The impact of COVID-19 on EV driving behaviour: findings from Vector's Auckland EV trial

Rafferty Parker, Data Scientist

Outline

Why the need to smart charge EVs?

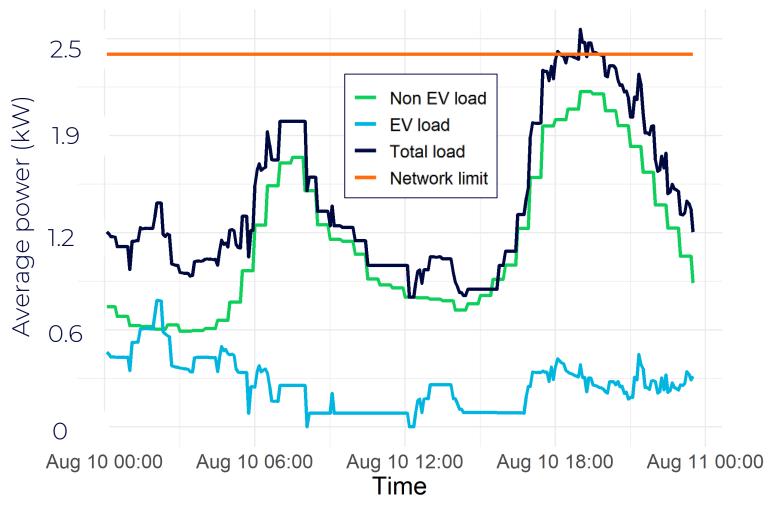
Vector's smart EV trial

General results

COVID related results

Facilitating transport electrification

- ICCC report recommends the NZ government prioritises accelerating transport electrification to achieve deep greenhouse gas reductions^[1]
- NZ domestic land transport used 216PJ in 2019^[2]
- NZ electricity generation was 156PJ in 2019^[2]
- Even with energy efficiency improvements of EVs, a complete shift of domestic transport energy use from fossil fuelled to electric will require careful planning


^[2] https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/

^[1] ICCC, Accelerated Electrification, 2019

Why the need to smart charge EVs?

- LV network designed for ADMD of ~2.5kW per household
- EVs add between 1.8kW and 7kW to a household demand
- Under 'passive' charging, EV demand occurs during peak times
- With a high uptake, the electricity network could require expensive upgrades

Average winter electricity demand of trial participants over one evening

Trial overview

Trial introduction

Vector EV Green Paper and Scenario Modelling have identified that EV charging behaviour and load control is a key uncertainty for future demand.

Local and international evidence has shown that the home will be the new 'petrol station', where nearly all charging occurs (>95%)^{[1],[2]}

The EV smart behaviour trial is part of Vector's New Energy Futures initiative, and was kickstarted by installing 120 EVSEs (7kW) in private homes

[1] Anderson et. al., Will Flipping the Fleet F**k the Grid?, 2020 [2] IEA, Global EV Outlook, 2020

Trial objectives

- Define reference charging behaviour
- Demonstrate that smart charging can also meet customer satisfaction and establish the level of flexibility that customers are willing to provide for network purposes
- Understand customers' perceptions (fears) of smart charging and motivators (financial and behavioural) to participate in smart charging

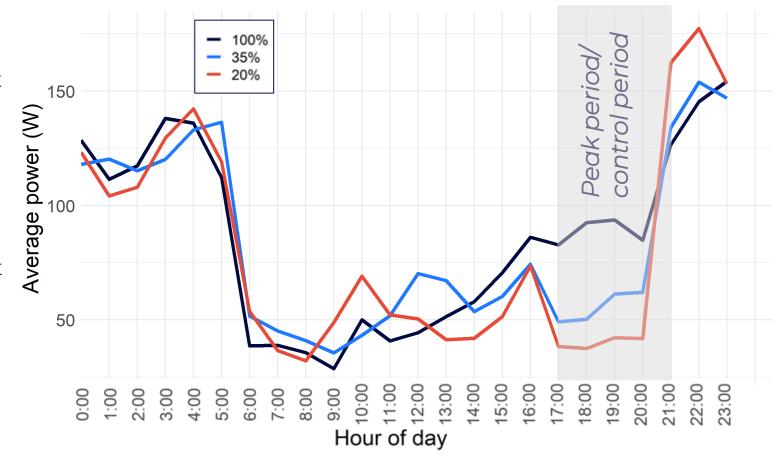
Trial design

Charger is installed at customer's home for > 1.5 years, including several periods of smart charging

