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Abstract

This paper shows that the nonparametric bootstrap is inconsistent, and the parametric bootstrap

is consistent for inference of the threshold point in discontinuous threshold regression. An interesting

phenomenon is that the asymptotic nonparametric bootstrap distribution of the threshold point is discrete

and depends on the sampling path of the original data. This is because the threshold point is essentially

a boundary of the sample space, and only the bootstrap sampling on the data in the neighborhood of

the threshold point is informative. The results are compared with Andrews (2000) where a parameter is

on the boundary of the parameter space rather than the sample space. The method developed in this

paper is generic in deriving the asymptotic bootstrap distribution. The remedies to the nonparametric

bootstrap failure in the literature are also summarized.
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1 Introduction

Since the introduction by Efron (1979), the bootstrap has become a popular alternative of the asymptotic

inference, either when the asymptotic distribution is di¢ cult to derive or the �nite sample re�nement can be

achieved. Meanwhile, many examples of the bootstrap failure surface. Most of these examples are contributed

by statisticians; see Andrews (2000, p400) for a list of them.1 To my knowledge, there are also three examples

contributed by econometricians: the case when a parameter is on the boundary of the parameter space in

Andrews (2000), the maximum score estimator in Abrevaya and Huang (2005), and the matching estimator

for the program evaluation in Abadie and Imbens (2008). This paper contributes another example where

the nonparametric bootstrap fails: the least squares estimator (LSE) of the threshold point in discontinuous

threshold regression.

The typical setup of threshold regression is

y =

(
x0�1 + �1e;

x0�2 + �2e;

q � 
;
q > 
;

(1)

E [ejx; q] = 0;

where q is the threshold variable used to split the sample and has a density fq (�), x 2 Rk, � = (�01; �02)0 2 R2k

and � = (�1; �2)
0 are threshold parameters on mean and variance in the two regimes, E[e2] = 1 is a

normalization of the error variance and adopts conditional heteroskedasticity, and all the other variables

have the same de�nitions as in the linear regression framework. The threshold regression model has many

applications; see, e.g., Yu (2007) and Lee and Seo (2008) for the examples. De�ne � =
�
�0; 


�0
, which is the

parameter of interest in applications. Most literature on threshold regression concentrates on the nonregular

parameter 
 since inference for the regular parameters � is standard.

In discontinuous threshold regression where
�
�01; �1

�0 � ��02; �2�0 is a �xed constant, Gonzalo and Wolf
(2005) claim that "it is not known whether a bootstrap approach would work". This motivates them to use

the subsampling for the construction of con�dence intervals. Footnote 3 in Seo and Linton (2007) indicates

that the bootstrap may be inconsistent in their simulations. There are some related results in the structural

change literature. For example, in the framework with asymptotically diminishing threshold e¤ect like that in

Hansen (2000), Antoch et al (1995) show that the bootstrap is valid in the structural change model. See also

Hu�ková and Kirch (2008) for the validity of the block bootstrap in the time series context. The extension

of the arguments in these two papers to threshold regression is straightforward. In a similar framework as

considered in this paper, Dümbgen (1991) �nds that the bootstrap has the correct convergence rate in the

structural change model without proving its validity. In this paper, we con�rm that the bootstrap has the

right convergence rate, and also show that it is not valid for inference of the threshold point.

Before presenting main results on the bootstrap inference, the LSE of � and the basic probability structure

in the bootstrap environment are de�ned. Suppose a random sample fwigni=1 is observed, where wi =
(yi; x

0
i; qi)

0 , the LSE of 
 is usually de�ned by a pro�led procedure.

b
 = argmin


Qn (
) ;

where

Qn (
) = min
�1;�2

nX
i=1

m (wij�) ,

1See also, e.g., Horowitz (2001), Bickel et al (1997), and Beran (1997).
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with

m (wj�) = (y � x0�11(q � 
)� x0�21(q > 
))
2
: (2)

Usually, there is an interval of 
 minimizing this objective function. Following the literature, the left end

point of the interval is taken as the minimizer. To express the model in matrix notation, de�ne the n � 1
vectors Y and e by stacking the variables yi and ei, and the n � k matrices X, X�
 and X>
 by stacking
the vectors x0i, x

0
i1(qi � 
) and x0i1(qi > 
). Let b�1 (
)b�2 (
)

!
� arg min

�1;�2

nX
i=1

m (wij�) =
 �

X 0
�
X�


��1
X 0
�
Y�

X 0
>
X>


��1
X 0
>
Y

!
;

then the LSE of � is de�ned as
�b�01 (b
) ; b�02 (b
)�0 � �b�01; b�02�0. The bootstrap estimator �b��0; b
��0of ��0; 
�0

is de�ned in the same way as above except using the bootstrap sample fw�i g
n
i=1.

The basic probability structure in the bootstrap environment is de�ned as follows. Let Pn and P �n be the

empirical measure of the original data and the bootstrap sample w�1 ; � � � ; w�n, respectively.2 Pn is a random
measure, and its randomness is de�ned by the data generating process (DGP) of the original data. P �n can

be written as

P �n =
1

n

nX
i=1

�w�i =
1

n

nX
i=1

Mni�wi ;

where Mni is the number of times that wi is drawn from the original sample, and Mn = (Mn1; � � � ;Mnn)

follows the multinomial distribution with parameters n and cell probabilities all equal to 1
n (and independent

of the original data fwigni=1). Suppose Mn is de�ned on a probability space (T ;B; P �) which describes a
probability structure with an expanding support. For the original sample, take wi as the ith coordinate

projection from the probability space (Z1;A1; P1). For the joint randomness involving both Mn and

fwigni=1, de�ne the product probability space

(Z1 � T ;A1 � B; Pr) � (Z1;A1; P1)� (T ;B; P �);

where Pr � P1 � P � denotes the whole randomness in the nonparametric bootstrap.3

For the parametric bootstrap, a similar probability structure can be constructed as in the nonparametric

case. The only di¤erence is that the parametric distribution with the estimator as the true value is used as

P �.

