Science of Rheumatic Fever Surveillance and Control

Rheumatic Fever & Housing: Opportunities for prevention

Michael Baker University of Otago, Wellington 4 February 2013

Outline

- Epidemiology of RF vs. other serious IDs in NZ
- Patterns of household crowding in NZ
- Association between household crowding and RF vs. other serious IDs
- Risk factors for RF
- Intervening to prevent RF through better housing
- Conclusions & implications

RF Epidemiology Increasing incidence

Serious infectious diseases

Large (51%) increase in ID hospitalisations from 1989 to 2010. Largely occurred from 1991 to 2001

Source: Baker et al. Lancet 2012; 379, 1112 - 19

Serious Infectious Diseases Hospitalisation rates by ID categories

Infectious disease category

Source: Baker et al. Lancet 2012; 379, 1112 - 19

RF Epidemiology Increasing ethnic inequalities

Fig. 1 Annual index cases and incidence rates for acute rheumatic fever in 1993–2009 for children 5 to 14 years of age. Māori (----); Pacific (----); non-Māori/Pacific (----).

Source: Milne, Lennon, et al. J Paed Child Health 2012; 48: 685-91

Serious Infectious Diseases

Children < 5 years, Ratio of Māori & Pacific ID rates to European/Other, 1989-2008

Source: Baker et al. Lancet 2012; 379, 1112 - 19

Possible causes for increase in IDs

Income inequality increased markedly 1988 to 2000 period as measured by Gini coefficient & other indicators used by MSD & internationally

Source: Ministry of Social Development (Perry). Household incomes in NZ, 2011. Low Gini coefficient \Rightarrow low income inequality

Possible causes for increase in IDs

Housing affordability = proportion of households spending > 30% of income on housing costs From 1988 to 1997 prop increased 11% to 25%

Source: Ministry of Social Development. The Social Report 2010.

Household crowding

Source: Baker et al. Household crowding in NZ. 2012.

Household crowding

Source: Baker et al. Household crowding in NZ. 2012.

RF & household crowding

Cases of Rheumatic Fever (2007-2012) by percent households crowded (Canadian National Occupancy Standard)

Source: NZ Ministry of Health, 2012.

RF & household crowding

Average annual RF first admission rates by household crowding, deprivation, income quintiles, 1996-2005

Source: Jaine, Baker, Venugopal. Paed Infect Dis J 2011; 30: 315-9

RF & household crowding

Multivariate analysis

- Risk of ARF hospitalisation in relation to CAU features
- Zero inflated negative binomial regression
- Restricted to Māori & Pacific 5-14 years, 1996-2005

Explanatory variable	Incidence rate ratio	95% conf. interval	p-value
Household crowding	1.022	1.010-1.034	0.000
Household income	1.006	0.998-1.024	0.523
Prop. 5-14 year olds	1.038	1.005-1.071	0.022

Source: Jaine, Baker, Venugopal. Paed Infect Dis, 2011; 30: 315-9

RF risk factors

- Few high-quality studies of housing conditions & RF (or risk factors generally)
- Potential for case-control studies of ARF and cohort studies and cross-sectional studies of RHD
- RF strongly associated with age, ethnicity, poverty → confounding unless adjusted in analysis
- PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions

RF risk factors

Best quality studies show no significant association between household crowding and risk RF or RHD

Study, year	Country Time period	Study design	Out- come measure	Exposure measure: crowding	Comparison group	Subjec ts	No. subject	OR / RR, 95%CI	p- value
Kurahara 2006	US 1998- 2001	Case- control	RF	No. in subjects bedroom	Hospital controls with non-RF heart conditions	<18yo	26 cases + 41 controls	Mean cases: 1.4; controls: 1.7	NS
Vlajinac, 1991	Yugo- slavia 1982	Case- control	RF	>2 persons / room	Neighbour- hood & school controls	<18yo	148 cases + 444 controls	OR=1.60, CI 0.61-3.00	NS
Oli, 1999	Ethiopia 1995	Cross - section	RHD preval- ence	Persons / bedroom (2+ in univariate analysis)	Children without RHD	10- 15уо	9378	OR=1.01, CI 0.99-1.02	NS
Coggon, 1993	UK 1936- 1989	Cohort (retro)	Mortality from RHD	Crowding index 1.00+ vs. <0.50	No RHD as adults	All ages	8138	-	NS

Source: Baker, McDonald et al. 2012. Household crowding & risk of IDs: A systematic literature review & meta-analysis of observational studies.

