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Introduction 

Over the past two decades there has been a rapid increase in the use of what 

have come to be known as structural equation models, covariance structure 

models or LISREL models.  These models describe the measurement and causal 

structure of a set of observed variables in terms of a system of simultaneous 

linear equations which summarise and encapsulate the assumptions of some 

prespecified conceptual model of the measurement and causal structure of the 

observed variables.  Applications of these methods may be found in many areas 

including Economics, Psychology, Sociology and Behavioral Genetics.  At the 

same time, the use of these methods for analysing epidemiological data has been 

limited and, in particular, the full potential for methods of structural equation 

modelling in the analysis of child psychiatric epidemiological data has yet to be 

realised. 

In part, this situation may reflect the fact that many epidemiologists, whilst being 

aware of structural equation modelling techniques, are unsure about the logic of 

these methods and how they are applied in practice.  The major aim of this 

chapter is to present an introductory and user friendly account of the logic and 

application of structural equation modelling methods with this account being 

aimed at a perceived audience of epidemiologists and analysts who are aware of 

structural equation modelling techniques but who may be unsure about the 

application of these methods.  For this reason the chapter is presented at an 

introductory level and presents only a limited account of the formal mathematical 

and statistical foundations of the method.  This does not, however, imply that an 

understanding of the mathematical and statistical foundations of structural 

equation models can be ignored and, indeed, the effective application of these 

methods does require that the user understand these issues, and particularly 

issues relating to model estimation, model identification and model testing. 
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Information on the mathematical foundations of structural equation models can 

be found in a number of sources.  The early work of Duncan (1975), whilst being 

somewhat dated in its approach, provides a very useful introduction to model 

specification and model identification and introduces the basic covariance 

algebra which underlies these models.  The books by Heise (1975) and Kenny 

(1979) develop these topics further.  Long (1983a; 1983b) provides an excellent 

general introduction to issues of model specification and identification using 

LISREL.  Everitt (1984) provides a useful general introduction to latent variable 

models (1984).  More advanced treatments of the mathematical and statistical 

foundations of structural equation models may be found in Aigner & Goldberger 

(1977), McDonald (1978), Joreskog & Sorbom (1979), Browne (1982) and 

Joreskog & Wold (1982). 

The chapter is presented in three general sections.  In the first section I present 

an introductory account of the general LISREL model.  The second section 

illustrates the use of this model through the use of a worked example which 

examines a five variable model which is sufficiently simple to be specified without 

recourse to complex matrix algebra but at the same time illustrates many of the 

principles of model specification, identification, latent variables and model 

testing.  In the final section I attempt to provide an overview of both the 

advantages and disadvantages of structural equation modelling methods. 

The LISREL Model 

While there have been many attempts to specify the general form of structural 

equation models, (see, for example, McDonald, 1978; and Joreskog & Wold, 

1982), probably the most useful formulation has been given in the LISREL model 

described by Joreskog and his associates (Joreskog, 1973; Joreskog & Sorbom, 

1989).   

Model Specification.  In its original formulation, the LISREL model was 

described by an extremely general series of matrix algebra statements which used 
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a complex system of Greek notation.  The complexity with which the model was 

presented has probably inhibited the use of structural equation modelling 

methods amongst users who found difficulty with the matrix algebra of the 

original model.  However, in the most recent version of the LISREL program 

(LISREL 8) many of the complexities of the original model statement have been 

removed and the program now provides a user friendly method of specifying 

structural equation models on the basis of path diagrams.  To introduce the 

general LISREL model I will describe construction of these models by reference to 

path diagrams rather than in terms of the more general matrix algebra 

formulation of the model. 

The point of departure for LISREL models is the matrix of correlations of a set of 

observed variables.  The LISREL model distinguishes between two types of 

observed variables: a) the x variables which are indicators of latent exogenous or 

independent variables and b) the y variables which are indicators of latent 

endogenous or dependent variables.  The model represents the relationships 

between the x and y variables by a system of simultaneous linear equations.  

These equations may be classified into: a) measurement model equations which 

describe the relationship between the observed x, y variables and corresponding 

latent variables; b) the structural equation model equations which describe the 

relationship between the latent constructs. 

