

High-temperature Heat Pumps For Process Heat Decarbonisation: A Systems Integration Perspective Tim Walmsley School of Engineering, University of Waikato

Hamilton, New Zealand

Outline

- 1) NZ's Decarbonisation Challenge
- 2) Project Ahuora and Our Approach
- 3) Digitalisation and Digital Twins
- 4) Demand-side Analysis by Sector
- 5) Heat Pump Technology Analysis
- 6) Conclusion

NZ GHG emissions by sector 2018

Industrial energy use

35% consumer energy for industry

Process heat fuels

56% Fossil fuels

Figure 2: Energy consumption and GHG emissions from process heat in 2016 - by fuel type

How to decarbonise industry?

Three options (1) Reduce demand (2) New technology (3) Fuel switch

PROCESS

What are <u>countries</u> and <u>companies</u> doing to decarbonise HEAT?

Carbon Price = Increasing Risk

Government policy driving change

TE TARI TIAKI PŪNGAO ENERGY EFFICIENCY & CONSERVATION AUTHORITY

ETA programme

Government policy driving change

AETP research fund Nov 2019 What research is essential for decarbonisation?

- AETP = Technology at the **frontier of innovation**, with the potential to **advance and disrupt** global energy markets
- Raise the research capacity and capability of New Zealand in energy science (engineering) through early stage research
- Grow **international and national collaborations** among energy science (engineering) researchers and end users

Decarbonising industrial processing

- Plant efficiency Boilers & Heat pumps Renewable energy
 Re-engineer the way we use, convert, and provision energy for process heat using a smart systems approach
- Produce open-access software tools for NZ industry
- Develop the next generation of Energy Digital Twin technology called Adaptive Energy Digital Twin

Smart design and operation

13 Academics (9 UoW) 2 Post Docs 18 PG & 5 UG students

Helping create **sustainable**, **net-zero-carbon** New Zealand industries that sit in harmony with **taiao** and support **tāngata**.

Understanding each other

Researchers	Industry	
Love to be the <u>first</u>	Happy to <u>follow</u> , too risky being first	
Love proposing new theories	Happy with the tried and true	Trust takes
Prefer simplified studies	Want real plant studies	time, effort &
Optimistic with costs	Pessimistic with costs	not a high
Hope for the best case	Expect the worst case	h-index
Bear <u>no risk</u> , no capital investment	Bear <u>all risk</u> , investment	
Publishing is king	Production is king	

Starting with small steps...

- Hosted a **'digital twin' training day** for 15 industry professionals from Fonterra, Aurecon, DETA, Worley (15 Nov. 2022)
- Covered the basics of **process simulation** start with common ground!
- Built **connections** between the problem owner, service provides, and us

Digitalisation

Leveraging digital technologies

I.e., Not digitisation Converting information to a digital form

Hype Cycle for Emerging Technologies, 2021

gartner.com

Source: Gartner © 2021 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S. 1448000

What is an Energy Digital Twin?

Digital twins aim to improve decision-making across all time horizons

Digital Twin classification

Digital Twin lifecycle applications

• Design phase

- Optimisation
- Data generation
- Virtual evaluation, verification, and validation
- Low-carbon design & process electrification

Operation phase

- Process monitoring
- Production control
- Process prediction
- Process optimisation and production planning
- Process training

Service phase

- Predictive maintenance
- Fault detection and diagnosis
- Virtual testing

Goals: Accurate De-risked Predictive Optimal Low-carbon

Towards a NZ-centric DT Platform

Why industrial heat pumps critical for NZ's decarbonisation

Number of plants by sector

Sector/process		Number of plants in New Zealand	
Int	Dairy processing milk powder / other	≈80 ≈50/30	
er pla	Meat processing	86 54% en	nissions
Boile	Other food	44 ~300 fc	actories
	Wood processing	75	
	Methanol	2	
p	Urea	1	
grate	Refining	1	
inte	Steel	1	
ghtly	Aluminium	1	
Ĩ	Cement	1	
	Kraft pulp	2	

Number of plants by sector

Sources of industrial emissions

>80% industrial energy is process heat

Industrial sector temperature-load profile

<u>Future 1:</u> Refinery closed Methanex closed

Future 2:

