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Introduction: 
Gene therapy involves the replacement of a defective gene with a functional one. For hereditary diseases, viruses are 

modified to deliver a corrective copy of a mutated gene into host cells. The viruses, termed viral vectors, hijack the host 

cell machinery to make a functional therapeutic protein to either stabilise or reverse a clinical disease state. Most brain-

directed gene therapies have been developed in mice, but the lissencephalic rodent brain lacks major neuroanatomical 

structures prominent in the human brain and is very much smaller, 0.4 g vs 1.4kg, as is the whole animal. Instead sheep 

represent ideal candidates for these investigations. They are similarly sized to humans, weighing 3.5 - 4.5 kg at birth 

and grow to 80 – 110 kg adults. The gyrencephalic ovine brain weighs ~140 g in adulthood and is similar in physical 

organisation to the human brain. Thus sheep models can provide excellent translational data on vector titres, doses, 

delivery routes and target sites and are often predictive of actual clinical outcomes. 

The lysosome is an intracellular organelle which breaks down and recycles larger molecules to smaller constituents for 

cellular function. If a protein involved either in lysosomal processing or directly as a lysosomal enzyme is defective, this 

results in the accumulation of these large molecules in the lysosome, causing a lysosomal storage disease (LSD). Over 

50 different LSDs exist, and most are currently incurable. Progressive neurodegeneration, seizures, loss of vision and 

premature death are often listed as defining common features. Gene therapy constitutes an attractive strategy to correct 

these diseases; viral vectors carrying a functional copy of the defective gene can be directed to the main target site, 

namely the brain. However given the neuropathology in the LSDs is widespread, it is important to determine the best 

delivery mechanism to achieve the greatest spread of the gene through the brain to best optimize successful correction. 

Aim: 
Here, viral vectors carrying a reporter gene (GFP; green fluorescent protein) will be injected into the cisterna magnum of 

two normal sheep, to see how effective this delivery route is at spreading the gene through the brain.  

 

Four weeks post-injection, sheep will be sacrificed and the vector distribution will be tracked by GFP expression, using 

immunohistochemistry and fluorescent microscopy on post mortem tissue sections. Results will be directly compared 

with previous GFP expression studies in the normal sheep brain (described below) to determine the best delivery route 

to achieve the greatest spread of GFP through the sheep central nervous system. 
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Possible impact (in lay terms): 
 
Gene therapy represents an attractive treatment strategy for many LSDs, which currently lack treatment. Preliminary 

gene therapy studies in mouse models of LSDs have been encouraging but large animals, such as sheep, provide a 

valuable tool in which to test different delivery routes and expedite these approaches to the clinic. 

The most direct gene therapy stratagem is via direct injection of viral vectors into the brain tissue (parenchyma) (Fig. 1). 

However, when tested in the sheep brain, there was relatively restricted diffusion of the vector, which limited GFP 

expression to the vicinity of the injection sites (Mitchell, 2016). It has been estimated that 50 to 350 separate injections 

would be required for complete coverage of the entire human infant brain, with each injection risking infection, 

inflammation or toxicity. Nevertheless, intraparenchymal delivery has been used in LSD patients affected by Canavan 

disease (Janson et al., 2002; Leone et al., 2012), late infantile Batten disease (Crystal et al., 2004; Worgall et al., 2008), 

metachromatic leukodystrophy (Zerah et al., 2015) and mucopolysaccharidoses type IIIA and B (Tardieu et al., 2014).  

As an alternative, we recently explored convection-enhanced parenchymal delivery in the sheep brain earlier this year 

with collaborators from the University of Manchester, UK. This method delivers a continuous pressure-driven infusion of 

viral vector, enabling convective distribution over large volumes of the brain. The final analyses are still pending and 

although the method should result in greater vector spread, it is still very invasive. 

Intracerebroventricular gene therapy has recently proven effective in correcting LSD (neuro)pathology in diverse animal 

models (Rafi et al., 2012; Haurigot et al., 2013; Katz et al., 2015; Ribera et al., 2015), including sheep models of the 

lysosomal storage disorder, Batten disease, at Lincoln University (Mitchell, 2016). The vector is delivered into the fluid 

filled spaces (ventricles) of the brain (Fig. 1). The cerebrospinal fluid (CSF) here circulates through the brain, bathing it 

and the spinal cord, hence providing an easy way of distributing the vector and resulting in a more global delivery. GFP-

positive cells were observed throughout the normal sheep brain and along the length of the spinal cord, with no 

evidence of inflammation or toxicity to the brain cells. Access to the ventricles is routinely used to relieve intracranial 

pressure (Rosenbaum et al., 2014) however there was some concern about the ‘safety’ of this route in children and so 

alternative CSF-directed delivery routes are being considered. 