This paper is organized as follows. In Section 2, an extreme case of threshold regression is used to

illustrate why the nonparametric bootstrap is inconsistent, and the parametric bootstrap is consistent for

the threshold point. Section 3 presents similar results for the general model. Section 4 uses numerical

examples to show the intuition behind these results. Section 5 provides some remedies in the literature to

the nonparametric bootstrap failure, and Section 6 concludes. All proofs and lemmas are left to Appendix

A and B, respectively. A word on notation: any parameter with a subscript 0 means its true value, any

symbol with a superscript � means an object under P � de�ned above instead of under the outer measure as
used in some other literature, and  signi�es weak convergence under the true parameter value.

2 In other words, Pn is the population measure of P �n , and P , the original population measure, is the population measure of
Pn.

3See Problem 3.6.1 in Van der Vaart and Wellner (1996) for a formal construction of this probability space.
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2 When There is No Error Term: An Illustration

First, simplify (1) to the extreme case as follows:

y = 1(q � 
); q � U [0; 1]: (3)

This corresponds to x = 1, �10 = 1, �20 = 0, �10 = �20 = 0 in (1). Here, q follows a uniform distribution on

[0; 1], and 
0 = 1=2 is of main interest. Note that there is no error term e in (3), so the observed y values

can only be 0 or 1. In this case, the threshold point is essentially a "middle" boundary of q as shown in Yu

(2007). b
 depends on whether there exists qi no greater than 1=2 or not. If there is qi no greater than 1=2,
then b
 equals the qi closest to 1=2 from the left. Otherwise, b
 equals the qi closest to 1=2 from the right.

Since the probability that all qi�s are greater than 1=2 equals
�
1
2

�n
which converges to zero, we can assumeb
 � 1

2 in the following discussion. For t < 0,

P (n (b
 � 
0) � t)
= P

�
qi =2 (
0 + t

n ; 
0] for all i
�

= (1 + t
n )
n ! et;

(4)

so the asymptotic distribution of n (b
 � 
0) is a negative standard exponential, and there is no density on
the positive axis. Note further that b
 is a nondecreasing function of n, and there is no data point betweenb
 and 
0.
2.1 Invalidity of the Nonparametric Bootstrap

The objective function of the least squares estimation is

nX
i=1

(yi � 1(qi � 
))2 :

In order to use the nonparametric bootstrap to approximate the distribution of n (b
 � 
0), we need to obtain
the asymptotic distribution of n (b
� � b
), where

b
� = argmin



nX
i=1

(y�i � 1(q�i � 
))
2
;

and (y�i ; q
�
i ) follows the empirical distribution Fn.

4 The asymptotic distribution of n (b
� � b
) can be derived
conditional on the data as n goes to in�nity. Since 
 is essentially a boundary, the following derivation is

similar to that in Example 3 of Bickel et al (1997).

Suppose there are m yi�s taking value 1, and the remaining (n � m) yi�s take value 0, then b
 = q(m),

and b
 converges to 1=2 as n goes to in�nity for any sample point ! in Z1 according to Chan (1993), where

q(m) is the m�th order statistic of fqigni=1. In the bootstrap sampling, as long as
�
q(m); y(m)

�
is drawn,b
� = q(m). So P �n (n (b
� � b
) = 0jFn) = 1 � P �n ��q(m); y(m)� is not drawn� = 1 � �1� 1

n

�n ! 1 � e�1 > 0,
while P (n (b
 � 1=2) = 0)! 0 since the asymptotic distribution of n (b
 � 1=2) is continuous. Therefore, the
bootstrap is not consistent. The following provides the whole asymptotic distribution of n (b
� � b
) jFn.

4 In this paper, Fn is used exchangeably with Pn.
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Figure 1: Comparison of the Asymptotic Distribution and Asymptotic Bootstrap Distribution in Threshold
Regression without the Error Term

Note that for any t � 0;

P �n (n (b
� � b
) < tjFn)
= P �n

�
no q�i is sampled from [b
 + t

n
; b
]�

=

�
1� k

n

�n

where k =
nP
i=1

1
�b
 + t

n � qi � b
�. Conditional on b
, k � 1+Bin
�
n� 1; jtj=n

1�(1=2�b
)
�
converges weakly to

1 + N(jtj) for any b
, where N(�) is a standard Poisson process, so P �n (n (b
� � b
) < tjFn) converges to
e�(1+N(jtj))jN(j�j) which is discrete. A new jump in e�(1+N(jtj))jN(j�j) happens as jtj gets larger when
the expanding interval

�b
 + t
n ; b
� covers a new qi. Because P �n (n (b
� � b
) � 0jFn) ! e�(1+N(jtj))jt=0 +�

1� e�1
�
= 1, there is no probability on the positive axis, which is similar as the asymptotic distribution.

The above results are surprising in two aspects. First, while the asymptotic distribution is continuous,

the asymptotic bootstrap distribution is discrete. This is di¤erent from conventional models where the as-

ymptotic bootstrap distribution is normal. Essentially, this is because the asymptotic bootstrap distribution

of the threshold point relies on the bootstrap sampling on the local data (i.e., b
 + t
n � qi � b
) rather than

the sampling on the whole dataset in conventional models. Second, the asymptotic bootstrap distribution

depends on the original data. Although the point mass at zero is always 1 � e�1, how to distribute the

remaining e�1 probability depends on how the original data are sampled. When more data (in 1=n rate) are
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sampled in the left neighborhood of 1=2, the point masses are closer to zero. Figure 1 shows the asymptotic

distribution and asymptotic bootstrap distributions for two di¤erent original sample paths. Clearly, more

original data in bootstrap 2 lie in the left neighborhood of 1=2 than in bootstrap 1.

