
 ISSN 1178-2293 (Online) 

  

 

 

 University of Otago 

 Economics Discussion Papers 

 No. 1715 
 

 DECEMBER  2017 
 

 
 

 

Simulation Evidence on Herfindahl-Hirschman Indices as 

Measures of Competitive Balance 
 

 

P. Dorian Owen1 · Caitlin A. Owen2 
 

 

 

 

 

 

 

 

Address for correspondence: 

Dorian Owen 

Department of Economics 

University of Otago 

PO Box 56 

Dunedin  

NEW ZEALAND 

Email: dorian.owen@otago.ac.nz 

Telephone: 64 3 479 8655 

 

 



 December 2017 

 

 

 

Simulation Evidence on Herfindahl-Hirschman Indices as Measures of 

Competitive Balance 
 

 

P. Dorian Owen1 · Caitlin A. Owen2 

 

 

 

Abstract Measurement of the degree of competitive balance, how evenly teams are matched, 

is central to the economic analysis of professional sports leagues. A common problem with 

competitive balance measures, however, is their sensitivity to the number of teams and the 

number of matches played by each team, i.e., season length. This paper uses simulation 

methods to examine the effects of changes in season length on the distributions of several 

widely used variants of the Herfindahl-Hirschman index applied to wins in a season. Of the 

measures considered, a normalized measure, accounting for lower and upper bounds, and an 

adjusted measure perform best, although neither completely removes biases associated with 

different season lengths. 

 

 

Keywords  Herfindahl-Hirschman · Competitive balance · Simulation   

 

 

JEL Classification D63 · C63 · L83 · Z20  

 

 

Contact: 

Dorian Owen  

e-mail: Dorian.Owen@otago.ac.nz 

 

 
1 Department of Economics, University of Otago, PO Box 56, Dunedin 9054, New Zealand 

 
2 Department of Information Science, University of Otago, PO Box 56, Dunedin 9054, New 

Zealand 

 

  

mailto:Dorian.Owen@otago.ac.nz


1 

 

1 Introduction 

Measurement of the degree of competitive balance, how evenly teams are matched, continues 

to attract attention in the economic analysis of professional sports leagues. In any single match, 

it takes two teams, each attempting to beat their opponent, to jointly produce a sporting contest 

(Neale 1964). Similarly, the overall league competition reflects the aggregation of all the 

outcomes of the individual pairwise matches; this output is the joint product of all the teams in 

the league. The extent to which playing strengths vary across teams therefore has important 

implications for the degree of uncertainty surrounding the outcomes of individual matches and 

of overall championships. According to the uncertainty of outcome hypothesis (Rottenberg 

1956), the more predictable the outcome of a sporting contest, the less interest there will be 

from consumers, reflected in lower match attendances and lower television audience ratings. 

Measurement of competitive balance is therefore important, whether in tracking its 

movements over seasons and evaluating the effects of regulatory and institutional changes, or 

in examining the effects of changes in competitive balance on consumer demand for the 

sporting product (Fort and Maxcy 2003). Because competitive balance is concerned with the 

degree of inequality of match and/or championship outcomes arising from differences in the 

strengths of teams, it is natural that summary measures of dispersion, inequality and 

concentration are commonly used (Humphreys and Watanabe 2012; Owen 2014).  

A common problem with such measures, however, is their sensitivity to the number of teams 

and the number of matches played by each team, i.e., season length. This makes comparisons 

of levels of competitive balance difficult, especially when these commonly involve different 

leagues that exhibit widely differing numbers of teams or games played. Major League 

Baseball, for example, has 30 teams playing 162 games each in a regular season, whereas the 

English Premier League has 20 teams playing 38 games each. A drawback with the use of 

standard ‘off-the-shelf’ measures of dispersion, inequality and concentration is that they do not 
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take into account the design characteristics of sports leagues. Leagues’ playing schedules (the 

list of fixtures) impose limits on the dispersion of the distribution of wins or points and 

consequently limit the range of feasible values of these measures (Depken 1999; Utt and Fort 

2002; Owen et al. 2007; Owen 2010; Gayant and Le Pape 2015); moreover, these limits depend 

on the number of teams and games.  

