Festschrift for Professor Christine Winterbourn

Rolleston Lecture Theatre, University of Otago, Christchurch | 7 December 2015

	Monday 7 December 2015	
10.00am	Registration for SFRR A+J Conference Delegates	
10.30am	Welcome	
		Chair: Tony Kettle
10.35am	Diana Averill-Bates	,
10.000	Professor of Biochemistry, University of Quebec, Montreal	
10.55am	John French	
10.554111	Director of Cardiovascular Research, Liverpool Hospital, Sydney	
11.10am	Margreet Vissers	
11.100111	Professor, Centre for Free Radical Research, Christchurch	
11.30am	Tony Kettle	
11.504111	Professor, Centre for Free Radical Research, Christchurch	
11.45am	Glenn Vile	
11.45am	General Manager, NZ Extracts Ltd, Blenheim	
12.00pm	Mark Hampton	
12.00pm	Professor, Centre for Free Radical Research, Christchurch	
12.20pm	Anitra Carr	
12.20pm	Senior Research Fellow, Centre for Free Radical Research, Christchurch	
12.35pm	Lunch	
12.55pm	Editor	Chair: Mark Hampton
1 2000	Maurice Owen	Chair. Mark Hampton
1.30pm		
1 45 0000	Scientific Director, Canterbury Scientific, Christchurch	
1.45pm	Wim Koppenol	
2.05	Professor of Biochemistry, ETH Zurich	
2.05pm	John Windsor	
2.20	Professor of Surgery, Auckland University	
2.20pm	Roland Stocker	
2.40	Professor of Vascular Biology, Victor Chang Cardiac Research Institute, Sydney	
2.40pm	Mike Davies	
2.55	Professor of Biochemistry, University of Copenhagen	
2.55pm	Recorded tributes	
3.05pm	Peter Nagy	
	Professor, National Institute of Oncology, Budapest	
3.25pm	Victor Darley-Usmar	
	Professor of Redox Biology, University of Alabama	
3.40pm	Afternoon tea	
		Chair: Margreet Vissers
4.00pm	Harlene Hayne	
	Vice Chancellor of the University of Otago	
4.10pm	Christine Winterbourn	
	Professor, Centre for Free Radical Research, Christchurch & Guest of Honour	
5.00pm	Refreshments	
	Registration for SFRR A+J Conference Delegates	
Opening of t	he SFRR A+ J Seventh Joint Meeting	Chair: Tony Kettle
6.00pm	Welcome	Chair. Forty Rettie
6.05pm	Plenary Lecture:	
	Raman Kalyanaraman Medical College of Wisconsin, USA	
	Identification of NADPH oxidase 2 isoform inhibitors from screening	, , ,
	molecules: Strategies for discovering novel inhibitors of peroxynitrite	

SFRR A+J Conference Programme — Day 2 Rolleston Lecture Theatre, University of Otago, Christchurch | 7-10 December 2015

