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Methane ~ flow and CO2 ~ stock
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Near equilibrium

Figure 9-2  Relationship between emissions and warming for short- and long-lived gases
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Source: Allen et al. (2017).



Further from equilibrium

Figure 9-2  Relationship between emissions and warming for short- and long-lived gases

a. Rising emissions b. Constant emissions c. Fallingemissions
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CH4 ~ flow and CO2 ~ stock
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Cantribution to warming (“C)
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GWP* reflects the warming
and GWP,,, doesn’t
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GWP* reflects the warming
and GWP,,, doesn’t
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Figure 1: Warming
How NZ greenhouse
gas emissions
contribute to global
warming rate (left) and
total warming since
1990 (right)

Figure 2: GWP,,
Annual (left) and
cumulative NZ
greenhouse gas
emissions since 1990
(right) expressed in
CO,-e using GWP .

Figure 3: GWP*
Annual (left) and
cumulative NZ
greenhouse gas
emissions since 1990
(right) expressed in
CO,-e using GWP*).



Summary

* GWP,y, is not fit for purpose as a metric of the impact of
greenhouse gas emissions on global mean surface
temperature.

* Using GWP,, gives more CO,-e emissions from methane
than CO, (fig 2), despite the fact that the warming (fig 1)
is dominated by CO, because GWP,,, overestimates the
cumulative effects of methane.

* Declining methane emissions cause cooling.



NZ Future warming

————— warming from constant CH, and constant fossil CO, emissions
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Figure 21. Total warming from New Zealand livestock methane and fossil carbon dioxide emissions from 2000 to 2200. The
dark blue shaded area indicates the total warming if methane emissions are reduced such that no additional warming results
after 2016; the light blue shaded area indicates the additional warming that would result if methane emissions were held
constant from 2016 onwards. The dark red area indicates the total warming from fossil carbon dioxide emissions, added to
the total warming from methane emissions, if fossil carbon dioxide emissions were reduced to zero by 2050, and the light
red shaded area indicates the warming that would result if fossil carbon dioxide emissions were reduced to zero by 2100.
The red dashed line indicates the total warming that would result if both livestock methane and fossil carbon dioxide
emissions were held constant at year 2016 levels. Levels of warming represent the best estimate (median) result of
probabilistic MAGICC simulations (see Appendix I).



Asking the same question of all gases

 What level of emissions reductions are
required to prevent any further warming from
the 3 main gases?
— CO,: negative emissions immediately
— N,O: zero or negative emissions immediately

— CH,: you can maintain 99.7%, per annum, of the
previous year’s emissions.



Time flexibility

"I nceas RN “Eventual mitigation of SLCP can make a
T acmm useful contribution to climate protection,
but there is little to be gained by
/ ] implementing SLCP mitigation before
e —— — stringent carbon dioxide controls are in
o place and have caused annual emissions
s ] to approach zero. Any earlier
: f implementation of SLCP mitigation that
’ | | ] substitutes to any significant extent for
s T carbon dioxide mitigation will lead to a
climate irreversibly warmer than will a
strategy with delayed SLCP mitigation.
_ SLCP mitigation does not buy time for
implementation of stringent controls on
, CO, emissions.”

Comparison of warming from early, late, and no short-lived climate pollution (SLCP) abatement scenarios
applied on top of a baseline consisting of RCP4.5, RCP6, and RCP$.5 CO; emissions plus the baseline
SLCP and sulfate aerosol shown in Figure 10.



Time flexibility, cont’d

Substituting SLCP for CO,

It is seen that any amount of
substitution of SLCP abatement
for CO, abatement results in a
situation in which a temporary
and modest reduction in near-
term temperature is bought at
the expense of a permanent
increase in the long-term
temperature. The greater the
substitution, the less the short-
term climate benefits and the
greater the irreversible harm.

SLCPs and peak temperatures

if the prime climate protection goal is
to limit peak warming, then early SLCP
mitigation is pointless, because in no
case does early SLCP mitigation
significantly reduce the peak warming.
The calculation does show, however,
that eventual SLCP mitigation helps trim
the magnitude of the peak warming.