A desirable property of any measure of competitive balance used for cross-league 

comparisons (or for comparison of balance in a single league with changing numbers of games 

per season over time) is independence with respect to the numbers of teams or games played 

per season. Recent simulation analyses show that the location of the distribution of the popular 

ratio of standard deviations measure (Noll 1988; Scully 1989), which is commonly advocated 

for comparisons involving scenarios with different numbers of teams and/or games played, is 

in fact highly sensitive to season length due to an inappropriate normalization (Owen and King 

2015; Lee et al. 2016). In this paper, we examine simulation evidence on the distributional 

properties of an alternative family of CB measures based on the Herfindahl-Hirschman index 

applied to wins. 

In Section 2 we describe the different variants of the Herfindahl-Hirschman index 

commonly used in the sports economics literature; these vary in the extent to which they 

incorporate information on the limits imposed by the league’s playing schedules. In Section 3 

we outline the details of the simulation design used to examine the effects of different 

distributions of team strength, number of teams and number of games played on the 

distributions of these different variants. The results of the simulation analysis are reported and 

interpreted in Section 4. We find that accounting for both the lower and upper bounds of the 

concentration measure improves its performance across the degrees of imbalance considered. 

However, all the variants tend to provide values that are biased upwards if the number of 
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matches is small, so we investigate further some adjustments that could improve this aspect of 

their performance. Conclusions are summarized in Section 5. 

 

2 Herfindahl-Hirschman Indices of Competitive Balance 

Drawing on the industrial organization literature on firm concentration, a common measure of 

competitive balance is the Herfindahl-Hirschman index (HHI), which is based on the sum of 

squares of market shares. When applied to the distribution of wins across teams in a season, 

‘market share’ is interpreted as the number of wins by a team as a proportion of total wins by 

all the teams in the league in that season (Depken 1999): 
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where wi is the number of wins for team i and N is the number of teams in the league. Equal 

shares of wins for each team minimize the value of HHI at 1/N (corresponding to a situation of 

perfect balance); increases in the value of HHI reflect decreases in competitive balance as wins 

become less equally distributed and more concentrated among the stronger teams in the league. 

This definition is appropriate for sports for which the result of each match is a win for one 

team and a loss for the other (i.e., there are no draws or ties). In some sports, drawn (tied) 

matches are feasible or common (as in the case of association football), so that the points 

assigned to each outcome (win, draw, loss) need to be taken into account. In such cases, HHI 

can be defined in terms of points instead of wins, and total points can represent the total of 

points actually accumulated by all teams or the feasible maximum of available points.  

Because the lower-bound value of HHI, HHIlb = 1/N, corresponding to perfect balance in 

terms of the shares of wins or points, depends on the number of teams in the league, Depken 

(1999) suggests controlling for variation in N when interpreting movements in HHI over time 

or comparing balance in different leagues. He proposes an adjusted measure: 
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 dHHI = HHI  1/N, (2) 

 

i.e., the deviation of HHI from its lower-bound perfect-balance value. Equal shares of wins 

(perfect balance) imply dHHI has a minimum value of zero and, as with HHI, increases in 

dHHI away from zero represent decreases in competitive balance (increases in competitive 

imbalance).  