Phase 1 Oct – Dec 19

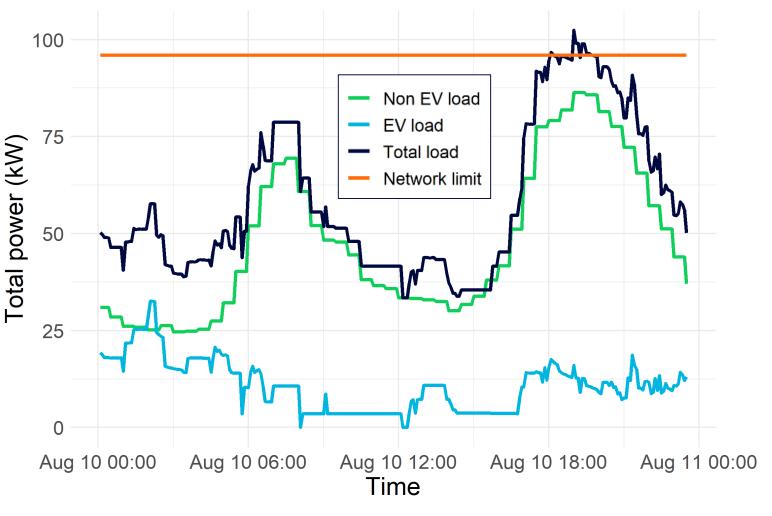
Objective: Understand customer satisfaction

Phase 2 Feb – Apr 20 Objective: Understand customer satisfaction and ensure network integration during summer/autumn


Phase 3 Aug – Oct 20 Objective: Understand customer satisfaction and ensure network integration during winter

Phase 1:

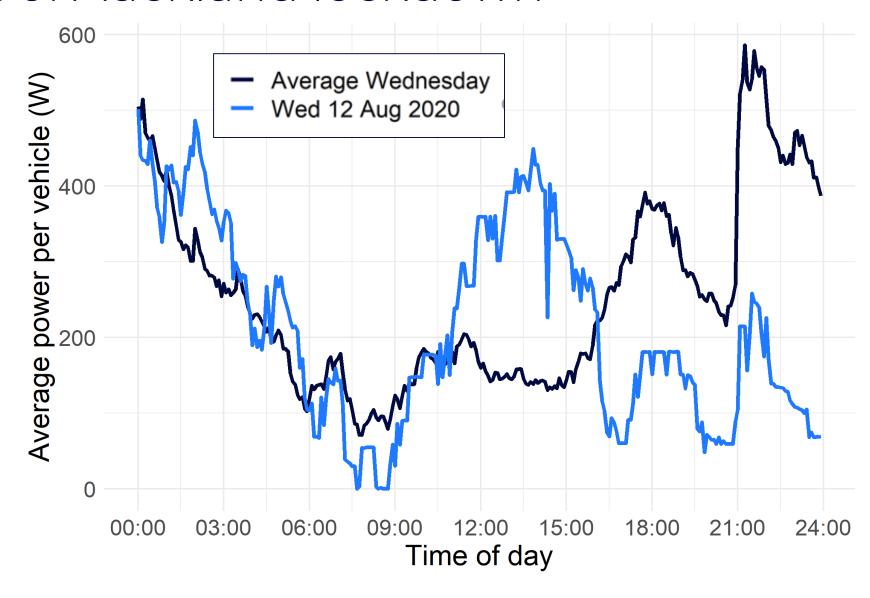
Collect and analyse data on existing charging behaviour Understand customer acceptance of EV smart charging


- Some basic controls carried out (throttling during evening peak times)
- The sharp increase at 9pm indicates that many customers are already using a timer to charge
- This concurs with existing NZ EV research^[1]
- This behaviour is prompted by good power sector understanding of engaged early-adopters in this trial that know that the peak period typically finishes at 9pm
- The customer satisfaction (captured through surveying) was high across customers independently of the level of controls

Phases 2 and 3: Objectives

- Optimise EV charging so that the combined daily EV and non-EV load does not exceed network capacity expansion across each controlled group
- Develop different algorithms to achieve this
- Compare these algorithms with one another, both in terms of effectiveness at keeping after diversity electricity demand below the network limit, and customer satisfaction.