One important similarity between the asymptotic bootstrap distribution and asymptotic distribution is

that both of them critically depend on the local information around the threshold point. The asymptotic

distribution depends on the density of q at 1=2, while the asymptotic bootstrap distribution depends on the

local data around b
 in the original sample. This is not di¢ cult to understand considering that the true
distribution of q in the asymptotic theory is fq(�) (U [0; 1] in this example), and the true value of 
 is 1=2,
while in the nonparametric bootstrap, the true distribution of q is the empirical distribution of fqigni=1, and
the true value of 
 is b
.
In summary, although this example is very simple, it shows one general feature of the nonparametric

bootstrap of the threshold point: the local information around 
0 (or b
) is most important for the bootstrap
inference. As a result, the asymptotic bootstrap distribution is discrete and depends on the original data.

Therefore, the nonparametric bootstrap of the threshold point is invalid.

Since the asymptotic bootstrap distribution depends on the original data, a natural question is whether

the average bootstrap is consisent, where the average bootstrap distribution is the distribution of n (b
� � b
)
under Pr. From the frequentist point of view, in�nitely many original sample paths can be potentially drawn

according to P1. So the average bootstrap distribution can be obtained by �rst running the nonparametric

bootstrap for each sample path, and then averaging the bootstrap distribution for all sample paths.5 In this

example, the question becomes whether E[e�(1+N(jtj))] = et for t � 0. The answer is no since there is a

point mass at zero in the asymptotic bootstrap distribution for any sample path. The asymptotic density

function resulted from the average bootstrap procedure is also shown in Figure 1.

As the last comment about the invalidity of the nonparametric bootstrap, note that 
 is di¤erent from

� in Andrews (2000). In Andrews (2000), fXigni=1 is a sequence of i.i.d. N(�; 1) random variables, where

� 2 R+ � fz : z � 0g. Note that 0 is on the boundary of the parameter space, but it is still in the interior of
the sample space. In contrast, in threshold regression, 
 is the boundary of the sample space, and is in the

interior of the parameter space. So the reason for the invalidity of the nonparametric bootstrap is di¤erent.

Checking the three su¢ cient conditions for the validity of the bootstrap provided on page 1209 in Bickel

and Freedman (1981), the uniformity condition (6.1b) fails in the nonparametric bootstrap of 
, while in the

nonparametric bootstrap of �, the continuity condition (6.1c) fails. In Andrews (2000), even the parametric

bootstrap fails at � = 0, but the parametric bootstrap works in threshold regression as seen in the next

subsection.

2.2 Validity of the Parametric Bootstrap

In the parametric bootstrap sampling, the following DGP is used:

y = 1(q � b
); q � U [0; 1];
where b
 is the MLE which is also the LSE in this simple case. For any bootstrap sample fw�i gni=1 from this

DGP, b
� is the MLE using fw�i gni=1. The question left is to derive the asymptotic distribution of n (b
� � b
)
conditioning on b
.
For this simple setup, the exact distribution of n (b
� � b
) conditioning on b
 can be derived explicitly.
5Abadie and Imbens (2008) use a similar method as the average bootstrap to prove the invalidity of the bootstrap for

inference of matching estimators. In conventional models, the average bootstrap is never considered since the asymptotic
bootstrap distribution is the same for almost all original sample paths.
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For any t < 0,

P �n (n (b
� � b
) � tjb
)
= P �n

�
q�i =2 (b
 + t

n
; b
] for all ijb
�

= (1 +
t

n
)n ! et for any b
;

so the parametric bootstrap for 
 is consistent P1 almost surely. This is because the uniformity condition

(6.1b) in Bickel and Freedman (1981) fails in the nonparametric bootstrap, but holds in the parametric

bootstrap; see the arguments in their Counter-example 2 for more details. Note the similarity of this

derivation with (4).

3 The Bootstrap in Threshold Regression: The General Model

Before the formal discussion of the bootstrap inference, we will �rst specify the regularity conditions and

review the main asymptotic results in threshold regression.

Assumption D:

1. wi 2 W � R � X � Q � Rk+2, �1 2 B1 � Rk, �2 2 B2 � Rk, 0 < �1 2 
1 � R; 0 < �2 2 
2 � R;

1 � 
2 is compact, 
 2 � = [
; 
], �10 6= �20, and �10 6= �20, where 6= is an element by element

operation.

2. E [xx0] > E [xx01(q � 
)] > 0 for all 
 2 �

3. E [xx0jq = 
] > 0 uniformly for 
 in an open neighborhood of 
0.

4. fq(�) is continuous, and 0 < fq � fq(
) � fq <1 for 
 2 �.

5. E[kxek2] <1, and E[kxk4] <1.

6. E
h
kxk2

��� q = 
i <1 and E[kxekj q = 
] <1 uniformly for 
 in an open neighborhood of 
0.

7. Both z1i and z2i have absolutely continuous distributions, where the distribution of z1i is the limiting

conditional distribution of z1i given 
0 +� < qi � 
0, � < 0 as � " 0 with

z1i = f2x0i (�10 � �20)�10ei + (�10 � �20)xix0i (�10 � �20)g ;

and the distribution of z2i is the limiting conditional distribution of z2i given 
0 < qi � 
0+�, � > 0
as � # 0 with

z2i = f�2x0i (�10 � �20)�20ei + (�10 � �20)xix0i (�10 � �20)g :

Assumption D is roughly a subset of Assumption 1 in Hansen (2000). It is very standard. Assumption

D1 does not require B1 and B2 to be compact, and Assumption D2 excludes the possibility that 
0 is on

the boundary of q�s support; see Section 3.1 of Hansen (2000) for more discussions. From Chan (1993) or

Yu (2007), under Assumption D,

p
n
�b�1 � �10� d�! Z�1 � E [xx01 (q � 
0)]

�1 �N
�
0; E

�
xx0�210e

21 (q � 
0)
��
;

p
n
�b�2 � �20� d�! Z�2 � E [xx01 (q > 
0)]

�1 �N
�
0; E

�
xx0�220e

21 (q > 
0)
��
;

6



and

n (b
 � 
0) d�! argmin
v
D (v) � Z
 ; (5)

with

D (v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0:

Here, Z�1 , Z�2 , fz1i; z2igi�1, N1(�) and N2(�) are independent of each other, and N` (�) is a Poisson process
with intensity fq(
0), ` = 1; 2. Since D (v) is the cadlag step version of a two-sided compound Poisson

process with D(0) = 0, there is a random interval [M�;M+) minimizing D (v). Since the left end point of

the minimizing interval is taken as the LSE, Z
 =M�. The asymptotic distribution of b� is the same as that
in the case when 
0 is known, and the asymptotic distribution of b
 is the same as that in the case when �0
is known. The explicit form of the density of Z
 is derived in Appendix D of Yu (2007).