Rather than subtracting the lower bound of HHI, Michie and Oughton (2004) adopt a 

multiplicative adjustment, defining their ‘H Index’, here denoted mHHI, as a ratio form:  

 

 mHHI = HHI/(1/N) = N.HHI. (3) 

 

As the degree of competitive imbalance increases, mHHI also increases, but mHHI  1, i.e., the 

lower bound of mHHI is unity.1  

A distinctive feature of market share in the context of teams’ wins in a sports league is that 

(if N > 2) no team can be the equivalent of a monopolist, because teams cannot win games in 

which they do not play.2 As a result, the league’s playing schedules imply an upper limit on 

the degree of imbalance in the distribution of wins, and consequently impose an upper bound 

on HHI. The upper bound is determined by the ‘most unequal distribution’ of match outcomes 

(Horowitz, 1997; Fort and Quirk, 1997; Utt and Fort, 2002). This involves one team winning 

all of its games, the second team winning all except its game(s) against the first team, and so 

on down to the last team, which wins none of its games. If playing schedules are balanced, each 

team in the league plays every other team the same number of times, K. Each team plays G = 

K(N  1) games and, overall, there are KN(N  1)/2 games in the season. Assuming balanced 

                                                 
1 Often, this form of the index is multiplied by 100 to give a perfect parity score of 100. 
2 HHI or dHHI can also be applied to shares of championships over several seasons (e.g., Eckard 1998; Kringstad 

and Gerrard 2007; Dittmore and Crow 2010; Addesa 2011; Leeds and von Allmen 2014, p.164; York and Miree 

2015). In that context, it is feasible, in principle, for one team to be a monopolist and win the championship in 

every season in the time span considered. 
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scheduling, Owen et al. (2007) derive an expression for the upper bound for the HHI for wins 

(or points), denoted HHIub, given by: 

 

HHIub = 2(2N  1)/[3N(N  1)], (4) 

 

with HHIub < 1 if N > 2. They propose a normalized version of HHI, HHI*, which adjusts for 

the lower and upper bounds:  

 

HHI* = (HHI – HHIlb)/(HHIub – HHIlb). (5) 

 

As with all the previously discussed variants of HHI, decreases in competitive balance 

(increases in competitive imbalance) are associated with increases in HHI*. An advantage of 

this normalization is that, for any set of match outcomes, HHI* is bounded in the interval [0, 

1], with zero indicating perfect balance and one representing maximum imbalance. Because of 

its ease of use and interpretation, Hall and Tideman (1967) consider having a [0, 1] range to be 

a desirable property for any concentration measure.3 However, Van Scyoc and McGee (2016, 

p.1040) ask: “[d]oes an [HHI*] of 0.43 in Major League Baseball mean exactly the same thing 

as a 0.43 in the National Football League? … it is not clear that [the] arithmetic transformation 

actually leaves us with a useful measure.” They suggest that neither dHHI nor HHI* is fully 

purged of the influence of N and G. For the case of perfect balance (i.e., all teams of equal 

strength) and a balanced playing schedule, they show that E(dHHI) = 1/NG = 1/[KN(N  1)] 

and E(HHI*) = 3(N − 1)/[(N + 1)G] = 3/[K(N + 1)] (Van Scyoc and McGee, 2016, p.1040, fn. 

10, and substituting G = K(N  1). At least for the case of perfect competitive balance, this 

implies both dHHI and HHI* have expected values very close to zero only for large N and/or 

K.  

                                                 
3 Gayant and Le Pape (2015) show that HHI* (which they refer to as the ‘Herfindahl Ratio of Competitive 

Balance’) is equivalent to a normalized measure defined in terms of the variance of teams’ shares of total points 

earned. This “strengthens the validity of the normalization process” and “shows clearly that there is intrinsically 

no difference between calculating a variance or a Hirschman-Herfindahl index when measuring the level of 

competitive imbalance in a league” (Gayant and Le Pape 2015, p.115). 



6 

 

All these variants of HHI, applied to shares of wins or points in a season, are widely used in 

recent empirical analyses of competitive balance. The unadjusted HHI, as in equation (1), 

continues to be applied to wins despite arguments for the desirability of adjusting for its lower 

and upper bounds. For example, Jane (2014, 2016), analysing the determinants of game-day 

attendance for the National Basketball Association (NBA), uses the unadjusted HHI applied to 

the shares of wins.4  Del Corral et al. (2016) also calculate unadjusted HHI indices (applied to 

the end-of-season expected number of victories in the NBA).  