The general approach to formulating a LISREL  model is most easily illustrated 

by way of an example.  Figure 1 shows a simple four variable model which 

illustrates many of the principles used to construct such models.  This figure 

assumes that the observed data comprises two x variables (x1, x2) and two 

variables (y1, y2).  To provide a concrete illustration, the variables x1, x2 might 

be independent measures of childhood body lead burden and the variables y1, y2 

measures of childhood intelligence.  The model makes the following assumptions: 

1)  The observed measures x1, x2 are fallible measures of a latent variable T1 

(e.g. the child's true but non-observed body lead burden).  It is assumed that the 
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child's status on the latent variable T1 influences the observed test scores x1, x2 

but that these scores are also influenced by errors of measurement U1, U2.  

These errors are assumed to be uncorrelated with each other and with the latent 

variable T1. 

2)  A similar set of assumptions is made about the relationships between the 

observed measures y1, y2  and a second latent variable T2 (e.g. the child's true 

cognitive ability score). 

3)  Finally it is assumed that the subject's score on the non-observed variable T1 

(true body lead burden) may causally influence his/her score on the latent 

variable T2 (true cognitive ability) but T2 is also influenced by other non-observed 

factors represented by the disturbance term E1. 

-------------------- 

INSERT FIGURE 1 HERE 

-------------------- 

The path model in Figure 1 can be presented by the following system of 

simultaneous linear equations and assumptions. 

1) Measurement Model Equations: 2)  Structural Equation 

Model: 

 X1 = G1 T1 + U1  T2 = B T1 + E1 

 X2 = G2 T1 + U2 

 Y1 = G3 T2 + U3  

 Y1 = G4 T2 + U4 

3) Assumptions: 

 E(xi) = E(yi) = E(Ti) = 0 (i = 1,2);  Cov (Ui Uj) = 0  (i = j) 

 Cov (Ui Tk) = 0  (i = 1...4; k = 1,2);  Cov (Ui E1) = 0;  

 Var (T1) = Var (T2) = 1;  Cov (E1 T1) = 0 
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The general assumptions underlying this model are: a) that all observed and 

latent variables are scaled to a mean of zero (thus avoiding the introduction of 

intercept terms into the model); b) that all relationships represented in the model 

are adequately described by an additive and linear model; c) that the disturbance 

terms of Model Ui are uncorrelated with each other and with the latent variables 

T1, T2 and the disturbance term E1; d) E1 is uncorrelated with T1; e) the latent 

variables are scaled to have unit variance (to fix the scale of measurement of 

these variables).  Subject to these assumptions providing a realistic account of 

the data, each of the model parameters has a clear substantive interpretation.  

These interpretations are as follows: 

1)  The coefficients Gi linking the observed test variables to the corresponding 

latent variables describe the regression relationships that exist between the 

observed variables and latent variables.  If the test variables are measured in 

standardised form with a mean of zero and a unit variance the coefficients G 

represent the correlations between the non-observed latent variables and the 

observed test scores. 

2)  The coefficient B describes the regression relationship between the latent 

variable T1 (true body lead level) and the latent variable T2 (true cognitive ability), 

after errors of measurement in the observed indicators x, y have been taken into 

account.  Since the latent trait variables are measured in standardised units the 

coefficient B also represents the correlation that exists between the latent trait 

variables. 

Whilst the model in Figure 1 is clearly very simple, the general principles of 

formulating more complex LISREL models follow a similar logic in which a 

general theoretical model is expressed as a path diagram of relationships between 

variables and this path diagram is represented by a system of simultaneous 

linear equations. 
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Identification.  While it is possible to specify a wide range of models using 

LISREL, it is not the case that all such models can be solved.  For some model 

specifications the information in the observed variance/covariance matrix will not 

be sufficient to secure estimates of some or all model parameters.  Such models 

are said to be under-identified and cannot be solved without either reformulating 

the model to overcome the sources of the identification problems or introducing 

additional information to solve the identification problem. 

Models that are not under-identified are identified, which means that it is 

possible to estimate all model parameters on the basis of the observed 

variance/covariance matrix.  Exactly identified models are those in which all 

model parameters are identified and the number of the model parameters is 

equal to the number of observed variances and covariances.  Such models are 

not amenable to falsification through goodness of fit methods since the fitted 

model must exactly reproduce the observed variance/covariance matrix as a 

matter of mathematical necessity. 

Models which are identified and have fewer parameters than observed variance 

and covariances are said to be over-identified.  Over-identification is a desirable 

feature of a model since over-identified models do not fit the observed data as a 

matter of mathematical necessity and thus can be subject to test on the basis of 

goodness of fit measures. 