Registration Welcome Chair: Tony Ket
Session 1 9.05am Rafael Radi University of the Republic, Uruguay Biochemistry of Mn-superoxide dismutase nitration and inactivation 9.45am Yorihiro Yamamoto Tokyo University of Technology, Japan Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration 10.10am Stewart Cordwell University of Sydney, Australia Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post-translational modifications in myocardial ischemia / reperfusion 10.30am Morning tea Session 2 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Chair: Margreet Visse Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Rafael Radi University of the Republic, Uruguay Biochemistry of Mn-superoxide dismutase nitration and inactivation
Biochemistry of Mn-superoxide dismutase nitration and inactivation
 Yorihiro Yamamoto Tokyo University of Technology, Japan Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration Stewart Cordwell University of Sydney, Australia Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post-translational modifications in myocardial ischemia / reperfusion Morning tea Chair: Paul Witti 1.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vicoxidative dimerization of protein kinase G1α SFRR Australasia and Japan Conference Photo Lunch Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Increased oxidative stress in patients with amyotrophic lateral sclerosis and the effect of edaravone administration 10.10am Stewart Cordwell University of Sydney, Australia Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post-translational modifications in myocardial ischemia / reperfusion 10.30am Morning tea Session 2 Chair: Paul Witti 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
edaravone administration10.10amStewart Cordwell University of Sydney, Australia Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post- translational modifications in myocardial ischemia / reperfusion10.30amMorning teaChair: Paul WittiSession 2Chair: Paul Witti11.00amJeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction11.25amGemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease11.50pmSally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia12.15pmChristopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1 α12.35pmSFRR Australasia and Japan Conference Photo LunchSession 3Chair: Margreet Visse1.35pmMike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
10.10am Stewart Cordwell University of Sydney, Australia Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post- translational modifications in myocardial ischemia / reperfusion 10.30am Morning tea Chair: Paul Witti 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Proteomic-scale approaches for identifying reversible and irreversible cysteine redox post-translational modifications in myocardial ischemia / reperfusion 10.30am Morning tea Session 2 Chair: Paul Witti 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
translational modifications in myocardial ischemia / reperfusion Morning tea Session 2 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
10.30am Session 2 Chair: Paul Witti 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Session 2 11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
11.00am Jeffrey Erickson University of Otago, New Zealand Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Diabetes mellitus enhances apoptosis in the heart following myocardial infarction 11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
11.25am Gemma Figtree Royal North Shore Hospital & University of Sydney, Australia Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part vic oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Redox modification of caveolar proteins as important mediators in cardiovascular disease 11.50pm Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
 Sally McCormick University of Otago, New Zealand Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α SFRR Australasia and Japan Conference Photo Lunch Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Ribose-cysteine increases glutathione-based antioxidant status in mouse models of hyperlipidaemia 12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
hyperlipidaemia12.15pmChristopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α12.35pmSFRR Australasia and Japan Conference Photo LunchSession 3Chair: Margreet Visse1.35pmMike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
12.15pm Christopher Stanley Victor Chang Cardiac Research Institute, Australia The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
The tryptophan metabolite cis 3-hydroperoxypyrroloindole causes arterial relaxation in part via oxidative dimerization of protein kinase G1 α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
oxidative dimerization of protein kinase G1α 12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
12.35pm SFRR Australasia and Japan Conference Photo Lunch Session 3 Chair: Margreet Visse 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Lunch Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Session 3 1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
1.35pm Mike Davies University of Copenhagen, Denmark Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
Peroxynitrous acid modifies the structure and function of the extracellular matrix in vitro and in vivo: implications for atherosclerosis
vivo: implications for atherosclerosis
2.4 Farms China a Tavalauni I au
2.15pm Shinya Toyokuni Nagoya University Graduate School of Medicine, Japan
Novel fluorescent probe for detecting catalytic ferrous iron
2.40pm Greg Giles University of Otago, New Zealand
Development of the photoactivated nitric oxide donor drug tDodSNO
3.00pm Afternoon tea
Session 4 Chair: Christine Winterbou
3.30pm Annemarie Grindel University of Vienna, Austria
Chromosomal damage in female patients with type 2 diabetes depends on HbA1c, diabetes
duration and medication
3.45pm Naoko Suga University of Hyogo, Japan
Modification of cellular proteins and induction of self-defense genes expressions by tryptamine
4,5-dione, a serotonin oxidation product
4.00pm Lanfeng Dong Griffith University, Australia
Mitochondrial targeting of tamoxifen enhances its activity against Her2 ^{high} breast cancer via
inhibiting mitochondrial complex I function
4.15pm Karina O'Connor University of Otago, Christchurch, New Zealand
Mitochondrial redox changes during TNF-mediated necroptosis
4.30pm Belal Chami University of Sydney, Australia
4-Methoxy TEMPO attenuates murine experimental colitis
4.45pm Amandeep Kaur University of Sydney, Australia
A toolbox of reversible and ratiometric fluorescent probes for imaging cellular oxidative stress

	Effects of pharmacological inhibition of myeloperoxidase on endothelial dysfunction in mouse models of inflammation	
5.15pm	Jereme Spiers University of Queensland, Australia	
	Repeated psychological stress exposure causes inflammation and nitrosative stress in addition	
	to antioxidant gene upregulation in the rat hippocampus	
5.30-6.30pm	Poster session A + Refreshments and nibbles	

SFRR A+J Conference Programme — Day 3 Rolleston Lecture Theatre, University of Otago, Christchurch | 7-10 December 2015

	Wednesday 9 December 2015
Session 5	Chair: Jiri Neuzil
8.50am	Wim Koppenol Swiss Federal Institute of Technology, Switzerland Kinetics and energetics of cytochrome P450-mediated hydroxylation
9.30am	Ghassan Maghzal Victor Chang Cardiac Research Institute, Australia
9.50dili	Generation of singlet oxygen by indoleamine 2,3 dioxygenase and hydrogen peroxide – A novel
	path for the metabolism of tryptophan to N-formyl-kynurenine
9.55am	Tomohisa Takagi Kyoto Prefectural University of Medicine, Japan
J.JJaili	The role of heme oxygenase-1 in intestinal inflammation using a murine colitis model
10.15am	Hideo Utsumi Kyushu University, Japan
10.15411	Development of a free radical imaging system for clinical research
10.35am	Morning tea
Session 6	Chair: Jan Gebicki
11.05am	Peter Nagy National Institute of Oncology, Hungary
11.000	Protein persulfides: Insights into the molecular mechanisms of H₂S signaling
11.45am	Takaaki Akaike Tohoku University Graduate School of Medicine, Japan
	Antioxidant and redox signalling functions of reactive persulfide species translationally formed
	on various proteins
12.10pm	Nina Dickerhof University of Otago, Christchurch, New Zealand
	Evaluation of glutathione sulphonamide and allantoin as blood and urine based indicators of
	exacerbations in children with cystic fibrosis
12.30pm	Lunch
	Business meeting of the SFFR Australasia and Japan Executive Committee
Session 7	Chair: Mark Hampton
1.20pm	Leslie Poole Wake Forest School of Medicine, USA
	Experimentally dissecting the structural origins of peroxiredoxin catalytic prowess
2.00pm	Liz Ledgerwood University of Otago, New Zealand
	Examining the role of peroxiredoxin 1 in redox signalling
2.25pm	Paul Pace University of Otago, Christchurch, New Zealand
	Interaction of peroxiredoxin 2 with collapsing response mediator protein 2
2:45pm	Markus Dagnell Karolinska Institute, Sweden & University of Otago, Christchurch, New Zealand
2.05	TrxR1 protects PTP1B from oxidative inactivation by hydrogen peroxide
3.05pm	Afternoon tea
Session 8	Chair: Ghassan Maghzal
3.35pm	Clare Hawkins Heart Research Institute & University of Sydney, Australia Novel pathways of macrophage dysfunction and inflammation induced by myeloperoxidase-
	derived oxidants
4.00nm	
4.00pm	Yoji Kato University of Hyogo, Japan Myeloperoxidase-derived modification of biomolecules and its prevention
4.25pm	Guy Jameson University of Otago, New Zealand
4.23pm	Ascorbic acid as an essential cofactor in the production of hypothiocyanite by lactoperoxidase
4.50pm	Louisa Forbes University of Otago, Christchurch, New Zealand
4.50pm	Strategies for inhibiting myeloperoxidase and limiting oxidative stress during inflammation
5.10-6.10pm	Poster session B + Refreshments and nibbles
3.10 0.10pill	roster session by nerrestiments and mostes

