appropriate because more
people are gaining higher qualifications over time, so the
meaning of a given level of educational achievement in
terms of socioeconomic status is different for different age
groups.

The resulting data are characteristic of official statistics
on mortality where there is a mixture of minority and ma-
jority ethnic groups. The total person-years at risk are
5,244,013 for the nMnPI majority and just 385,562 and
182,202 for the Maori and Pacific Island minorities, respec-
tively. The highest qualification, our indicator of socioeco-
nomic status, is coarsely classified into just four categories.
The person-years at risk vary in each cell of the cross-
classification from over 100,000 person-years to below 10
and, with only a few person-years, the weighted estimate of
the mortality rate varies from over 50 percent to zero.

EXPLORATORY DATA ANALYSIS

Exploratory data analysis is recommended as the first
step in a conventional analysis (11, 12). Kaufman et al. (3)
smooth the mortality rate across the dimensions of age and
socioeconomic status for each combination of gender and
ethnicity. Their method is equivalent to kernel regression by
a gaussian kernel with its bandwidth parameter fixed at
h=+/1/2 (13). They assume both a fixed bandwidth
parameter and a relative scale between the dimensions of
age and socioeconomic status. The bandwidth parameter
controls the amount of smoothing; higher values give
greater smoothing (13). Age is divided by 2 years, and in-
come (their measure of socioeconomic status) is divided by
its standard deviation where this is calculated separately for
each combination of gender and ethnicity.

Kaufman et al. show that their method works well for
majority ethnic groups. They work with 27 income catego-
ries and with age in 1-year categories. With our data, their
method is adequate for the nMnPI majority (figure 1). As an
example, the 1 percent mortality rate occurs at a younger
age for the Maori relative to the nMnPI majority, with
Pacific Islanders intermediate. In each ethnic group, this rate
occurs at a younger age in males than in females. A pro-
tective effect of education is seen in the nMnPI majority for
both genders between the ages of 30 and 40 years. At this
point, shifting from no education to a secondary school
qualification delays the increase in mortality with age by
about 10 years.

However, even in the nMnPI majority, kernel regression
leads to contours that change in a stepwise fashion rather
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FIGURE 1.

Mortality rate contours using kernel regression, New Zealand, 1996—1999. nMnPI, non-Maori, non-Pacific Island majority.

than smoothly between education categories (figure 1). Ker-
nel regression is essentially a weighted moving average es-
timating a local constant and, at boundaries in the data, the
kernel is asymmetric, and consequently estimates are biased
(14). These boundary effects can be mitigated by the use of
smoothing methods that estimate a local line or curve, be-
cause these provide a more accurate estimate across or into
regions where there are no data (14).

One improvement is to smooth using a smoothing spline
rather than a kernel. A smoothing spline is a form of
nonparametric regression. Observations y; are modeled as
some unspecified (but twice differentiable) function f of a
variable x; with errors ¢; that have zero mean and equal
variance (15):

yi=f(xi) + & (2)

A spline results from minimizing a modified sum of squares
SS(h) (15):

n

50 = Y- bi—f P +h [ P ()

i=1 Xmin

where A is a smoothing parameter, equivalent to the band-
width parameter in kernel regression. The first term in equa-
tion 3 is the error sum of squares, and the second term is
a “‘roughness penalty” that is large when f{x) is rough (i.e.,
when the slope of f(x) changes rapidly over the range of the
variable x). Equation 3 represents a compromise between
goodness of fit (the first term) and smoothness (the second
term). The smoothing parameter /& determines the relative
importance of these two terms and therefore controls how
much the data are smoothed. Parameter / is often chosen by
cross-validation (15).

As a consequence of equations 2 and 3, the spline is
a series of cubic polynomial curves; these curves join at

knots, and the knots are constructed so that the “join” is
smooth. Fitting the spline requires estimates of the four
coefficients that describe each cubic polynomial (15). A full
thin-plate spline is a multivariate generalization of this
smoothing spline (15), and a thin-plate regression spline is
an approximation of the full thin-plate spline; the approxi-
mation is quicker to fit and more stable (16, 17). With a bi-
variate thin-plate regression spline for age and educational
score (figure 2), the boundary effects disappear, although the
contours for ‘‘Pacific Island—males” are clearly unrealistic.