Following Depken’s (1999) suggestion, adjustment for HHI’s lower bound is commonly 

implemented. For example, Larsen et al. (2006) calculate dHHI applied to the shares of wins 

in the National Football League (NFL) to allow for league expansions (increases in N) over 

time. They use dHHI as their dependent variable in modelling the effects of different 

determinants of competitive balance (e.g., the introduction of free agency, the salary cap, player 

strikes and the distribution of playing talent).5 Fenn et al. (2005), in a study of the National 

Hockey League (NHL), and Totty and Owens (2011), for the NBA, NHL and NFL, adopt a 

similar approach. 

In addition to Michie and Oughton (2004, 2005), a multiplicative normalization taking into 

account HHIlb (equivalent to mHHI) is also widely used, including by Brandes and Franck 

(2007), Lenten (2008, 2015, 2017), Pawlowski et al. (2010), Mills and Fort (2014), Gasparetto 

and Barajas (2016), Eckard (2017) and Tainsky et al. (2017).  

Normalized versions of HHI that take into account both lower and upper bounds are also 

becoming more widely adopted. In addition to Owen et al. (2007), Manasis et al. (2015) use 

HHI*, along with six other seasonal balance measures in a panel data analysis of attendance 

                                                 
4 HHI is applied cumulatively to take into account the timing of each game; for a game at time t, the share of wins 

for team i is calculated as team i’s cumulative wins divided by the total of games played in the league prior to the 

game at time t. 
5 They also proxy the upper bound of HHI “by consulting actual playing schedules and by assuming that wins are 

distributed in alphabetical order” (Larsen et al., 2006, p.380); they plot the value for this proxy graphically but 

dHHI is used in their regression analysis. 
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demand functions for eight European football leagues. Martinez and Willner (2017) apply 

HHI* (along with Gini and standard deviation measures) to data for the top division of English 

football. Ramchandani (2012) uses a normalized version of HHI, defined as (HHI – 1/N)/(1 – 

1/N), applied to points in 10 European football leagues; this accounts for the lower bound of 

HHI, but sets the upper bound at unity, which is not feasible in a sports league with N > 2, as 

previously discussed.  

In addition to these widely used variants of HHI, we also examine a version of the ‘record-

based’ balance measure proposed by McGee (2016), which can be viewed as an adjusted 

version of the other HHI measures. For the case of a balanced playing schedule with each team 

playing G = K(N – 1) matches, and no draws, his r measure is defined (in our notation) as:  

 

( )

( )

r
r

N

N G K
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

 
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where r = ( ) /
N
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w G G


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1
2  (McGee, 2016, eq. (6)). McGee makes the simplifying 

assumptions that the degree of imbalance is transitive (team A is always favoured over all other 

teams, B is favoured over all others apart from A, and so on) and uniform, such that for each 

of the N(N  1)/2 pairings of teams, the stronger team always has a common probability, p, of 

wining. Under these conditions, McGee shows that E(r) = (2p – 1)2 and is, therefore, 

independent of N or K. If p = 0.5 (perfect balance), E(r) = 0, and if p = 1, E(r) = 1 (perfect 

imbalance). McGee’s measure can be interpreted as equivalent to an adjusted HHI measure as 

dHHI = HHI  (1/N) = (r/N
2G) (Van Scyoc and McGee 2016, eq. (7)). Substituting for dHHI 

and its upper bound, (N + 1)/[3N(N  1)] (Owen et al., 2007, p.301), in equation (5) yields: 
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Substituting for r in terms of r, from equation (6), and solving for r yields: 

 

 
( ) *

*
( )

r

K N HHI
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K N

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   

  

1 3

1 3
. (7) 

 

Under McGee’s assumptions, although the expected value of AdjHHI* is zero if there is 

perfect balance (p = 0.5), this measure will produce sample values that are negative. If it is 

considered important to maintain zero as the lower bound of the calculated balance measure, 

one possibility, following the approach adopted by Lee et al. (2016) with standard deviation 

measures, is to define a truncated version of this measure as:6 

 

 TruncAdjHHI* = max(0, AdjHHI*) (8) 

 

To examine whether any of these variants of HHI serves as a useful measure for comparing 

competitive balance in situations with differing values of K and N, we conduct a simulation 

analysis. This allows us to examine how the distributions of the different balance measures 

behave as different aspects of league design (such as N or K) are varied, for known distributions 

of the strengths of teams in the league. 