Bowerman et al. (2013), using a
somewhat different set of assumptions,
also arrived at the conclusion that doing
SLCP mitigation early rather than late
has no effect on peak warming. They
conclude further that under most
circumstances of interest, accelerating
SLCP mitigation does not reduce even
the maximum rate of warming.



Summary

e Methane emissions reductions that come at
the expense of CO2 reductions leave behind a

warmer world

* |f methane emissions reductions can be made
without substituting for CO2 reductions, then

they’re a good idea



Linking climate science to social concerns:
attributing costs to climate change

Year Cost (SM) Attributable
Cost (SM)
— 2007 10-12-Jul North North 0.30 68.65 20.595
Island
- 3-7 April North Island 0.35 66.4 23.24
- 19-22 April Nelson, BoP 0.30 46.2 13.86
New Zealand Climate Change Research Institute, and NIWA
7-12 March Upper North 0.40 41.7 16.68
Estimating financial i
costs of climate 18-21June  Lower North 0.10 1.5 415
) Island
change in New
Z )| l d 23-24 March ~ West Coast- 0.40 30.2 12.08
ealan Nelson
- 2-4 June Otago 0.05 215 1.075
An estimate of climate change-related weather event costs
13-15 May Lower North 0.30 219 6.57
Island
29-Jan Northland to 0.30 19.8 5.94
BoP
- 8-10 July Northland 0.30 18.8 5.64
e SRl ks Hneriogton; Sem Da 13-16 April Mostly North 0.35 18. 6.3
Island
- 29-Mar Far North 0.30 12. 36
- Total attributable extreme rainfall insurance costs $119.73







Cool, verb

1. intransitive. To become less hot or warm;
to become cool. Frequently with down, off.



GWP* reflects the warming
and GWP,,, doesn’t

T T T 5 T T T = 2
601 a) GWP,,, annual emissions | b) GWP,,, cumulative emissions
=~ Total CO, 4+  Temperature (dashed)
g °
© 40| Methane 41 & =
' &)
o Q 1=
% Aerosol E’ 2
2 2 1 :
= [}
S o =
3 — E
]
-20 L | " -1 L I .
1900 1950 2000 2050 2100 1900 1950 2000 2050 2100
Year Year
T T T 5 T T T 92
60k c) GWP* annual emissions i d) GWP* cumulative emissions
— 4+  Temperature (dashed)
- - CO,-fe emissions (thin)
2 ®
(pm 40+ /‘\ 4 ON 5
o [&] 19_-
s £ 2
2 20t - S €
@ B ]
o 8 =
w
£
£ &
o 0
-20 L | 1 -1 L L L
1900 1950 2000 2050 2100 1900 1950 2000 2050 2100

Year Year

Fig.2 Annual a, c and cumulative b, d CO;-e and CO,-e* emissions under the GWP,4, a, b and GWP* ¢, d metrics using historical emissions to
2015 extended with the RCP2.6 scenario. Dashed lines show global mean surface temperature (GMST) response to radiative forcings
associated with these emissions (not available separately for land-use CQ5). Colors indicate gases following the legend in a, with “Aerosol” also
including ozone and other minor constituents. Thin solid lines in d show cumulative CO>-forcing-equivalent emissions closely tracking GMST
response



Generic response to RF
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Residual warming
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Figure 15. Modelled warming from New Zealand livestock methane emissions, with the effect of climate-carbon cycle
feedbacks included (left panel, solid shading) and excluded (right panel, hashed shading). Global background
concentrations were assumed to be constant from 2011 onwards. Dashed lines indicate the warming estimated to have
occurred due to New Zealand’s methane emissions by the year 2016.



Per tonne, Methane vs CO2
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But gulf in quantity, too.

Emissions by kilotonnes
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Analogy with the per capita vs total
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China's total emissions
lead the world, but
when diluted by its huge
population, its ranking
drops down the per
capita list.
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no. 2 for total emissions
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