Further extensions lead to the generalized additive model
(18). First the observations y; may be an additive function of
several variables, where the functional form of each remains
unspecified:

yi=o+ fi(xi1) +fo(xi2) -+ fr(xir) + & (4)

Second observations may come from the exponential family
of distributions, so that the error sum of squares is replaced
by a different function of errors, and a link function g is
chosen to restrict the range of the expected curve:

J
g(ED) =0+ filx),

J=1

(5)

where each f;(x;) has zero mean, a constraint ensuring that
the model is identifiable (19). For simplicity, equations 4
and 5 are shown as the sum of univariate splines, but some or
all of these splines could be multivariate.

The generalized additive model is a useful framework for
adding and subtracting model structure, following a strategy
of adding just enough structure to gain a sensible picture.
We could, for example, construct three generalized additive
models, one for each ethnic group, with each generalized
additive model having an additive difference between male
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FIGURE 2. Mortality rate contours using a bivariate thin-plate regression spline, New Zealand, 1996—1999. nMnPI, non-Maori, non-Pacific Island

majority.

and female in the form of the bivariate spline for age and
educational score. However, with our data, we can still pro-
duce sensible contour plots even if we smooth each combi-
nation of gender and ethnicity separately.

It is reasonable to view death as random and therefore
a Poisson process (20). We expect variation in mortality
rates between cells of the cross-classification because of
both observed and unobserved covariates (20). This sug-
gests that, for each combination of gender and ethnicity,
the number of deaths will follow an ‘“‘overdispersed’ Pois-
son distribution, where the variance in the number of deaths
is approximately some multiple of the Poisson mean (21,
p. 199) and where the Poisson mean is some unspecified
function of age and education. We also expect that the num-
ber of deaths will be directly proportional to the person-
years at risk. We choose a log-link function, so that the
expected number of deaths must be greater than zero. The
Poisson generalized additive model that meets these speci-
fications is equivalent to smoothing the mortality rate on
a log scale. For each combination of gender and ethnicity,
we smooth the mortality rate on a log scale across the di-
mensions of age and education using a bivariate thin-plate
regression spline (figure 3).

Up to this point, we apply the same relative scale between
age and education as used by Kaufman et al. However, we
do not need to assume a relative scale if we use a bivariate
tensor-product spline, a bivariate spline formed from the
tensor product (a type of vector multiplication (22)) of uni-
variate spline smoothing in each dimension (23-25). The
default univariate spline has five knots, but we set the num-
ber of knots for the education dimension to three to ensure at
least a degree of smoothing (figure 4).

In summary, we suggest three improvements to the
smoothing proposed by Kaufman et al. These improvements
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should give sensible contour plots even when the data are
coarsely cross-classified and highly variable. We replace ker-
nel smoothing (figure 1) with spline smoothing (figure 2),
smooth the mortality rate on a log scale rather than on a linear
scale (figure 3), and use a bivariate spline that is appropriate
when variables are measured in different units (figure 4).
For data of this sort, the second step in a conventional
analysis might be model building and statistical inference
using Poisson regression (9). As an example, at the end of
the next section, we consider the hypothesis that the pro-
tective effect of education differs between ethnic groups.

HIERARCHICAL BAYESIAN POISSON REGRESSION

Christiansen and Morris (26) describe an appropriate
framework for Bayesian inference, where the analyst views
death as random and therefore a Poisson process with a dif-
ferent rate in each cell of the cross-classification. By use of
the notation x ~ D[a, b] to represent a random variable x
distributed D with mean a and variance b, their hierarchical
Poisson regression model for the full cross-classification has
three levels:

d,‘ \ei, 7\,,‘ ~Poisson [eik,-, eiki],

(6)
2

AilXi, B,C~ gamma [p;, i /C], log(p;) =XiB, (7

(Ba C) ~T. (8)

At the first level, the number of deaths d; is distributed

Poisson with a mean and a variance e;A;, where e; and A;

are the person-years at risk and mortality rate, respectively,
in the ith cell. At the second level, the mortality rate A; is
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FIGURE 3. Mortality rate contours using Poisson generalized additive models with smoothing by a bivariate thin-plate regression spline, New

Zealand, 1996-1999. nMnPI, non-Maori, non-Pacific Island majority.

distributed gamma, with a mean p; that depends, through
a log-link function, on a prior structure given by covariates
X; with parameters 3 estimated from the data. The variance
of the mortality rate (p?/() depends on ( (the shape
parameter of the gamma distribution) and, at the third
level, a prior distribution 7 is required for parameters 3
and C.