Parameter Estimation.  To solve a structural equation model requires that a set 

of model parameters representing the coefficients of a system of linear equations 

are estimated on the basis of the information contained in the 

variance/covariance or correlation matrix of a set of observed variables x, y.  Over 

the years a range of methods have been evolved for solving such equations.  

Perhaps the most widely used method has been based on maximum likelihood 

estimation methods using iterative computer based methods (Joreskog & 

Sorbom, 1979).  In these methods various numerical algorithms have been 

developed to estimate parameter values which maximise the likelihood of the 
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parameters conditional on the properties of the observed matrix of variances and 

covariances.  The maximum likelihood approach, however, assumes that the 

observed variables have a multivariate normal distribution and in many 

applications this assumption may be unrealistic.  Whilst it has been found that 

parameter estimates based on maximum likelihood methods are generally robust 

to violation of the normality assumption these violations may influence both 

estimates of standard errors and model fit (Joreskog & Sorbom, 1989).  For this 

reason a range of alternative methods of estimation to deal with different 

situations have been suggested.  These methods include generalised least 

squares methods (Joreskog & Sorbom, 1989), methods for the analysis of 

dichotomous and polytomous variables (Muthen, 1984) and estimation methods 

which are distribution free (Browne, 1984).  In cases where concern exists about 

the choice of estimation method it is generally prudent to fit the same model 

using a range of methods to determine the extent to which parameter values are 

sensitive to the choice of estimation method.  However empirical experience 

suggests that in most cases the differences in parameter estimates yielded by 

different methods tend to be small. 

Goodness of Fit.  For over-identified models the problem of assessing the fit of 

the model to the observed data arises.  There is no single test of goodness of fit 

that will prove to be adequate in all circumstances, but there are a number of 

approaches that may be used in assessing model fit. 

Perhaps the most useful general test is through visual inspection of the residual 

variances/covariances obtained from taking the differences between the observed 

variances/covariances and the variances/covariances estimated from the model.  

If these residuals are small, relative to the original variances/covariances and are 

distributed in a random or haphazard way with respect to sign, this can be taken 

as good evidence of model fit.  Joreskog & Sorbom (1989) provide a number of 

ways of examining the properties of such residuals to detect systematic 

deviations between the fitted model and the observed data. 
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The maximum likelihood method of estimation yields a formal goodness-of-fit test 

in the form of a log likelihood chi-square statistic.  This statistic, which is 

analogous to the conventional chi-square goodness-of-fit statistic, provides a 

measure of the fit of the model to the observed data.  However, this test is known 

to be sensitive to large sample size and departures from multivariate normality 

and for this reason is seldom used as a formal test of fit.  More often the log 

likelihood chi-square is used for comparing the fit of competing models of the 

data (Joreskog & Sorbom, 1989). 

Finally a range of indices have been suggested to measure the differences 

between the observed data and the fitted model.  These indices are discussed by 

Joreskog & Sorbom (1989) and Bentler & Bonnett (1980) and may be used to 

assess various aspects of model fit. 

A Worked Example 

The previous sections of this chapter provide a general introduction to the logic, 

background and methodology of structural equation models.  However many 

readers may find these general principles more accessible and theoretically 

meaningful by working through an example which shows the application of 

structural equation modelling methods to a specific problem.  Below I present a 

worked example which has the advantage of illustrating many of the principles of 

model formulation, model specification, model fitting and testing but at the same 

time is restricted to a small number of variables so that the structure of the 

proposed models and assumptions can be examined in detail. 

The example concerns a problem which has been of continuing interest in the 

area of childhood psychiatric epidemiology: the extent to which exposure to 

maternal depressive symptoms is associated with increased rates of problem 

behaviour in childhood.  There have been a number of studies that have 

examined the association between maternal depressive symptoms and disruptive 

problem behaviours in childhood (for reviews of these studies see Downey & 
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Coyne, 1970; Gelfand & Teti, 1990; Rutter, 1990).  In general, these studies have 

found that children exposed to maternal depression have increased rates of 

problem behaviour.  These findings are, however, complicated by the presence of 

two problems relating to the measurement, interpretation and validity of 

measures of child behaviour.  These problems are: 

1)  The validity and interpretation of behavioural report data:  In all studies 

reported to date, the measurement of child behaviour has been based on report 

data provided by parents or teachers.  These measures are likely to be subject to 

fallibility as measures of the child's general predisposition to engage in disruptive 

problem behaviours and this fallibility has been highlighted by the fact that it is 

well known that reports of the same children provided by different sources tend 

to be only modestly correlated.  In a review of this issue, Achenbach, 

McConaughy & Howell (1987) report correlations between parent and teacher 

reports of child behaviour which suggest that these correlations are in the region 

of +.30.  Such correlations imply substantial disagreements between reports of 

the same child described by different sources.  In turn, the lack of strong cross-

informant correlations raises complex issues about the interpretation, meaning 

and validity of child behaviour reports derived from a single source.  (See also 

Achenbach in this volume). 