 

3 Simulation Design 

The effects of varying season length on the distributional properties of the different HHI-based 

measures of within-season competitive balance are studied by simulating results for different 

scenarios corresponding to different values of N (the number of teams), K (the number of 

rounds of matches), and different distributions of team strengths. The simulation design is 

similar to that used by Owen and King (2015).  

                                                 
6 Interpretation of TruncAdjHHI* compared to AdjHHI* is analogous to comparing adjusted R2 values with the 

conventional R2. Negative measures of the truncated measure will usually occur only for relatively low levels of 

competitive imbalance. Note also that r can be expressed as an adjusted version of each of the different variants 

of HHI previously considered; we focus on the relationship between r and HHI* because it is the simplest. 
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In the simulations, the playing schedules are balanced, in that each team plays every other 

team in the league the same number of times (a common format in, for example, association 

football leagues). The number of games played by each team, G = K(N – 1), is therefore the 

same for every team. 

Teams’ playing strengths (Si, i = 1, 2, …, N) determine the outcomes of matches. Strength 

ratings are normalized, so that the Si ratings have a mean of zero. A team of average strength 

therefore has a strength rating of zero. Better/stronger teams have positive strength ratings; 

poorer/weaker teams have negative ratings. We use the Bradley-Terry (1952) model for paired 

comparisons to generate probabilities of each match outcome (home win, home loss) based on 

the relative strength ratings of the two opposing teams. If there are no draws (ties), the 

probability that home team i beats away team j, pwin,i,j, is given by: 

 

, ,

exp( )

exp( ) exp( )

i
win i j

i j

S
p

S S



,  

 

and the probability that home team i loses to away team j, plose,i,j = 1  pwin,i,j. Match outcomes 

are simulated using the rbinom() function in R version 3.0.2 (R Core Team 2014) to produce a 

sequence of 1s (home wins) and 0s (home losses) for each match.7 

The Bradley-Terry model design is flexible and can, in principle, incorporate a generic home 

advantage, team-specific home advantages, drawn (tied) matches (with different possible ratios 

of points allocated for wins and draws), or combinations of these (Rao and Kupper 1967; King 

2011; Agresti 2013). However, the simulation results in Owen and King (2015) suggest that 

these variations have only minor effects on the key distributional properties of standard-

deviation-based measures of competitive balance as N and K are varied. We therefore focus 

attention on the simplest model design with no home advantage and no draws. Team strengths 

                                                 
7 The R code for the simulations draws on and extends code in Marchi and Albert (2014, sections 9.3.2-9.3.4). 
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are also assumed to remain constant throughout the season, although the design can easily be 

generalized to allow updating of team strengths in response to simulated results as the season 

evolves (Clarke 1993; King et al. 2012). 

The simulated outcomes for all KN(N 1)/2 matches in the playing schedule for a season 

are combined to produce end-of-season shares of wins for each of the N teams and hence values 

of the different variants of HHI described in section 2. This process is repeated for 1000 

seasons, giving a distribution of values for each end-of-season HHI measure, for a given 

distribution of team strengths and given values of league parameters N and K. Finally, all the 

stages of the simulation exercise are repeated for different assumptions about the distribution 

of teams’ strengths and different values of N and K. 