3.1 Invalidity of the Nonparametric Bootstrap

De�ne Nn as a Poisson number with mean n and independent of the original observations, then MNn;1;

� � � ;MNn;n are i.i.d. Poisson variables with mean 1. From Lemma 1 in Appendix B, Poissonization is

possible. See Kac (1949) and Klaassen and Wellner (1992) for an introduction of Poissonization. De�ne

h = (u0; v)
0
= (u01; u

0
2; v)

0 as the local parameter for �, then

nPn

�
m

�
�
�����0 + up

n
; 
0 +

v

n

�
�m (� j�0; 
0 )

�
= u01E [xix

0
i1 (qi � 
0)]u1 + u02E [xix0i1 (qi > 
0)]u2 �Wn (u) +Dn (v) + oP1 (1) ;

and

nP �n

�
m

�
�
�����0 + up

n
; 
0 +

v

n

�
�m (� j�0; 
0 )

�
= u01E [xix

0
i1 (qi � 
0)]u1 + u02E [xix0i1 (qi > 
0)]u2 �Wn (u)�W �

n (u) +D
�
n (v) + oPr (1) :

Here,

Dn (v) =
nX
i=1

h
m
�
wij
0 +

v

n

�
�m (wij
0)

i
=

nX
i=1

z1i1
�

0 +

v

n
< qi � 
0

�
+

nX
i=1

z2i1
�

0 < qi � 
0 +

v

n

�
;

D�
n (v) =

nX
i=1

MNn;i

h
m
�
wij
0 +

v

n

�
�m (wij
0)

i
=

nX
i=1

MNn;iz1i1
�

0 +

v

n
< qi � 
0

�
+

nX
i=1

MNn;iz2i1
�

0 < qi � 
0 +

v

n

�
;

with

m (wj
) = (y � x0�101(q � 
)� x0�201(q > 
))
2
;
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and

Wn (u) = W1n (u1) +W2n (u2) ;

W �
n (u) = W �

1n (u1) +W
�
2n (u2) ;

with

W1n (u1) = u01

 
2�10p
n

nX
i=1

xiei1 (qi � 
0)
!
;

W2n (u2) = u02

 
2�20p
n

nX
i=1

xiei1 (qi > 
0)

!
;

W �
1n (u1) = u01

 
2�10p
n

nX
i=1

(MNn;i � 1)xiei1 (qi � 
0)
!
;

W �
2n (u2) = u02

 
2�20p
n

nX
i=1

(MNn;i � 1)xiei1 (qi > 
0)
!
:

From the form of D�
n (v), it is clear that the bootstrap sampling in the neighborhood of 
0 is most important.

So essentially only the sampling on the �nite data points around 
0 is relevant. In contrast, W
�
1n (u1) and

W �
2n (u2) take an average form, which makes their asymptotic properties very di¤erent from D�

n (v). The

following Theorem 1 gives the joint weak limit of (Wn (u) ;W
�
n (u) ; Dn (v) ; D

�
n (v)), which is critical in

deriving the asymptotic bootstrap distribution in Theorem 2.

Theorem 1 Under Assumption D,

(Wn (u) ;W
�
n (u) ; Dn (v) ; D

�
n (v)) (W (u) ;W � (u) ; D (v) ; D� (v))

on any compact set, where

W (u) = 2u01W1 + 2u
0
2W2;

W � (u) = 2u01W
�
1 + 2u

0
2W

�
2 ;

with W1 and W �
1 following the same distribution N

�
0; E

�
x2�210e

21 (q � 
0)
��
, W2 and W �

2 following the

same distribution N
�
0; E

�
x2�220e

21 (q > 
0)
��
, and (D (v) ; D� (v)) being a bivariate vector of compound

Poisson process. D (v) is the same as that in (5), and

D� (v) =

8>><>>:
N1(jvj)P
i=1

N�
i�z1i, if v � 0;

N2(v)P
i=1

N�
i+z2i, if v > 0;

�

8>><>>:
N1(jvj)P
i=1

z�1i, if v � 0;
N2(v)P
i=1

z�2i, if v > 0;

with
�
N�
i�; N

�
i+

	
i�1 being independent standard Poisson variables.

6 Furthermore,W1,W2,W �
1 ,W

�
2 , fz1i; z2igi�1,�

N�
i�; N

�
i+

	
i�1, N1(�) and N2(�) are independent of each other.

D� (v) is called a multiplier compound Poisson process, which is highly correlated with D (v) since

fz1i; z2igi�1, N1(�) and N2(�) are the same as those in D(v). The randomness in fz1i; z2igi�1, N1(�) and

6From the proof in Appendix B,
n
N�
i�; N

�
i+

o
i�1

is just
�
MNn;i

	
i�1. The following is an intuitive derivation for the fact
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N2(�) is introduced by the original data, so the randomness introduced by the bootstrap appears only in�
N�
i�; N

�
i+

	
i�1. Since E

�
N�
i�
�
= E

�
N�
i+

�
= 1 for any i, the average jump size of z�1i and z

�
2i in D

� (v) is the

same as z1i and z2i in D(v). But the distribution of z�1i and z
�
2i instead of their mean determines the jumps

in D� (v). The distribution of z�1i is

Pr (z
�
1i � x)

=

( P1
k=1 Pr

�
N�
i� = k; z1i � x

k

�
e�1 +

P1
k=1 Pr

�
N�
i� = k; z1i � x

k

� if x < 0;

if x � 0;

=

( P1
k=1

e�1

k! �1
�
x
k

�
;

e�1 +
P1

k=1
e�1

k! �1
�
x
k

�
;

if x < 0;

if x � 0;

where �1 (�) is the cdf of z1i. The distribution of z�2i can be similarly derived. Since there is a point mass
e�1 at zero in the distribution of z�1i and z

�
2i, the sample path of D

� (v) is very di¤erent from that of D(v).