2)  Contamination of maternal report by maternal mental state:  A closely related 

problem is that, in some studies, associations between maternal depression and 

child behaviour have been assessed on the basis of maternal report data (e.g. 

Billings & Moos, 1983; Cohler et al., 1983; Ghodsian et al., 1984).  This raises 

the possibility that correlations between measures of depression and child 

behaviour may have been contaminated by the use of non-independent methods 

of measuring these variables.  In particular, it could be suggested that maternal 

depression may colour the reporting of child behaviour leading to spurious 

correlations between maternally reported depressive symptoms and maternally 

reported child behaviour. 
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The analytic challenges posed by these possibilities are twofold: a) to devise 

methods for analysing and representing child behaviour reports in a way which 

reconciles differences in reports derived from different sources; b) to estimate the 

extent to which it is possible that maternal depression contaminates the 

reporting of child behaviour.  Figure 2 presents two alternative models of the 

relationship between observed measures of maternal depression and child 

behaviour.  Both models assume that maternal depression has been measured by 

two indicator variables x1, x2 which represent reported maternal depressive 

symptoms and that child behaviour has been described by reports from three 

sources x3, x4, x5 (maternal report, teacher report and child report). 

Model 1 (Figure 2a) is a baseline model which assumes that: 

1)  Maternal depression is a non-observed latent variable (T1) which influences 

the fallible observed measures x1, x2.  However the observed variables are also 

influenced by non-observed errors of measurement and other sources of 

disturbance represented by the variables U1, U2. 

2)  Child problem behaviour is a non-observed latent variable (T2) which 

influences the observed report measures x3, x4, x5.  However the observed 

variables are also influenced by the disturbance terms U3, U4, U5 which present 

sources of measurement error and test unreliability in the observed measures x3, 

x4, x5. 

3)  The latent variables of maternal depression (T1) and child behaviour (T2) are 

correlated variables. 

Model 2 (Figure 2b) extends the assumptions of Model 1 by assuming that in 

addition to the relationships implied by Model 1, maternal depression may 

influence maternal reports of child behaviour.  Thus Model 1 represents a 

situation in which maternal depression and child behaviours are (or may be) 

correlated whereas Model 2 assumes that maternal depression may act to 
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influence maternal reporting of child behaviour in addition to the assumptions of 

Model 1. 

-------------------- 

INSERT FIGURE 2 HERE 

-------------------- 

The conceptual models shown in Figure 2 can be presented as a series of 

simultaneous linear equations relating the observed variables x1 to the non-

observed latent variables (T1, T2) and the non-observed disturbance variables 

(Ui).  These equations are shown below. 

 Model 1 Model 2 

 x1 = G1 T1 + U1 x1 = G1 T1 + U1 

 x2 = G2 T1 + U2 x2 = G2 T1 + U2 

 x3 = G3 T2 + U3 x3 = G3 T1 + G4 T2 + U3 

 x4 = G4 T2 + U4 x4 = G5 T2 + U4 

 x5 = G5 T2 + U5 x5 = G6 T2 + U5 

 Cov (T1, T2) = . Cov (T1, T2) = . 

 Var (T1) = Var (T2) = 1 Var (T1) = Var (T2) = 1 

Where the coefficients G are the factor loadings linking the observed variables x1 

... x5 to the latent variables of maternal depression (T1) and child conduct 

problems (T2) and . is the correlation between T1, T2.  It can be seen that four of 

the five equations of both models are identical in form but that the models differ 

in the specification of the x3 equation.  In Model 1, the measure x3 (maternal 

report of child behaviour) is assumed to reflect the child's behavioural tendencies 

but is not directly influenced by maternal depression whereas Model 2 assumes 

that maternal reports of child behaviour may be influenced by maternal 

depression independently of the general association between the latent variables 

of maternal depression and child behaviour. 
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To test the fit of these alternative models, data on maternal depression and child 

behavioural tendencies was gathered during the course of a longitudinal study of 

a birth cohort of New Zealand children (Fergusson, Lynskey & Horwood, in 

press).  The data to be analysed is presented in Table 1.  This Table reports the 

matrix of correlations of five measures observed when children were aged 12 

years.  These measures are: 

1)  Measures of maternal depression based on split half scores derived from the 

Levine Pilowsky Depression Inventory (Pilowsky & Boulton, 1970; Pilowsky, 

Levine & Boulton, 1968).  The Levine Pilowsky Depression Inventory is a 37 item 

measure of depression.  To construct two measures of maternal depression, the 

inventory was divided at random to produce two measures of maternal 

depression with each measure representing the number of depressive symptoms 

reported by the child's mother at age 13 years. 