Refinery closed Methanex closed NZ Steel closed Aluminium smelter closed

Key research focus: Dairy, Meat & Food processing factories

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	11 PJ

HUORA

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	11 PJ

HUORA

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	11 PJ

HUORA

32

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	11 PJ

HUORA

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	11 PJ

60 PJ heat = 6.7 TWh ele (+15.9% ele)

Sector	MTHP	HTHP	Biomass
Dairy	25 PJ	10 PJ	3 PJ
Meat	7 PJ	3 PJ	
Food & Manufacture	6.5 PJ	4.5 PJ	
Wood + P&P			62 PJ
Horticulture	4 PJ		
Chemicals			10 PJ
Metals			1 PJ
Total	42.5 PJ	17.5 PJ	76 PJ
New Total	42.5 PJ	17.5 PJ	22 PJ

HUORA

Key technology gap: Air-sourced hot water heat pump

Potential 42.5 PJ process heating up to about 80°C

-10 - 20°C air source

Key technology gap: High temp, cogeneration heat pump

Potential 60 PJ process heating up to about 200°C

COP <3 Cogeneration, integrated Configurable units

Installed Costs > \$1000/kW

Waste process heat source

We need more grid-edge renewable gen

Let's look into heat pumps more: Back to the basics

Real high-temp heat pump systems(Aspagaus et al, 2018)• Temperature lifts < 80°C for COP_{actual} >

Min COP for heat pump consideration

COP min = (Biomass price / Heating system efficiency) / Electricity price

			Electricity prices [2]				
Biomass prices [1]			\$/MWh (Purchased)				
\$/GJ (Fuel supply)	\$/MWh (Heat demand)	80	100	120	140	180	
12	60	1.33	1.67	2.00	2.33	3.00	
13	65	1.23	1.54	1.85	2.15	2.77	
14	70	1.14	1.43	1.71	2.00	2.57	
15	75	1.07	1.33	1.60	1.87	2.40	
16	80	1.00	1.25	1.50	1.75	2.25	
17	85	0.94	1.18	1.41	1.65	2.12	
18	90	0.89	1.11	1.33	1.56	2.00	
19	95	0.84	1.05	1.26	1.47	1.89	
20	100	0.80	1.00	1.20	1.40	1.80	

Targets for maximum heat pumping temperature

$T_{h} = T_{c} (COP_{min} / (COP_{min} - 1))$

		Electricity prices [2]				
Biomass prices [1]		\$/MWh (Purchased)				
\$/GJ (Fuel supply)	\$/MWh (Heat demand)	80	100	120	140	180
12	60	188	138	111	94	73
13	65	212	154	122	102	78
14	70	239	170	134	111	85
15	75	269	188	146	120	91
16	80	303	207	159	130	97
17	85	342	228	173	141	104
18	90	385	251	188	151	111
19	95	436	276	204	163	118
20	100	495	303	221	175	126

Conventional heat pump wisdom

- What makes a good refrigerant?
 - Large heat of condensation compared to compression work
 - Operated well below critical point temperature (e.g., 50 K)
 - Fully condense fluid, limited subcooling opportunity
 - Low swept volume
 - Non-flammable, low GWP, no ODP
- We analysed 237 different fluids in REFPROP using a simple vapour compression cycle model to confirm these rules of thumb

Emerging high temp heat pump wisdom

Large heat of condensation compared to compression work
 ✓ More important to obtain close temperature profile matches

Operated well below critical point temperature (e.g., 50 K)
 ✓ Subcritical and transcritical cycles are acceptable

Fully condense fluid, limited subcooling opportunity
 ✓ Subcooling critical, often cogeneration of utility levels

⊠ Low swept volume

✓ New compressors enable high swept volume but remain compact

Summary

- NZ well placed to decarbonise process heat
 - Up to 60 PJ's of HTHP (24 PJ electrical or 6.7 TWh_{ele})
- Collaboration and trust in research results are essential to accelerating decarbonisation
- Heat pumps are well-established but not for high temperatures

• High temperature heat pumps must integrate well with the industrial process

Thank you for listening.

For more information, visit our website or email tim.walmsley@waikato.ac.nz

Follow us on LinkedIn @ Ahuora

www.ahuora.co.nz