Match outcomes are simulated for five different distributions of strength ratings, ranging 

from perfect balance (with all teams of equal strength, i.e., Si = 0 for all i) to a relatively high 

degree of imbalance. In principle, deviations of strength distributions from perfect parity can 

be specified in an infinite number of different ways. In the simulations, we follow Owen and 

King (2015) and characterize the different distributions by increasing the range of team 

strengths, R = (maximum strength – minimum strength), from 0 through to 5 with, in each 

distribution, teams equally spaced, from the strongest to the weakest team. Specifically, R takes 

the values 0, 1.25, 2.5, 3.75 and 5. Because the strength ratings are normalized to have zero 

means, each distribution also has a zero mean. Figure 1 illustrates the strength ratings for N = 

20. 

When constructing distributions of strength ratings for different values of N, but with the 

same level of ‘strength inequality’, a constant range of strength ratings is maintained but the 

slope of the plot of strength ratings against team number decreases as N increases. Details of 

the five strength rating distributions considered, for different values of N, are reported in Owen 

and King (2015, Supporting Information, Appendix A, Tables A1 to A4). While this is clearly 
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not the only possible pattern of departures from perfect balance, it has some desirable features. 

As N changes, the probability of the strongest team beating the weakest team remains constant, 

and an average-strength team has unchanged probabilities of beating the strongest and weakest 

teams. In addition, as N varies the standard deviation of strength ratings is approximately 

preserved for each of the values of R considered. 

Simulations for 1000 seasons are repeated for combinations of different numbers of teams 

(N = 10, 15, 20, 25) and different numbers of rounds per season (K = 2, 4, 6, 8, 10). Although 

the number of games each team plays, G, can change as a result of varying N or K or both, we 

consider changes in N and K separately because both the lower and upper bounds of HHI are 

explicit functions of N but not K. We therefore expect variations in N and K to have different 

effects on the distributions of the HHI measures. 

 

4 Simulation Results 

For ease of interpretation, distributions of the various HHI-based measures of competitive 

balance, for different distributions of strength ratings, numbers of teams and rounds, are 

presented graphically by kernel density estimates (using the Epanechnikov kernel function in 

R).  

Kernel densities for the unadjusted HHI (equation (1)), dHHI (equation (2)), mHHI 

(equation (3)) and HHI* (equation (5)), for N = 20, K = 2 and different values of R, are 

presented in Figure 2. For all the measures, increasing competitive imbalance, i.e., increasing 

R from 0 through to 5, is reflected in the densities shifting to the right. Although the densities 

overlap, increasing degrees of competitive imbalance are associated with higher mean values 

of each of the variants of HHI, as would be expected for any credible balance measure. In this 

comparison, the main differences are the ranges and scales on the horizontal axes, reflecting 

the different adjustments to HHI. If we increase the number of rounds of matches to K = 8, as 
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in Figure 3, this increases the number of matches played overall; this reduces the variance of 

the density functions and, consequently, the separation between the densities for different 

values of R. Figures 2 and 3 demonstrate that, with fixed N and K, all of the HHI measures 

appropriately track the increased imbalance as R increases. 

To examine the effects of varying the number of rounds of matches played by each team, 

we fix N and vary K, for a specific value of R. Figure 4 shows the results for N = 20 if there is 

perfect competitive balance, i.e., Si = 0 for all i, so that R = 0. All the HHI measures display a 

similar pattern. As K increases and more matches are played between the same number of 

teams, the density functions shift leftwards towards each measure’s minimum value and the 

variances of the densities decrease. With perfect balance, all the measures on average 

overestimate the degree of imbalance, but this upward bias decreases with more matches 

played. A similar pattern is observed for other values of R. For example, in Figure 5, with R = 

5, N = 20 and K varying, the densities shift left as more matches are played. The main difference 

compared to the case of R = 0 is the positioning of the densities at higher values of their 

respective scales (reflecting a relatively severe case of imbalance between team strengths). 

Despite a high degree of imbalance, all the measures display similar responses to varying K, 

regardless of whether they adjust for the upper bound on HHI or not. This is not surprising 

given that HHI’s upper bound, HHIub in equation (4), is not a function of K.  

However, both the lower and upper bounds of HHI do depend on the number of teams, so 

we would expect more obvious differences if N is allowed to vary for a given value of R. 