2)  Measures of child conduct problems were obtained from reports from three 

sources: the child's mother, the child's class teacher and from self report.  

Maternal and teacher reports were obtained from measures which combined the 

items of the Rutter (Rutter, Tizard & Whitmore, 1970) and Conners (Conners, 

1969; 1970) maternal and teacher questionnaires.  Child report measures were 

based on an 11 item inventory based on DSM-III-R criteria (American Psychiatric 

Association, 1987) for oppositional defiant disorder.  In all cases measures of 

child behaviour were scored using the number of problem behaviours reported by 

each source. 

Inspection of Table 1 suggests the following general conclusions. 

1) Measures of maternal depression were strongly correlated (r = +.901) 

suggesting that the measure of depression had high internal consistency. 

2) Measures of childhood behaviour were only moderately correlated with 

correlations between different behaviour reports ranging from .359 to .440 
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suggesting quite substantial disagreements between reports of the same 

child described by different sources. 

3) For all measures of child behaviour there was evidence of positive 

correlations between maternal depression and child behaviour implying a 

tendency for behaviour problems to increase with increases in maternal 

depression.  The size of the correlations, however, varied with the source of 

reporting with the correlation between maternal depression and child 

behaviour (r = .270, .278) being substantially larger than the correlation 

between maternal depression and reports of child behaviour provided by 

children (r = .054, .059) or teachers (r = .092, .097). 

------------------- 

INSERT TABLE 1 HERE 

------------------- 

The models described previously were fitted to the data in Table 1 using the 

program LISREL 7 and methods of maximum likelihood estimation.  The results 

of model fitting are summarised in Table 2 which shows two indices of fit for the 

models.  The first measure is the log likelihood chi square statistic.  This 

measures the general goodness of fit between the observed correlations and those 

implied by the fitted model parameters.  The second measure is the overall 

goodness of fit index proposed by Joreskog & Sorbom (1989).  This index ranges 

between 0 and 1 with 1 implying a perfectly fitting model.   

Both sets of indices lead to a common conclusion about the adequacy of Models 1 

and 2 as descriptions of the observed data.  On the basis of both indices, Model 1 

clearly fits the data poorly: the log likelihood chi square value is highly significant 

(42.16, d.f. = 4, p<.001) implying the presence of detectable deviations between 

the observed data and the data implied by model estimates.  In addition, the 

overall goodness of fit measure is not high (GOF = .921).  On the other hand, 

Model 2 shows a good fit to the data on the basis of both the log likelihood chi 

square value (0.58, d.f. = 3, p>.90) and the overall goodness of fit measure (GOF 
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= .999).  Further it is possible to conduct a test of the improvement of fit provided 

by Model 2 when compared with Model 1.  This test may be conducted by taking 

differences in the log likelihood chi square measures and the corresponding 

degrees of freedom and interpreting the differences in chi square values as a chi 

square variate.  This test shows that Model 2 produced a clearly significant 

improvement in fit over Model 1 (LRX2 = 41.58, d.f. = 1, p<.001). 

Collectively the results in Table 2 lead to the conclusion that whilst the observed 

data were not consistent with the assumptions of Model 1 they were consistent 

with the assumptions of Model 2. 

------------------- 

INSERT TABLE 2 HERE 

------------------- 

The fitted Model 2 estimates are shown in Figure 3.  This Figure may be 

interpreted as follows: 

1)  The coefficients relating the observed measures of depression to the latent 

variable of maternal depression are estimates of the correlations between the 

non-observed factor and the observed test scores.  In this instance these 

coefficients are large (.94, .96) suggesting strong associations between maternal 

reported depression and the non-observed latent variable. 