When N�
i� (N

�
i+) is equal to zero, the ith and (i � 1)th jump on v � 0 (v > 0) in D(v) are combined into

one jump. When N�
i� (N

�
i+) is greater than 1, the ith jump on v � 0 (v > 0) in D(v) is magni�ed.

Theorem 2 Under Assumption D,

(i) the bootstrap estimator b�� is consistent; that is, pn�b�� � b�� d�! Z�� as n ! 1 in P1 probability,

where Z�� has the same distribution as Z� �
�
Z 0�1 Z 0�2

�0
and is independent of Z�.

(ii)
(n (b
 � 
0) ; n (b
� � 
0)) d�!

�
Z
 ; Z

�



�
as n!1 in Pr probability,

where

Z�
 = argmin
v
D� (v) :

(iii)
n (b
� � b
) d�! Z�
 � Z
 as n!1 in P1 probability.

where Z�
 � Z
 and Z�� are independent conditional on the original data.

When 
0 is known, the validity of the bootstrap for regular parameters � is a standard result. When


0 is unknown, (i) shows that the bootstrap is still valid and the asymptotic bootstrap distribution is the

same as that for the case when 
0 is known. The validity of the bootstrap for � is due to the separability

of W (u) and W � (u) in the weak limit of nP �n
�
m
�
�
����0 + up

n
; 
0 +

v
n

�
�m (� j�0; 
0 )

�
and their linearity

that fMnigi�1 can be approximated by
n
N�
i�; N

�
i+

o
i�1

. The �nite-dimensional marginal distribution of
n
N�
i+; N

�
i�

o1
i=1

is

P �
�
N�
i1+

= ki1+; � � � ; N
�
ij+

= kij+; N
�
i1� = ki1�; � � � ; N

�
im� = kim�

�
= lim

n!1
n!

ki1+! � � � kij+!ki1�! � � � kim�! (n� k)!

�
1

n

�k �
1� j +m

n

�n�k
=

e�(j+m)

ki1+! � � � kij+!ki1�! � � � kim�!

=
e�1

ki1+!
� � � � � e

�1

kij+!
� e

�1

ki1�!
� � � � � e�1

kim�!

where k = ki1++� � �+kij++ki1�+� � �+kim�. The independence is understandable. Note that Corr (Mni;Mnj) = � 1
n�1 < 0,

but Corr (Mni;Mnj) ! 0 when n ! 1. Corr (Mni;Mnj) = � 1
n�1 is generally true for exchangeable random variables with

�xed sum n; see, for example, Aldous (1985), page 8. The negativity of the correlation is understandable since for a �xed n, an
increase in one component of a multinomial vector requires a decrease in another component.
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with respect to u. This point is �rst noted in Abrevaya and Huang (2005). In their case, the weak limit is

separable but not linear, so the bootstrap fails. In the bootstrap for 
, the randomness from the original

data and that from the bootstrap sampling are neither separable nor linear. In consequence, the bootstrap

is not valid for 
.

From (ii), n (b
� � b
) d�! Z�
 � Z
 as n ! 1 in Pr probability by the continuous mapping theorem.

Z�
 � Z
 is the asymptotic distribution of the average bootstrap of 
. The distribution of Z�
 under Pr
can be derived by the simulation method proposed in Appendix D of Yu (2007), but take caution that two

jumps in D� (v) can be combined into one when N�
i� or N

�
i+ equals zero. This distribution is expected to be

continuous but more spreading than Z
 as N�
i� (N

�
i+) can take values other than 1. Since D(v) and D

� (v)

are highly correlated, Z�
 and Z
 are highly correlated under Pr. As in the case without the error term,

there is expected to be a point mass at zero in the distribution of Z�
 � Z
 under Pr although Z�
 and Z

are both continuous.7

By (iii), the asymptotic bootstrap distributions for the nonregular parameter 
 and for the regular

parameters � are independent conditional on the original data, which is similar to the asymptotic distribution

as shown in (5). This is because the bootstrap samplings for the inference of � and 
 use information

independently. Conditional on the original data, the randomness introduced by the bootstrap in b�� takes an
average form; see, e.g., the term 1p

n

nP
i=1

(MNn;i � 1)xiei1 (qi � 
0) in W �
1n (u1). Accordingly, the bootstrap

sampling on a single data point does not contribute much to the asymptotic bootstrap distribution. This

"global" sampling on the original data averages out the e¤ect of fMNn;ig
n
i=1 and makes the bootstrap

distribution for � converge to a normal distribution. In contrast, only "local" sampling on the data around


0 is informative to the inference of the threshold point as shown in D
�
n above. This is why

�
N�
i�; N

�
i+

	
i�1

appears in D� (v), but not in W � (u).

The asymptotic distribution of n (b
� � b
) jFn is discrete and critically depends on D (�). The magnitude
of the point masses depends on fz1i; z2igi�1, and the location of the point masses depends on both N`(�),
` = 1; 2, and fz1i; z2igi�1. Since Z
 is �xed conditional on the original data, the nonparametric bootstrap
distribution

�
Z�
 � Z


�
jD (�) is just a location shift of Z�
 jD (�). See the numerical example in Section 4.2

below for more concrete description of Z�
 � Z
 .
The method developed in Theorem 2 is very general in deriving the asymptotic bootstrap distribution.