Therefore, we next compare the densities for a specific value of R and with K fixed, but varying 

N. Figure 6 shows the densities for R = 0 (perfect balance), K = 2 and varying N. In this 

experiment, the effects on the locations of the densities of the different HHI measures are much 

more dramatic. Even though, all the teams are equal in terms of strength, the unadjusted HHI 

measure shifts markedly towards zero as the number of teams increases, with no overlap 
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between the densities, reflecting the property that the lower bound of HHI, i.e., 1/N, decreases 

as the number of teams increases. The other three measures are not subject to this problem 

because they take into account the lower bound of HHI. Otherwise, the density functions of the 

other HHI measures reflect the pattern observed with variation in K. i.e., a decrease in their 

variances and a reduction in their means as N, and hence the number of matches overall, 

increases. These patterns are all accentuated if K is set at a larger value.  

Similar patterns are observed if we consider higher degrees of imbalance, as shown in 

Figures 7 and 8. For smaller values of R, the densities for Depken’s dHHI measure exhibit 

similar properties to those of mHHI and HHI*. However, for larger values of R, the effects on 

the densities for dHHI are more marked as N varies, with the overlap between the densities 

decreasing as R increases (again, a feature that is accentuated for larger values of K). This is 

not unexpected, because as the degree of imbalance increases, the location of HHI’s upper 

bound becomes more relevant, and the calculation of dHHI does not take this into account. 

What is perhaps more surprising is that the densities of mHHI, which adjusts multiplicatively 

for HHI’s lower bound, display less separation as N increases compared to dHHI. Apart from 

the scales, the densities for mHHI in Figure 7 (and to a lesser extent Figure 8) exhibit similar 

behaviour to those of HHI*, which does take into account HHI’s upper bound. However, the 

lack of an adjustment for the upper bound using mHHI shows up more clearly as the number 

of matches increases due to higher values of K, as in Figure 9 for which R = 5 and K = 10. 

Of the four measures considered, HHI*, which accounts for both the lower and upper bounds 

of HHI, performs best across the various different combinations of values of R, N and K. 

However, as with the other three HHI-based measures, HHI* tends to overestimate the degree 

of imbalance if season length is short, with fewer matches. As the number of matches played 

increases, the density of HHI* shifts leftwards and converges with a decreasing variance. A 

similar property is observed with the standard deviation of win (or points) ratios, which also 
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overestimates imbalance for shorter seasons (Owen and King 2015; Lee et al. 2016). It is 

therefore relevant to examine whether an adjustment to HHI*, based on McGee’s measure in 

equation (6), can reduce or eliminate this ‘short-season’ overestimation.  

Kernel density plots for AdjHHI*, equal to McGee’s r measure (equation (7)), and its 

truncated version (equation (8)) are presented in Figure 10 for a league with N = 20 and varying 

K. With R = 0 (in the upper panel), the mean of AdjHHI* is approximately zero, even for a 

relatively small number of rounds (K = 2); this is confirmed by examining the numerical values 

of the quantiles of the simulated values. Consistent with this, negative values are common, with 

median values (for any K) being slightly negative. Not surprisingly, truncation leads to a piling 

up of the relative frequency at zero and upward bias in the measure with a mean value that is 

slightly positive (e.g., the mean value of TruncAdjHHI* is 0.010 for N = 20 and K = 2).8  As 

with all the other variants, increasing the number of games reduces the variance of the 

distribution. As the degree of imbalance increases, so does HHI*, and the truncation has 

increasingly less effect, as can be seen for R = 1.25 in the lower panel of Figure 10.  