2)  Similarly, the coefficients linking the observed behaviour report data to the 

latent variable of child conduct problems are estimates of the correlation between 

the latent variable and the observed indicators.  In this case the coefficients (.56, 

.72, .61) suggest that there are generally quite moderate associations between the 

latent variable and the observed tests suggesting that the observed tests were 

subject to considerable fallibility as measures of the child's general tendencies to 

problem behaviours. 
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3)  The coefficient relating maternal reported behaviour to maternal depression is 

an estimate of the extent to which maternal depression influences maternal 

reporting behaviour, independently of the general association between maternal 

depression and child behaviour.  This coefficient was .22 (p<.001) suggesting a 

small but detectable tendency for increasing maternal depression to be 

associated with a tendency for mothers to over-report child behaviour problems 

relative to the latent criterion measure of child conduct problems. 

4)  Finally, the model shows that despite contamination in maternal reports of 

behaviour, there is evidence of a small positive correlation (.  = +0.12, p<.001) 

between maternal depression and child behaviour.  This correlation is somewhat 

smaller than the observed correlations between maternal depression and 

maternal reported behaviour (r = +0.270, +0.278).  This may be explained by the 

fact that the correlations between maternally reported behaviour and maternal 

depression are inflated by a tendency for maternal depression to influence 

maternal reporting behaviours.  At the same time this correlation is somewhat 

larger than the correlation between maternal depression and the observed 

teacher and child report measures.  This may be explained by the fact that the 

model takes into account reporting errors in both maternal depression and child 

behaviour measures and these reporting errors tend to attenuate the observed 

correlations. 

-------------------- 

INSERT FIGURE 3 HERE 

--------------------- 

In general, the model in Figure 3 appears to provide a consistent and coherent 

account of the relationships between maternal depression and child behaviour 

reports which takes into account both the possibility of both errors of 

measurement in the observed report data and the possibility of contamination of 

maternally reported behaviour by maternal mental state.  The data are consistent 

with a theory that assumes that whilst maternal depression and child behaviour 
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are correlated variables, the correlation between maternal depression and 

maternal reported behaviour may over-estimate this association.  At the same 

time the above analysis has considered only two of an array of possible models of 

the relationship between maternal depression and child behaviour reports.  

Whilst it has been shown that these data are consistent with a particular theory 

of the associations between variables, this does not imply that alternative models 

of this relationship cannot be proposed.  In particular, in a review of the evidence 

on the association between maternal depression and child behaviour, Richters 

(1992) has argued that any bias apparent in maternal reports could equally well 

be due to depressed women reporting more accurately and to other sources being 

less accurate than depressed women.  Given this it is clear that there is a need 

for further tests of the assumption that maternal depression colours maternal 

reports of child behaviour and leads to depressed women over-reporting 

childhood problem behaviour. 

The Advantages and Liabilities of Structural Equation Models 

The increased use of structural equation modelling methods in the social 

sciences has tended to produce a polarisation of opinion about the utility of these 

methods.  In some areas, and notably behavioural genetics, the use of such 

methods has been greeted with considerable enthusiasm (see, for example, 

Heath, Neale, Hewitt, Eaves & Fulker, 1989) whereas in other areas there has 

been considerable skepticism expressed about these methods with concerns 

being expressed about the extent to which structural equation models adequately 

test causal assumptions (Baumrind, 1983) about the utility of latent variable 

methods as opposed to the analysis of measured variables (Martin, 1982), and 

about the extent to which formal methods of statistical modelling may both 

distort data analysis and inhibit the full exploration of data (Brown, Harris & 

Lemyre, 1991).  All of these criticisms have some foundation but largely reflect 

the fact that structural equation models do not provide a complete solution to all 

problems of causal and measurement analysis.  Rather, these methods are likely 
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to be well applied in some conditions where the basic assumptions of both the 

modelling process and the statistical foundations of the model are well met and 

be less suited to the analysis of other types of problem.  In the final analysis the 

utility of structural equation models does not depend on the formal statistical 

aspects of the model but rather on the skill and insight with which these models 

are applied to solve problems in a realistic and theoretically meaningful way.   

The advantages of structural equation modelling are almost self-evident.  

Providing that the investigator has a well specified conceptual theory of his/ her 

data; providing that this theory can be realistically represented by a set of 

identified simultaneous linear equations and providing that data of sufficient 

quality and quantity exist to test the theory then structural equation modelling 

methods provide a powerful means of both hypothesis testing and theory 

generation.  The liabilities of the approach arise from failure of one or more of 

these conditions to be satisfied. 