Take a revisit to Andrews (2000). A natural estimator of � is b�n = max�Xn; 0
	
which is also the maximum

likelihood estimator of �, where Xn =
1
n

Pn
i=1Xi. Under � = 0,

p
n
�
X
�
n �Xn

�
and

p
nXn are asymptot-

ically independent N(0; 1), where X
�
n =

1
n

Pn
i=1X

�
i with X

�
i � Fn, and the limit variables are denoted as

Z� and Z. Then the asymptotic distribution of the average bootstrap of � at 0 is

p
n (b��n � b�n) =

p
n
�
max

n
X
�
n; 0
o
�max

�
Xn; 0

	�
d�! max fZ + Z�; 0g �max fZ; 0g :

The bootstrap distribution converges weakly to the conditional distribution of max fZ + Z�; 0g�max fZ; 0g
given Z: (

max fZ�;�Zg ;
Z +max fZ�;�Zg ;

if Z � 0;
if Z < 0;

7This point mass is less than 1 � e�1, because b
 is not necessarily b
� even if it is sampled in the bootstrap unlike in the
case without error term. The numerical example in Section 4.2 below provides more description of Z�
 � Z
 under Pr .
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Figure 2: Comparison of the Asymptotic Distribution and Asymptotic Bootstrap Distribution in Andrews
(2000)

so this asymptotic bootstrap distribution also depends on the original sampling path although only through

an asymptotic su¢ cient statistic Xn. This point is shown in Figure 2. In Figure 2, the asymptotic bootstrap

distribution varies when Z changes. When Z > 0, there is a point mass at �Z, and when Z < 0, there

is a point mass at 0. The point masses are increasing when Z gets smaller. The asymptotic bootstrap

distribution matches the asymptotic distribution only when Z = 0.8

3.2 Validity of the Parametric Bootstrap

To prove the validity of the parametric bootstrap in the general model (1), Proposition 1.1 in Beran (1997)

can be used. The critical step is to check the condition a) there, which is done in Yu (2007). To save space,

the proof will not be repeated here.

It is worth pointing out that the parametric wild bootstrap is not valid. In the parametric wild bootstrap,

we condition on fxi; qigni=1, and only utilize the randomness from f (ejx; q; b�), where � 2 Rd� is some nuisance
parameter a¤ecting the shape of the error distribution, and b� is its MLE. The invalidity of the parametric
wild bootstrap can be seen from the illustrative example in Section 2. Because the distribution of the error

term is a point mass at zero, each bootstrap sample coincides with the original sample. As a result, each

bootstrap estimator is the same as the original MLE and does not include any randomness when conditioning

on the original data. In consequence, the bootstrap con�dence interval only includes the MLE itself and

8 It can be shown that the asymptotic bootstrap distribution is

8>><>>:
�
�(t);
�(�Z);

when t > �Z;
when t = �Z; if Z > 0;�

�(t� Z);
�(�Z);

when t > 0;
when t = 0;

if Z � 0:
When Z ! 1,

this distribution converges to the standard normal. When Z ! �1, this distribution converges to a point mass at zero.

The asymptotic average bootstrap distribution is

8><>:
2�(t)�(t);R 0
�1 �(�z)�(z)dz;
1
2
�(t) +

R 0
�1 �(t� z)�(z)dz;

when t < 0;
when t = 0;
when t > 0;

where � (�) is the standard

normal density, and � (�) is the standard normal cdf, which has a point mass only at zero.
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does not cover 
0 for almost all original sample pathes. On the contrary, Remark 3.6 in Chernozhukov and

Hong (2004) shows that the parametric wild bootstrap is valid in constructing con�dence intervals for the

boundary parameters they considered. This di¤erence can be explained as follows. We know the parametric

bootstrap is valid because it maintains the probability structure around the boundary. In Chernozhukov

and Hong (2004), the boundary parameters appear in the conditional distribution of y on x, and there is no

boundary parameter in the distribution of x, so simulating from f(�jx; b�) in their setup is enough to mimic
the original probability structure around the boundary. In threshold regression, however, 
 is a boundary of

q, so we must simulate from the joint distribution f(y; x; q), which covers both f (ejx; q; b�) and f(x; q), to
keep the probability structure around 
. See Algorithm 1 and 2 in Section 4.2 of Yu (2007) for a concrete

description of such a procedure. In practice, even in parametric models, f(x; q) is seldom speci�ed, so the

parametric bootstrap was never used in applications.9 As shown in Yu (2007), the Bayesian credible set is

a good choice in parametric models since it does not rely on the speci�c form of f(x; q).

4 Numerical Examples

It is appropriate to pause here to provide more intuition behind Theorems 1 and 2 by considering the

following two numerical examples. We �rst apply the general results in Section 3 to the simple example in

Section 2, then consider a more practical example where the error term is present. To simplify notations,

Z� and Z without subscripts are used for Z�
 and Z
 in the following discussion.

4.1 When There is No Error Term: A Revisit

In the case without the error term,

D (v) =

(
N1(jvj),
N2(v),

if v � 0;
if v > 0;

and

D� (v) =

8>><>>:
N1(jvj)P
i=1

N�
i�,

N2(v)P
i=1

N�
i+,

if v � 0;
if v > 0;

Now,

P �n (n (b
� � b
) = 0jFn) �! P �
�
N�
1� > 0

�
= 1� e�1;

and for t � 0,

P �n (n (b
� � b
) < tjFn)

�!

8>>>>>>><>>>>>>>:

P �
�
N�
1� = 0

�
= e�1;

P �
�
N�
1� = 0; N

�
2� = 0

�
= e�2;

...

P � (Poisson(k + 1) = 0) = e�(k+1);
...

if N(jtj) = 0;
if N(jtj) = 1;

...

if N(jtj) = k;
...