In the Bayesian model, the prior covariate structure in-
fluences the mean of the posterior rate, but the degree of
influence depends on the overall support for this prior struc-
ture and on how much local information is available. How
this works can been seen from the conditional posterior
distribution for the Poisson rate parameters, although the
process is more complicated in the marginal posterior
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distribution. The conditional posterior distribution is gamma
with mean:

Ep\'i|datav BquBiui_F(l_Bi)yiv (9)

where y; = d,/e; is the observed mortality rate in the ith cell
and where

B =C/(C+eip;). (10)
The B; lie between zero and one and are known as
“shrinkages” because values near one shrink the posterior
mean rate away from the observed rate toward the prior
structure. The gamma shape parameter acts as a measure
of confidence in the prior structure. Large values of { lead to
shrinkages close to one, and more weight is attached to the
prior structure. The shrinkages also depend on the amount of
information in the cell through the expected number of
deaths, e;1;; cells with more information lead to shrinkages
close to zero, and more weight is attached to the observed
rate in the cell.

In a hierarchical Bayesian analysis, the second-stage pa-
rameters B and { are given a prior distribution. Christiansen
and Morris assume a priori that  and { are independent
and use a flat uniform prior for the B parameters, so that

p(B,C) =p(EIB)p(B) = p(§). They then use a “uniform
shrinkage prior” for { where

By=C/(C+do) (11)

and where d, is chosen to represent one’s confidence in the
prior structure. This uniform distribution transforms to a prior
distribution for { with d, as its median (26). This suggests
a strategy for choosing dj: Set it equal to an expected number
of deaths at which one is ambivalent about the weight attached
to the prior structure and to the observed rate in a cell. This

~uniform (0, 1),
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prioris relatively noninformative (27), and posterior inference
seems to be relatively robust to the choice of d; (refer also
to Albert’s chapter in the book edited by DeGroot et al. (28)).

If the posterior estimate of ( is large, this implies strong
support for the prior covariate structure. There is then little
variance (p?/¢) in the mortality rate ); around its expected
value L; (equation 7). As { tends to infinity, the hierarchical
Poisson model reduces to a conventional Poisson regression
model with log(y;) = X;B. In this way,  is a measure of
uncertainty about the prior covariate structure, and this
structure represents the usual Poisson regression model (29).

Having read the analysis by Kaufman et al. (3), we con-
sider the following prior structure for our data: mortality
depends on gender, on age but with a different association
for different ethnic groups, and on education but with an
association that varies with ethnic group and with age. This
structure implies a log-linear model for the expected mortal-
ity rate (equation 7), with terms for age, sex, Maori ethnicity,
Pacific Island ethnicity, educational score, and interaction
terms for age and ethnicity, education and ethnicity, and
age and education. With a cell count of 10 deaths, we might
be ambivalent about the weight attached to this structure and
to the observed rate in a cell. This implies that, in cells with
higher expected counts, we would want the observed mortal-
ity rate to be given more weight than the prior model, and we
would want the reverse in cells with lower expected counts.

These prior considerations lead to posterior estimates of
the mortality rate (Web appendix A), which we then smooth
using a generalized additive model for each combination
of gender and ethnicity (figure 5). Our use of generalized
additive models in this context is to interpolate continuous
age by education surfaces at points where no observation
was made, because these surfaces are easier to interpret than
a table of 240 cells. Gelman (30) suggests applying the ideas



288 Young et al.

Maori - males

Pacific Island - males

nMnPI - males

100 \ 100 \ 100 - v \ \

80 | K 80 | 3 80 | )

60 60 - 60

40 — 40 — 40 —

) 0b

o 20 20 20 |
o N . )
o \ 2] IN) o o 0‘
(3] 0 - [ 0 -
@ I | — T T T 1 T T T 1
= 30 40 50 60 70 30 40 50 60 70 30 40 50 60 70
c
o
= Maori - females Pacific Island - females nMnPI - females
E 100 \ 100 100 - \ \ ‘0'
w80 80 80 R

60 — 60 — 60 —

40 K 40 ) 40

20 ! : 20 20

o ° - N o o
0 \ . \ 0 - \ N 0

T I I T T T
30 40 50 60 70

30 40 50 60 70

I T T T | T T I
30 40 50 60 70

Age (years)
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and methods of exploratory data analysis to structures other
than raw data, such as plots of parameter inferences; com-
paring observed (figure 4) and predicted (figure 5) mortality
rates may suggest ways in which the fitted model departs
from the data. Our approach to the analysis of social varia-
tion in health has much in common with the analysis of
spatial variation in health (31, 32).