Perhaps the least well documented aspect of model building is that of devising an 

adequate theoretical framework on which to base a model.  Typically, theories in 

the social sciences are not expressed with sufficient precision for one to argue 

that a particular theoretical perspective implies that a particular structural 

model should describe the observed data.  This situation almost invariably places 

the investigator in the situation of having to make various assumptions to bridge 

the gap between the conceptual theory and the statistical model which is alleged 

to represent the conceptual theory.  Typically, such assumptions will include 

assumptions about the scale characteristics of variables, the nature of 

relationships between variables and, perhaps most importantly, the causal 

linkages which are assumed to be non-existent.  The extent to which it is possible 

to justify such assumptions will depend on the state of theory and knowledge in a 

particular area and, in general, it seems likely that structural equation modelling 

methods are likely to be most powerful and effective in areas in which there is a 

large amount of prior theoretical and empirical knowledge about the processes 
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under study and least likely to be effective in areas in which theory and data are 

sparse. 

An important decision which must be made at an early stage of model 

construction concerns the metric on which variables are assumed to be 

measured.  This issue is likely to be of particular importance in the area of 

childhood psychiatric epidemiology.  In particular, there have been two very 

different ways in which behavioural variation has been measured in this area.  In 

many studies, behavioural variation is measured by case/non-case measures in 

which the population of children is assumed to belong to distinct groups of 

disordered and non-disordered children (see, for example, McGee et al in this 

volume).  In other studies founded on a psychometric tradition, behavioural 

variation is assumed to conform to a dimensional model in which the severity of 

disturbance ranges from none to severe.  Whilst for purposes of data display and 

data description it is perfectly possible to represent the same set of symptom 

measures as scales or categories, at the point that causal or structural accounts 

of the data are presented some clear decision must be reached about the 

appropriate metric on which to measure behavioural variation. 

In general, if it is believed that the population can be classified into disordered 

and non-disordered groups of children displaying qualitatively different patterns 

of behaviour then the application of structural equation modelling methods is 

likely to produce a distorted and probably misleading account of the data.  Under 

such circumstances any attempts at modelling the causal structure of the data 

should be based on methods suitable for the analysis of qualitative or categorical 

measures.  (The general latent class model developed by Goodman (1974a; 

1974b) provides a body of theory for the analysis of qualitative variables which 

has many similarities and analogies with structural equation modelling of 

continuous variables).  If, on the other hand, it is believed that behavioural 

variation has dimensional properties in which the severity of behavioural 
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disturbance ranges from none to severe than structural equation modelling 

methods may be applicable to such data. 

Even assuming that issues relating to the "scales versus categories" debate can 

be satisfactorily resolved, the application of structural equation models to 

dimensional variables may still pose problems.  In particular, the central 

assumption of such models is that structural relationships between variables can 

be represented by an additive and linear model.  However, it has been argued by 

a number of authors that additive and linear models may not be applicable in 

many areas and that models which assume non-linear or interactive structures 

are likely to be more realistic.  To take one example, Brown & Harris (1978) have 

argued that the factors leading to the onset of depression combine interactively 

so that depression develops only in those who are both vulnerable to this 

condition and who are exposed to an appropriate provoking factor.  It may be 

argued that the use of linear and additive models in situations where data 

structures are likely to be non-linear and interactive may be potentially 

misleading (Rutter, 1983). 

At the same time there are a number of ways in which structural equation 

models can be extended to include some types of interactive assumptions.  For 

example, a common interactive assumption is that different subpopulations 

respond to the same risk factor in different ways.  The Brown and Harris theory 

above is an example of such an assumption since this model implies that the 

responses of vulnerable and non-vulnerable subjects to the same provoking 

factor may be different.  Such models can be tested using so-called multiple 

group models in which the sample is partitioned into a number of different 

subgroups and different models are fitted to each group.  A very useful account of 

the problems of modelling population heterogeneity in this way has been provided 

by Muthen (1989).  However, in other applications it may be less easy to include 

interactive assumptions in structural equation models.  All of these 

considerations clearly suggest that at the point when structural equation models 
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of any data set are considered it is important to weigh the assumptions of 

linearity and additivity which underlie these models to determine the extent to 

which these assumptions are consistent with prior theory and knowledge about a 

given area. 