RF Risk factors

Risk factors for RF:

• Age	+++
• Ethnicity	++
• Poverty	+
 Access to health services 	+
 Household crowding 	+/?
 Household dampness 	+/?
 Urbanisation 	?
 Poor nutrition 	?

Sources:

- Steer, Carapetis, et al. Paediatr. Child Health 2002; 38: 229–34
- Kerdemelidis, Lennon, et al. J Paediatr. Child Health 2010; 46 534–48
- NZ Guidelines Group, RapidE: Rheumatic Fever, 2011
- Baker, McDonald, et al. Household crowding & risk of IDs, 2012

IDs and Household Crowding Multiple studies on Meningococcal disease

Source: Baker, McDonald et al. 2012. Household crowding and the risk of infectious disease: A systematic literature review and meta-analysis of observational studies.

IDs and Household Crowding Meta-analysis of multiple IDs

Disease/category	Ν	Case-control (cross- sectional studies*)	Cohort studies		
Respiratory infections:					
Pneumonia	7	OR 1.58, CI 1.19-2.10	RR 1.61, CI 1.12-2.31		
Other respiratory	8	OR 1.38, CI 0.71-2.67	RR 1.35, CI 1.02-1.79		
infection					
 Haemophilus influenza 	6	OR 1.74, CI 1.27-2.37			
Meningococcal disease	7	OR 2.13, CI 1.38-3.29			
RSV / bronchiolitis	4	2.24, CI 1	1.14-4.38		
• ТВ	7	OR 3.78, CI 1.78-8.13			
Enteric infections:					
Gastroenteritis	4	OR 1.13, CI 1.01-1.26			
• Hepatitis A	6	OR 1.42, CI 1.15-1.75			
• H. pylori	28	OR 1.82, CI 1.55-2.13			
Skin/eye infections:					
Trachoma	2	OR 2.07, CI 1.06-4.06			
Total	79				

Source: Baker, McDonald et al. 2012. Household crowding & risk of IDs: A systematic literature review & meta-analysis of observational studies.

Mechanism linking crowding to RF

Classical studies in US Air Force Base barracks in 1950s.

Acquisition of streptococcal infections increased when beds moved closer together Biological basis for effect of crowding on ARF incidence

Source: Wannamaker LW. The epidemiology of streptococcal infections. In: McCarty M, ed. Streptococcal Infections. Columbia University Press, New York, 1954

Mechanism linking crowding to RF

Interventions

HNZC Healthy Housing Programme (HHP) HHP tenants (7,477) compared with Non-HHP tenants (27,903)in Auckland and Northland 2004-08

Children <20 years participating in HHP:

- 27% (95%CI -43% to -6%) decline in acute and arranged hospitalisations
- Crowding reduction associated with:
 - 61% (95%CI -79% to -26%) reduction in acute and arranged hospitalisations
 - 69% (95%CI-91% to +1%) reduction in IDs

Sources:

- Baker et al. 2012. Health Impacts of the HHP on HNZC Tenants: 2004-2008
- Jackson et al. J Epidemiol Community Health 2011;65:588-93

Interventions

- 32% of RF cases (<18 years, 2004-2010) were HNZC tenants reflecting high proportion of Maori & Pacific children
- Age-ethnicity adjusted RR 1.6 (95%CI 1.5-1.7) for RF in HNZC tenants vs. Other NZers

Conclusion

- RF is associated with exposure to household crowding, but evidence base is small & may be confounded by poverty
- Mechanism is presumably through an increased risk of GAS pharyngitis
- Strong evidence for household crowding increasing risk of many IDs
- In NZ incidence & ethnic inequalities have increased for RF and serious IDs generally
- Some of these increases may be related to increasing exposure to household crowding
- HNZC healthy housing programme highly effective at reducing IDs in children

Implications

- **1. Sufficient evidence to justify reducing exposure of NZ children to severe household crowding to prevent IDs**
- 2. Need to enhance & extend the HNZC Healthy Housing Programme
- 3. Need to increase supply of social housing, particularly in Auckland
- 4. Need high quality research to investigate relationship of household crowding (+ other features of home environment) with (a) GAS pharyngitis & (b) RF

Acknowledgements

- University of Otago: Prof Philippa Howden-Chapman, Jane Zhang, Dr Michael Keall, Dr Kamalesh Venugopal, Dr Ayesha Verrall, Dr Richard Jaine, Dr Nick Wilson, Dr Lucy Telfar Barnard, Dr Amanda Kvalsvig
- Statistics NZ: Dr Rosemary Goodyear,
- Ministry of Health for data and funding support
- Health Research Council for supporting He Kainga Oranga / Housing and Health Research Programme