Because the marginal posterior distribution for the mor-
tality rate A; is approximately gamma (26), we smooth these
using a gamma generalized additive model with a log link

Maori - males

Pacific Island - males

(figure 5). In the same way, we also smooth the widths of the
95 percent credible intervals (Web appendix A; figure 6).
The shrinkages B; are distributed approximately beta and
estimated as a;/(a; + b;), where a; and b; are estimates in
each cell of the beta distribution parameters (26). The beta
distribution does not belong to the exponential family of
distributions and so cannot be fit as a generalized additive
model. Instead, we smooth a; “successes” in (a; + b;)
“trials” as an “‘overdispersed” binomial generalized addi-
tive model with a logit link (figure 7), so that the first and
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second moments of our generalized additive model are the
same as those of the beta distribution (33, 34).

To summarize our Bayesian approach, our posterior point
estimates of the mortality rate A; (figure 5) are similar to
those suggested by exploratory data analysis (figure 4). Of
course, exploratory data analysis by itself does not allow
a formal comparison of the differences (e.g., between ethnic
groups); for this, we need to consider the variance in estimates.
The marginal posterior distribution for the A; is approxi-
mately gamma with a variance that depends on the posterior
mean rate and on the person-years at risk (26). Therefore,
credible intervals become wider with age (figure 6), be-
cause the mortality rate increases with age. Credible inter-
vals are also wider at higher educational scores, where there
are fewer person-years at risk, and for this reason, they are
much wider for the two minorities than for the nMnPI
majority. Shrinkages show that our prior structure has a
strong influence on posterior estimates for both minorities
in the region of higher educational scores and younger ages
(figure 7), with values in this region close to the maximum
value of one.

Posterior estimates of B parameters are often of interest.
We consider the hypothesis that the protective effect of ed-
ucation differs between ethnic groups. Using the prior struc-
ture previously described and with age centered at 50 years,
we find that education appears to have a protective effect
such that, in the nMnPI majority, the expected mortality rate
at an educational score of zero is 2.35 (95 percent credible
interval (CI): 1.95, 2.83) times the expected mortality rate
at a score of 100. However, for Maori and Pacific Islanders,
the expected mortality rates at a score of zero are only 1.54
(95 percent CI: 1.19, 2.00) and 1.37 (95 percent CI: 0.96,
1.95) times the respective rates at a score of 100.

Credible intervals for the hierarchical Poisson model are
wider than confidence intervals for the equivalent conven-

TABLE 1. Mortality rate for males and females aged 50 years
who had an educational score of zero as a multiple of their
mortality rate with a score of 100, New Zealand, 1996—1999

Conventional
Poisson model

95%

Hierarchical
Poisson model

95%

Ethnic group

Mortality Mortality

: credible : confidence
rate ratio interval rate ratio interval
Non-Maori,
non-Pacific
Island majority 2.35 1.95, 2.83 2.16 2.04, 2.30
Maori 1.54 1.19, 2.00 1.53 1.34,1.75
Pacific Island 1.37 0.96, 1.95 1.47 1.14, 1.91

tional Poisson model (table 1). The hierarchical model as-
sesses support for a prior Poisson regression model, so its
credible intervals reflect both parameter uncertainty and un-
certainty about this prior model. The conventional confi-
dence interval is a conditional inference: It assumes that
the fitted Poisson model is correct. This is unrealistic, so
estimates from a hierarchical model are typically more
accurate—with a lower mean squared error (35, 36)—than
those from a conventional model. Here, the conventional
model leads to contours without the well-defined curva-
ture in the nMnPI majority that suggests that a secondary
school qualification has a strong protective effect (figure 8).
This curvature remains in the hierarchical Poisson model
(figure 5), even when this conventional model is used as
its prior structure, because there is strong support from the
data for this curvature and therefore little shrinkage towards
the prior structure in this region of the data (figure 7). This
curvature suggests that the association among mortality,
age, and education is more complex than we anticipated.
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FIGURE 8. Point estimate contours for conventional Poisson regression using Poisson generalized additive models with smoothing by a bivariate
tensor-product spline with knot constraints, New Zealand, 1996—-1999. nMnPI, non-Maori, non-Pacific Island majority.
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DISCUSSION