= e�(1+N(jtj))

9When q is independent of (x; e), we can condition on fxigni=1, and simulate only from f (ejxi; q; b�) and f(q). But the
problem remains since f(q) is seldom known in reality.
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where N(jtj) is a truncated Poisson process starting from t0 � sup ft : N1 (jtj) = 0g. This N(jtj) is the same
N(jtj) as in Section 2.1. Because n (b
� � 
0) jFn is a location shift of n (b
� � b
) jFn, it can be shown that
for t � 0;

P �n (n (b
� � 
0) < tjFn) �! e�N1(jtj):10

The point mass of Z�jN1(�) at the kth jump of D(v) on v � 0 is

P �
�
N�
j� = 0 for j � k and N�

(k+1)� > 0
�
= e�k �

�
1� e�1

�
;

which is exponentially decaying. Under Pr, for t � 0;

Pr (n (b
� � 
0) < t)! E
h
e�N1(jtj)

i
= expft� t=eg;

which is continuous. Note that Z has a thinner tail than Z� and Z��Z. For comparison, their densities on
t < 0 are listed below:

fZ (t) = e
t;

fZ� (t) = expft� t=eg
�
1� e�1

�
;

fZ��Z (t) = expft� t=e� 1g
�
1� e�1

�
:

4.2 When There is An Error Term

Suppose the population model is

y = 1(q � 
) + e; q � U [0; 1]; (6)

where e � N(0; 1) is independent of q. This setup is the same as (3) except that an error term e is added

in. 
 is the only parameter of interest.

From (5), the asymptotic distribution of the LSE is as follows:

n (b
 � 
0) d�! argmin
v
D (v)

where

D (v) =

8>><>>:
N1(jvj)P
i=1

z1i =
N1(jvj)P
i=1

�
1 + 2e�i

�
,

N2(v)P
i=1

z2i =
N2(v)P
i=1

�
1� 2e+i

�
,

if v � 0;
if v > 0;

�
e�i ; e

+
i ; i = 1; � � � ; N1(�); N2(�)

	
are independent of each other, e�i and e

+
i follow the same distribution as e,

and N1 (�) and N2 (�) are standard Poisson processes.
From Theorem 2,

n (b
� � b
) d�! argmin
v
D� (v)� argmin

v
D (v) in P1 probability,

where D (v) is de�ned above and

D�(v) =

8>><>>:
N1(jvj)P
i=1

z�1i =
N1(jvj)P
i=1

N�
i�z1i,

N2(v)P
i=1

z�2i =
N2(v)P
i=1

N�
i+z2i,

if v � 0;
if v > 0:

10The asymptotic distribution of n (b
� � 
0) jFn is discrete but has no point at 0. This is easy to understand since the
support of Z�jN1(�) is the jumping locations of N1(�), and N1(�) does not have a jump at zero.
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Figure 3: Dependence of the Distribution of Z� � Z on D(�)

Figure 3 shows the dependence of the distribution of Z� � Z on D(�). For comparison, the density of Z
is also dotted in Figure 3, which is very di¤erent from the conditional distribution of (Z� � Z) jD(�) in all
cases. The support of (Z� � Z) jD(�) is a subset of the jumping locations of D(�). For the three sample paths
of D(�) in Figure 3, argmin

v
D (v) is obtained at the 0th, 2nd on v � 0, and 3rd on v > 0 jump, respectively.

Compared to Figure 1, there are some di¤erences in the distribution of (Z� � Z) jD (�) with and without the
error term. First, there is positive probability on the positive axis. Second, not every jumping location of

D (�) on v � 0 corresponds to a point mass. Third, the probability mass function is not necessarily monotone
on the negative axis. Fourth, the point mass at zero is not �xed as 1� e�1.

The distribution of (Z� � Z) jD(�) has three main characteristics. First, the largest point mass is at zero
in all cases and depends on D(�).11 For example, when Min� = 0, where Min� is the number of jumps

before attaining the minimum of D(v) on v � 0,

P �n (b
� = b
jFn)
�! P � (Z�1 > 0; Z

�
2 � 0jD (�))

= (1� F �1 (0)) (1� F �2 (0�))

where F �1 (�) is the conditional cdf of min
�

kP
i=1

z�1i, k = 1; 2; � � �
�
, and F �2 (�) is similarly de�ned.12 z�1i or

11For comparison, Z has the largest density also at zero.

12Note that on such sample paths, Z1 > 0 and Z2 � 0 with Z1 = min

(
kP
i=1

z1i, k = 1; 2; � � �
)

and Z2 =
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z�2i follows a discrete conditional distribution, so F
�
2 (0�) 6= F �2 (0) in general.13 This is di¤erent from what

happens in Appendix D of Yu (2007), where F2 (0�) = F2 (0) since z2i follows an absolute continuous

distribution. Furthermore, the conditional distribution of z�1i (z
�
2i) depends on i. So

P � (Z�1 > 0)

= P �
�
N�
1�z11 > 0; N

�
1�z11 +N

�
2�z12 > 0; � � �

�
= P �

�
N�
1� > 0; N

�
1�z11 +N

�
2�z12 > 0; N

�
1�z11 +N

�
2�z12 +N

�
3�z13 > 0; � � �

�
� 1� e�1:

This probability depends on the realized value of fz1ig1i=1. If z1i � 0 for all i � 2, then P � (Z�1 > 0) =

1 � e�1.14 For a general realization of fz1ig1i=1, the probability P � (Z�1 > 0) is not tractable. Similar

arguments can apply to P � (Z�2 � 0). When Min� 6= 0, the calculation is more complicated.
Second, large point masses often happen at deeply negative jumps, and at the left of them there are

decaying point masses. This will be illustrated by the following calculations. Suppose Min� = 0, z11 > 0,

z12 < 0, z1i > 0 for i > 2 and z2i � 0 for all i. In this case, P � (Min� = 1) = 0.15

P � (Min� = 2)

= P �
�
N�
1�z11 +N

�
2�z12 � 0; N�

3� > 0
�

=
�
1� e�1

�X1

k=0
P �
�
N�
1�z11 + k � z12 � 0

�
P �
�
N�
2� = k

�
=

�
1� e�1

�X1

k=0

e�1

k!
P �
�
N�
1� � �k

z12
z11

�
=

�
1� e�1

�X1

k=0

e�1

k!