As R increases further, AdjHHI* (and its truncated variant) begin to exhibit upward bias for 

low values of K.  AdjHHI*’s tendency to be biased upwards when R is larger (a higher degree 

of imbalance) is more obvious when we fix K at 10 and vary N, as in Figure 11. Indeed, for 

larger values of R, the adjustment implied by McGee’s measure makes relatively little 

difference; for example, the distributions of AdjHHI* (in Figure 11) and HHI* (in Figure 9) 

are very similar for R = 5, K = 10. The distributions of the two measures are also similar for R 

= 2.5 and R = 3.75. This suggests that McGee’s assumption of a common probability of the 

stronger team wining, which underpins his r measure and determines its mean value, improves 

                                                 
8 The apparent negative values in the kernel density for TruncAdjHHI* in the case of K = 2 is an artefact of the 

smoothing process; inspection of the quantiles of the simulated values confirms that all values up to and including 

the median are zero for all values of K.  
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on HHI* when R is low (R = 0 or 1.25). However, it does not provide uniformly better 

performance compared to HHI* as the degree of imbalance increases.  

 

5 Conclusions 

Several variants of the Herfindahl-Hirschman index of concentration applied to the distribution 

of wins across teams in a season are widely used as measures of competitive balance in 

professional sports leagues. Some of these measures take into account, to varying degrees, the 

constraints on the range of feasible values of HHI imposed by the league’s playing schedules. 

Given the HHI’s emphasis on teams’ shares of wins, a key feature is that teams cannot win 

games in which they do not play, which is reflected in the existence of upper bounds for HHI-

related measures. Both the upper bounds and lower bounds of HHI depend on the number of 

teams in the league, which has implications for comparing such balance measures for leagues 

made up of different numbers of teams or for the same league over time if the number of teams 

changes. 

To examine the properties of four variants of HHI-based measures of within-season 

competitive balance for leagues with different season lengths, we conduct a simulation analysis 

in which the degree of competitive imbalance can be specified. The unadjusted HHI is highly 

sensitive to variation in N, the number of teams, and is therefore not recommended for 

comparisons where N varies.  Of the measures that adjust only for the lower bound of HHI, the 

ratio form, mHHI, is less sensitive to N. Of the four main measures considered, HHI*, which 

takes into account the lower and upper bounds of HHI performs best across the various 

combinations of degrees of imbalance, number of teams and number of rounds of games. 

However, HHI*, as with the other measures, tends to overstate the extent of imbalance when 

the number of matches is relatively small. McGee’s (2016) suggested measure, which can be 

interpreted as an adjusted version of HHI*, produces approximately zero bias when the league 
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is perfectly balanced, even when the number of matches is relatively small. However, as the 

number of teams and hence matches increases it also tends to overestimate the degree of 

imbalance when the degree of competitive imbalance is higher. Overall, the normalized HHI* 

and McGee’s adjusted balance measure are therefore recommended as the most useful of the 

measures considered, although neither completely removes biases associated with shorter 

season lengths, especially for higher degrees of imbalance. 
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Fig. 1 Strength rating distributions used for simulations, N = 20 
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Fig. 2 Density functions of HHI measures for different degrees of competitive imbalance (N 

= 20, K = 2) 
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Fig. 3 Density functions of HHI measures for different degrees of competitive imbalance (N 

= 20, K = 8) 
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Fig. 4 Density functions of HHI balance measures for R = 0 (perfect balance), N = 20, 

varying K 
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Fig. 5 Density functions of HHI balance measures for R = 5 (severe imbalance), N = 20, 

varying K 
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Fig. 6 Density functions of HHI balance measures for R = 0 (perfect balance), K =2, varying 

N. 
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Fig. 7 Density functions of HHI balance measures for R = 2.5 (moderate imbalance), K =2, 

varying N. 
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Fig. 8 Density functions of HHI balance measures for R = 5 (severe imbalance), K =2, 

varying N. 
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Fig. 9 Density functions of HHI balance measures for R = 5 (severe imbalance), K = 10, 

varying N. 
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Fig. 10 Density functions of adjusted HHI balance measures for R = 0 and R = 1.25, N = 20, 

varying K. 
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Fig. 11 Density functions of adjusted HHI balance measures for R = 0 and R = 5, K = 10, 

varying N. 
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