Spline smoothing is likely to give a clearer exploratory
data analysis than is kernel smoothing if data are coarsely
cross-classified and highly variable within some cells of that
cross-classification. The generalized additive model is a use-
ful framework for adding and subtracting model structure
following a strategy of adding just enough structure to gain
a clear picture. With these tools, the conventional approach—
exploratory data analysis followed by modeling and sta-
tistical inference—is possible with mortality data from a
mixture of majority and minority ethnic groups.

In hierarchical Bayesian Poisson regression, we add
model structure by specifying a prior covariate structure.
However, both the amount of local information and the over-
all fit of the prior structure determine the degree to which
this prior structure influences posterior estimates of the mor-
tality rate. Markov chain Monte Carlo methods can be used
to fit a hierarchical Poisson regression model. However, the
method described by Christiansen and Morris is much
quicker, so that it is easy to carry out sensitivity analyses
using other prior covariate structures or with a different level
of confidence (dy) in a given prior structure.

Conventional statistical inference, at least in theory, con-
siders support for hypotheses proposed a priori, rather than
for those suggested by exploratory data analysis. In practice,
“the best analyses are those that combine both, flagrantly
moving easily from ideas the investigator initially proposed
to ideas suggested by the data” (37, p. 780). By comparing
observed and predicted patterns of mortality, the investiga-
tor can identify a variety of models that appear to be con-
sistent with the data (3). However, the investigator may be
mislead into reporting false positive results by chance var-
iation in the data (38). The advantage of the hierarchical
Bayesian analysis is that its statistical inference is not con-
ditional on specifying the correct Poisson regression model;
rather, its intervals reflect both parameter uncertainty and
uncertainty about a Poisson regression model proposed a
priori. In addition, prior information about the likely direc-
tion and magnitude of covariate effects can be incorporated
into a hierarchical model by using an informative prior at the
highest level of the model (Web appendix B). When the
prior evidence for a hypothesis is strong, a positive study
is more likely to be a true positive. “The mistake is to con-
fuse an increment in support from a positive study with cu-
mulatively strong support for the hypothesis™ (39, p. 958).
Focusing on cumulative support for a hypothesis is the key
to avoiding spurious findings in epidemiology.

SOFTWARE

All analyses and plots use the R system for statistical com-
putation and graphics version 1.9.1 (40). Generalized addi-
tive models were fit with an add-on package, mgcv version
1.1-5. Both R and mgcv are available from the Compre-
hensive R Archive Network website (http://cran.R-project.
org/); further information on mgcv is available from its au-
thor, Simon Wood (http://www.maths.bath.ac.uk/~sw283/).
The hierarchical Poisson regression model of Christiansen

and Morris was fit by use of their Splus code (PRIMM),
available from the “Statlib” website (http:/lib.stat.cmu.
edu/S/). Minor changes are needed to make this code run
within the R system.

SUMMARY OF STATISTICS NEW ZEALAND SECURITY
STATEMENT

The full security statement is published at http://www.
wnmeds.ac.nz/nzcms-info.html.

The New Zealand Census-Mortality Study is a study of
the relation between socioeconomic factors and mortality in
New Zealand, based on the integration of anonymous pop-
ulation census data from Statistics New Zealand and mor-
tality data from the New Zealand Health Information
Service. The project was approved by Statistics New Zea-
land as a Data Laboratory project under the Microdata
Access Protocols in 1997. The data sets created by the
integration process are covered by the Statistics Act and
can be used for statistical purposes only. Only approved
researchers who have signed Statistics New Zealand’s dec-
laration of secrecy can access the integrated data in the
Data Laboratory. For further information about confidenti-
ality matters in regard to this study, please contact Statistics
New Zealand.
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