SFRR A+J Conference Programme — Day 4 Rolleston Lecture Theatre, University of Otago, Christchurch | 7-10 December 2015

	Thursday 10 December 2015		
Session 9	Chair: Alfons Lawen		
9.00 am	Stavros Selemidis Monash University, Australia		
	Endosomal NOX2 oxidase exacerbates virus pathogenicity		
9.25 am	Mike Berridge Malaghan Institute of Medical Research New Zealand		
	Is mitochondrial transfer between cells a normal physiological process? Implications for cellular		
	stress responses and free radical generation		
9.45 am	Jiri Neuzil Griffith University, Australia & Czech Academy of Sciences, Czech Republic		
	Acquisition of mitochondrial DNA by cancer cells devoid of mitochondrial genome is a		
	prerequisite for tumor initiation		
10.05 am	Jianhua Zhang University of Alabama at Birmingham, USA		
	Expected and unexpected impact of Nrf2 knockout and endurance exercise on autophagy and		
	mitochondria in aging mouse brain		
10.25am	Morning tea		
Session 10	Chair: Andrew Bulmer		
11.05am	Yuji Naito Kyoto Prefectural University of Medicine, Japan		
11.30am	Multiple targets of carbon monoxide gas in the intestinal inflammation		
11.30am	Alison Heather University of Otago, New Zealand 36-Hydroxysteroid-24-reductase (DHCR24): a key protein involved in protecting human coronary		
	artery endothelial cells from inflammatory stress		
11.50pm	Andrew Bahn University of Otago, New Zealand		
11.50pm	GLUT9 alleviates the development of type 2 diabetes mellitus under hyperuricemic conditions		
12.10pm	Kazuhiko Uchiyama Kyoto Prefectural University of Medicine, Japan		
12.100111	Heme oxygenase-1 prevents intestinal ischemia-reperfusion injury via the regulation of the		
	inflammasome		
12.30pm	Lunch		
•	SFRR Australasia AGM		
Session 11	Chair: Anitra Carr		
1.30pm	Alan Crozier University of California, Davis, USA		
	New insights into the bioavailability of dietary flavonoids		
1.50pm	Kevin Croft University of Western Australia, Australia		
	The acute effect of quercetin-3-O-glucoside on blood pressure, endothelial function and no		
	production in healthy men and women		
2.10pm	Nicola Brasch Auckland University of Technology, New Zealand		
	Pulse radiolysis and ultra-high performance liquid chromatography/high resolution mass		
	spectrometry (UHPLC/HRMS) studies on the reactions of the carbonate radical with vitamin B_{12}		
2 20	complexes		
2.30pm	Steven Gieseg University of Canterbury, New Zealand		
2.50	Is plasma neopterin the product of intracellular oxidant scavenging by 7,8-dihydroneopterin? Afternoon Tea		
2.50pm Session 12	Chair: Tony Kettle		
3.20pm	Victor Darley-Usmar University of Alabama at Birmingham, USA		
3.20pm	The interface between bioenergetics and redox biology; from bench to bedside		
4.00pm	Roland Stocker Victor Chang Cardiac Research Institute, Australia		
оорш	Heme oxygenase-1 and metabolic reprogramming in response to ischemia		
4.25pm	Margreet Vissers University of Otago, Christchurch, New Zealand		
<u></u> 0 p	Intracellular ascorbate availability in health and disease and effects on the regulation of the HIF		
	hydroxylases		
4.45pm	Summary		
Dinner			
7.00pm	Conference Dinner at ilex, Christchurch Botanical Gardens		
	· · · · · · · · · · · · · · · · · · ·		