The process of translating a causal theory to a causal model also requires that 

the investigator confronts the issue of the identification status of the model.  It is 

not the case that all causal theories can be expressed as identified models.  For 

example, it is often tempting to assume theories in which all variables are related 

to each other simultaneously.  Such models will invariably be underidentified, 

and Duncan (1975) has described these models as "hopelessly underidentified" to 

underline the point that theory rather than data analysis is needed to identify the 

causal structure of variables.  The effects of confronting the identification 

problem are usually to force the investigator to make certain simplifying 

assumptions which, in effect, impose the condition that certain causal 

relationships do not exist.  The result of this process is to make structural 

equation models approximations, perhaps caricatures, of the complex reality they 

represent. 

Almost invariably, attempts to build structural equation models will be 

compromised by the fact that the data available to test such theories are limited 

in both quantity and quality.  The major quantitative limitation on data is usually 

that the model or process of data collection may omit some variables which are of 

theoretical relevance.  The omitted-variable problem has been a fertile ground for 

research criticism since it is possible to take almost any causal model and 

postulate the presence of omitted variables that impugn the validity of the causal 

interpretation.  Such criticism has both constructive and destructive aspects.  

The constructive aspect of the argument is that the suggestion that certain 

variables are omitted leads to the development of tests of the difference between 

the original model and the revised model containing the previously omitted 

variables.  The destructive aspect of this approach is the belief (which is 
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apparently held by many research critics) that the act of listing omitted variables 

automatically impugns the validity of a causal model. 

Even when problems of model specification, identification, variable scaling and 

estimation have been overcome there may still be problems concerning the 

interpretation of parameters of structural equation models.  Usually these models 

are fitted to data from reasonably large samples with the result that the 

parameter estimates describe the relationships that exist "on average" between 

variables.  However, such models do not take account of inter-individual 

variations in responsiveness and implicitly assume that the parameters of the 

model apply with equal force to all individuals.  However, it is possible that 

substantial inter-individual variation in responsivity may exist.  Thus, for 

example, a dosage of lead which may be sufficient to cause serious neurological 

damage in one child may be less harmful in another child.  This view presents an 

extreme case of the problem of interaction described earlier and assumes that the 

causal parameters of the model are specific to each subject and that, as a 

consequence, averaging these parameters across subjects does not adequately 

describe the causal process.  Recently there have been attempts to address this 

problem through the use of so-called components of variance or hierarchical 

linear models (Byrk, 1989; Goldstein, 1987) which, subject to the availability of 

repeated measures on each subject, permit the estimation of both between and 

within individual parameters.  When used in conjunction with structural 

equation modelling methods these methods may make it possible to assess the 

extent to which it is necessary to estimate individual specific parameters and the 

extent to which parameters averaged across individuals provide an adequate 

account of the causal and other processes under study. 

Consideration of the problems of specifying, fitting, testing and interpreting 

structural equation models suggests that there are many points at which the 

process may fail.  Existing theory may not be sufficiently precise to suggest 

compelling causal models; in the process of model specification and identification 
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compromises may be made that vitiate the assumptions of the original theory; 

observed data may be of insufficient quality or quantity to sustain the model-

fitting process; and the use of parameter estimates based on sample data rather 

than individual data may misrepresent the causal processes which are occurring 

in populations.  These problems are, of course, not peculiar to structural 

equation models and any attempt to construct compelling causal models of 

correlational evidence needs to confront such problems of model specification, 

identification, estimation, measurement and interpretation.  In the final analysis 

the major contribution of current structural equation modelling methods may not 

be in the area of developing substantive models but rather in the area of 

sensitising research workers to the theoretical, formal and empirical problems 

which must be confronted when causal accounts of correlational evidence are 

offered. 
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Table 1: Matrix of correlations of maternal depression and measures of child conduct 
disorder  
 
at 12 years 

  
  
                                                     Maternal Depression                 
Conduct Disorder 
   
 First Second Maternal Teacher Child 
 Measure Measure  Rating Rating Rating 
  
 
MATERNAL DEPRESSION 
 
  First Measure  1 
 
  Second Measure   .901  1 
 
 
CONDUCT DISORDER 
 
  Maternal Rating   .270   .278  1 
 
  Teacher Rating   .092   .097   .423  1 
 
  Child Rating   .054+   .059+   .359   .440  1 
  
N = 768 
 
+ Correlation not significantly different from zero (p>.05) 
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Table 2: Log likelihood chi-square goodness of fit and adjusted goodness of 
fit  
 
index for models 1 and 2 

  
  
  Adjusted 
 Log-likelihood Degrees of  Goodness 
Model   Chi-square  Freedom Probability   of Fit 
  
One 42.16 4 <.001 .921 
 
Two 0.58 3 >.90 .999 
  
 
 

 

 