Intrathecal (into the CSF in the lumbar spinal cord) is one such route and will be explored in sheep at Lincoln University 

later this year. However this method was not particularly successful in pigs (Federici et al., 2012); the vector must travel 

from the base of the spine to the brain hence the spinal cord was well transduced but GFP expression was only seen in 

the rear end of the brain. 

In this proposed summer research project, the intracisternal delivery route in normal sheep will be tested. In a small pilot 

study, vectors carrying GFP will be delivered into the cisterna magnum – another fluid filled space in the brain which is 

readily accessed. CSF flows through the cistern and then across the brain. Four weeks later, the two sheep will be 

sacrificed, the brain and spinal cord analysed for GFP expression and compared to the distribution patterns seen by the 

other delivery routes described above. 

This study will directly compare intracisternal delivery to other delivery routes in the sheep brain and providing 

information on whether it is a potential route to be further explored in humans. 

 

 
 
 
 
 
 
 



 

Figure 1. Gene therapy routes to target the brain and cerebrospinal fluid (CSF) flow 
Viral vectors can be injected directly into the brain tissue (intraparenchymal); into the CSF of the lateral ventricles 
(intraventricular); into CSF at the cisterna magna (intracisternal) or into CSF at the lumbar or inferior end of the spinal 
cord (intrathecal lumbar). 
 

 
 
CSF is produced by the choroid plexus of each ventricle. It flows through the ventricles and into the subarachnoid space 
via the median and lateral apertures, bathing the external surface of the brain. Some flows through the central canal of 
the spinal cord. At the arachnoid villi, CSF is reabsorbed into the venous blood of the dural venous sinuses. 

 
Method: 
 
This proposed project is a pilot study, involving only two sheep. Intracisternal injection is relatively straightforward and, 
in fact, it is through the cisterna magna (cerebellomedullary cistern) that we routinely aspirate CSF samples in sheep. 
Pre-operatively animals will be generally assessed (weight, temperature, pulse, respiratory rate). This will occur prior to 
commencement of the summer student. 
 
Either immediately at the start of the project, or preferably on a day prior to the start of the project, two normal control 
sheep will receive a common gene therapy vector, adeno-associated virus (AAV) expressing a reporter gene, green 
fluorescent protein (GFP) through the cisterna magnum. Vector is available at Lincoln for this purpose and the surgery 
will only take at most 1 hour per animal. 
 
Under general anaesthesia (diazepam/ketamine, 1:1, i.v.), the head will be shaved and held in position as for CSF 
collection. A 22g needle fitted with a 3-way tap will be inserted into the cisterna magnum and the correct depth verified 
by easy withdrawal of CSF. The tap will be switched and the suspension of vector particles injected in a small volume of 

saline. Sheep will receive 500 L of scAAV9.CB.GFP (total dose 3 x 1013 viral genomes, an equivalent dose to that 
given in the previous sheep studies described above. Once the full dose has been deposited, the needle will be 
withdrawn and the animal monitored closely post-surgery. For the first two weeks following surgery, neurological status 
and rectal temperature will be recorded by the summer student. Pulse, respiratory rate, temperature and weight will be 
measured weekly.  
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During this time, under the tutelage of the first supervisor and a technician, the summer student will learn brain 
sectioning and immunohistochemistry techniques on historical stored samples at Lincoln. At 4 weeks post-surgery, 
sheep will be euthanised by captive-bolt and exsanguination. Brains will be collected and perfusion-fixed in situ by 
established methods routinely used at Lincoln University (Oswald et al., 2005; Mitchell, 2016). Spinal cord samples will 
be collected and fixed in formalin. The brains will be bisected at the sagittal midline and left in fixative (10% formalin) for 
a further 7 days. Fixed brains will then be equilibrated in cryoprotective solution (10% ethylene glycol, 20% sucrose in 
0.9% NaCl) at 4°C for 5 days and stored frozen at -80°C until they were sectioned. This should co-incide with the 
2017/18 Christmas break. 
 
Into the New Year, sequential 50 μm sagittal brain sections will be cut through the medio-lateral extent of both 
hemispheres using a freezing sliding microtome. Every 40th sections will be stained for GFP as described previously 
(Linterman et al., 2011). If time permits, parallel series of sections will be double-labelled with fluorescent GFP and 
either an astrocytic marker (GFAP) or a fluorescent neuronal marker (NeuroTrace) as established methods (Linterman 
et al., 2011) to identify the key cell populations transduced. Results will be directly compared with historical slides from 
the previous GFP expression studies in the normal sheep brain described above. 
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