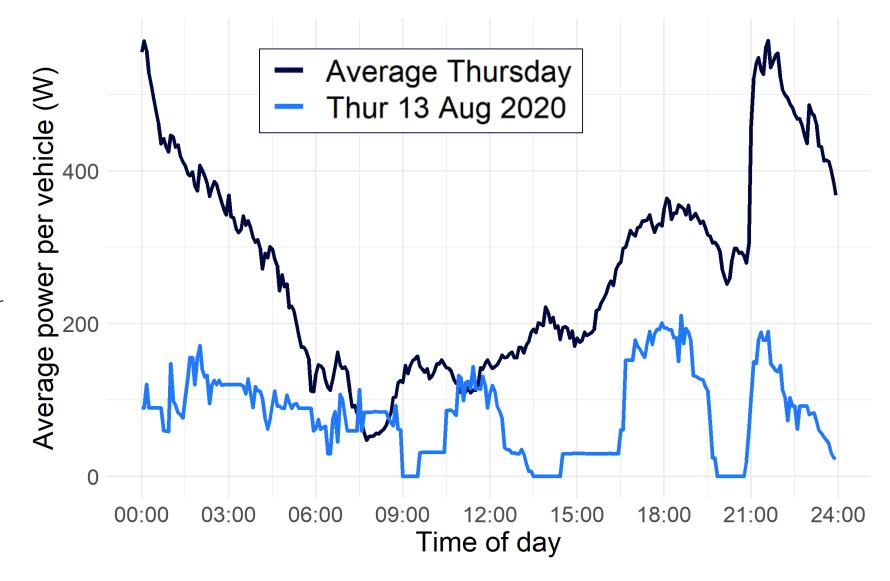
COVID impacts



Results: effect of Auckland lockdown

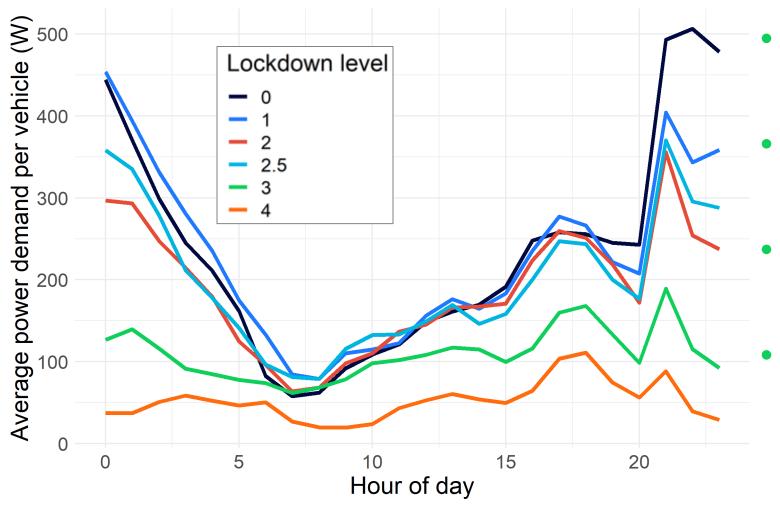
Lockdown begins midday

- Much more daytime charging
- Suggests morning driving occurred to carry out lockdown preparations
- Much less evening charging



Results: effect of Auckland lockdown

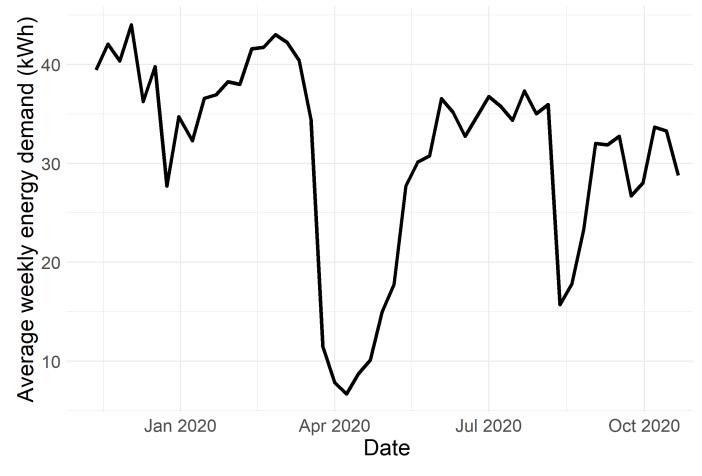
13th August 2020:


First full day of level 3 lockdown

- Very little charging occurring
- Not enough to breach our network limit
- Trial put on hold

Energy demand during different lockdown levels

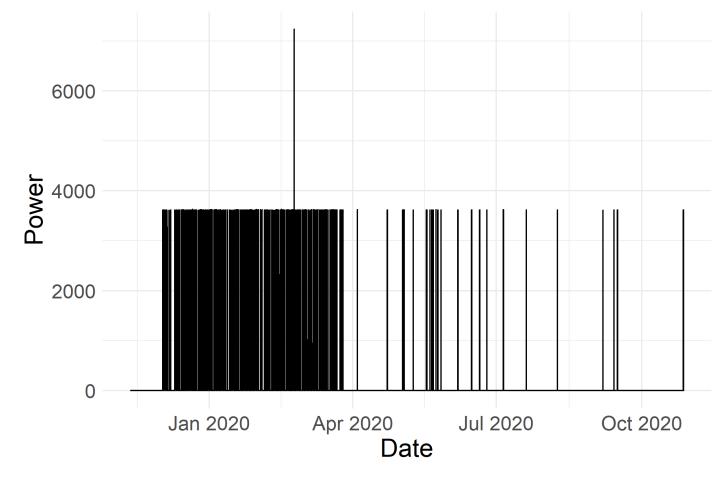
- Evening peak never returned to pre-COVID level
- Minimal differences in demand between levels 1,2 and 2.5
- Demand differences more drastic for levels 3 and 4
- Differences in peaks more pronounced than trough


Energy demand during different lockdown levels

Lockdown level	Average daily energy demand per vehicle (kWh)	Reduction from pre- COVID19 level (kWh)	Reduction from pre- COVID19 level (%)
0	5.37	O	O
1	4.87	0.5	9
2	4.18	1.19	21
2.5	4.22	1.15	20
3	2.43	2.94	51
4	1.18	4.19	73

- Total demand hasn't returned to pre-COVID level
- Minimal differences in demand between levels 1,2 and 2.5
- Level 3 demand half of pre-COVID
- Level 4 demand a quarter of pre-COVID

Impacts on driving: average energy demand


- Massive reduction in driving during first lockdown
- Less dramatic during second
- Did not return to pre-COVID demand between lockdowns
- Post second-lockdown 'normal' lower than between lockdowns.

Average weekly energy demand for our trial participants

Impacts on driving: household level example

- Many participants show charging behavior that never returned to pre-COVID levels
- Some show minimal change
- Differences likely due to employment type (essential workers vs ability to work from home)

Extreme example of driving behaviour not returning to pre-COVID 'normal' for one trial participant

Driving distance travelled and CO₂ emissions during different lockdown levels

Daily averages per vehicle

Lockdown level	Distance travelled (km)	CO ₂ reduction ^[1] compared to pre- COVID (kg)	CO ₂ reduction ^[2] assuming non-EV (kg)
0	32.2	0	0
1	29.2	0.05	0.75
2	25.1	0.12	1.78
2.5	25.3	0.11	1.73
3	14.6	0.29	4.40
4	7.1	0.41	6.28

- Average daily pre-COVID distance travelled was \sim 32km/day
- This reduced to 15km/day and 7km/day over Level 3 and 4 lockdowns
- CO₂ reduction minimal from reduced EV driving due to already low carbon intensity of NZ electricity
- More significant if we assume the same distance reduction is seen in ICE (assume 10km/L fuel economy and 2.5kgCO₂/L)

Where to next?

- Incorporation of another 40 participants into the trial
- Next smart charging phase scheduled for early next year (COVID permitting)
- We are seeking permission to use more recent smart meter data from the participants
- Continue to monitor and analyse charging patterns to better inform business decisions around facilitating transport electrification

Acknowledgements

Many hands have worked on this project, including (alphabetically):

- Hani Hatami, Data Scientist
- Julia Li, Research and Customer Analyst
- Leon Hayward, New Technology Engineer
- Louise Murphy, Deployment Coordinator
- Rafferty Parker, Data Scientist
- Steve Heinen, Energy Systems Analytics Manager
- Tabitha Samuel, Customer Communication Specialist
- Vasudevan Surendran, Data Scientist
- William Burdon, Technical Specialist