Xj
�k z12z11

k
j=0

e�1

j!
;

and

P � (Min� = 3)

= P �
�
N�
1�z11 +N

�
2�z12 +N

�
3�z13 � 0; N�

4� > 0
�

= P �
�
N�
1�z11 +N

�
2�z12 � 0; N�

3� = 0; N
�
4� > 0

�
= e�1

�
1� e�1

�X1

k=0

e�1

k!

Xj
�k z12z11

k
j=0

e�1

j!

= e�1P � (Min� = 2) ;

where bxc is the greatest integer less than x. For k > 3, it can be similarly shown that P � (Min� = k) =
e�1P � (Min� = k � 1). For more complicated sample paths of D(v), the decaying rate may not be exactly
e�1.

Third, there is no point mass in the right neighborhood of 0. For example, when Min� = 0, there are

no point masses on 0 < v < jv0�j+ v1+, where vk� = sup fv : N1 (jvj) = kg and vk+ = sup fv : N2 (v) = kg
for k � 0. This phenomenon is due to the fact that the left endpoint of the minimizing interval is taken as
the estimator.

min

(
kP
i=1

z2i, k = 1; 2; � � �
)
, which implies z11 > 0.

13For example, suppose z2i > 0 for all i � 1, then F �2 (0�) = 0, but F �2 (0) = 1� P �
�
Z�2 > 0

�
= 1�

�
1� e�1

�
= e�1.

14Such sample paths have P1 probability 0.
15There is a general result: if z1k < 0, then P � (Min� = k � 1) = 0; if z2k > 0, then P � (Min+ = k) = 0, where Min+ is

the number of jumps before attaining the minimum of D(v) on v > 0.
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Figure 4: Comparison of the Asymptotic Distributions under Pr

The distributions of Z, Z� and Z� � Z under Pr are shown in Figure 4. The distribution of Z� has a

thicker tail than Z as expected. The left thick tail is due to the fact that N�
i� can take value 0 on positive

z1i�s and values greater than 1 on negative z1i�s, and the right thick tail is due to the fact that N�
i+ can take

values greater than 1 on negative z2i�s. The distribution of Z� � Z is approximated by 1 million simulated
draws. The striking feature of this distribution is that there is a point mass (less than 1�e�1) at zero. Also,
the magni�ed version of the distribution of Z� �Z at bottom right of Figure 3 shows that there is no much

density in the right neighborhood of zero, which can be derived from the third point above.

Although Figure 3 and 4 show that the asymptotic bootstrap distribution is very di¤erent from the

asymptotic distribution, the bootstrap is still useful in practice if the quantiles are close to each other. In

Table 1 and Figure 5, some simulation results are reported for the example above, where an equal-tailed 95%

coverage con�dence interval is used as the bootstrap con�dence interval. In Table 1, "Average" means the

average of the quantiles and coverage among all sample paths of D (�). The numbers under "Asymptotic"
are the benchmark for the bootstrap inference. From Table 1 and Figure 5, the 2.5% and 97.5% quantiles

of the asymptotic bootstrap distribution depends heavily on the original samples, and the same happens to

the coverage. In Table 1, the items under "Average" are di¤erent from those under "Average Bootstrap"

because the two operations of taking a quantile and taking an average of distributions can not be exchanged.

By comparing the quantiles under "Asymptotic" and "Average Bootstrap", we conclude that Z� � Z has a
thicker tail than Z as in the case without the error term. In Figure 5, there is a large point mass at zero

in the distribution of the 97.5% quantile. This is not surprising according to Figure 3 where the asymptotic

bootstrap probability on the positive axis is small for the three representative sample paths of D (�). In the
distribution of coverage, an interesting phenomenon is that there is a hump between 0.6 and 0.7. Table 1
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Figure 5: Distributions of 2.5% and 97.5% Quantiles and the Coverage

and Figure 5 suggest that it is risky to use the bootstrap con�dence interval as the set estimation of the

threshold point.

2.5% Quantile 97.5% Quantile Coverage

Asymptotic -12.83 11.74 95.00%

Min -64.68 0 15.49%

Max -0.02 73.00 99.99%

Average -14.55 13.62 84.93%

Average Bootstrap -21.86 21.44 99.01%

Table 1: Quantiles and Coverage under the Asymptotic Bootstrap Distribution

5 Remedies in the Semiparametric Case

As shown in Section 3, the nonparametric bootstrap is inconsistent for inference of the threshold point in

discontinuous threshold regression, so some remedies are needed to the nonparametric bootstrap failure.

Another motivation of the remedies comes from the di¢ culty of statistical inference based on the asymptotic

distribution (5).

Four remedies are potentially useful. The �rst one is suggested in Hansen (2000). Hansen (2000) uses

a framework with an asymptotically diminishing threshold e¤ect in mean and proves that the con�dence

interval constructed by inverting the likelihood ratio statistic is asymptotically valid. As mentioned in the

introduction, the nonparametric bootstrap is also valid in this framework. But the nonparametric bootstrap

is not a practical choice as there is no way to distinguish a real dataset following the framework of Hansen

(2000) or that used in this paper.16

The second remedy in the literature is the subsampling method in discontinuous threshold regression by

Gonzalo and Wolf (2005). The subsampling method is asymptotically valid as long as there is an asymptotic

distribution which is continuous. Gonzalo and Wolf (2005) do not prove the continuity of the asymptotic

distribution (5), and Appendix D of Yu (2007) �lls this gap.

The third remedy is proposed in Seo and Linton (2007), which is based on the smoothed least squares

estimation in our framework. The drawbacks of this method are that the convergence rate is less than n and

a smoothing parameter needs to be speci�ed in practice.
16Note that Theorem 3 in Hansen (2000) guarantees that the con�dence interval there is at least conservative in a dominating

case of Chan (1993)�s framework.

17



The fourth remedy is suggested by Yu (2008). Yu (2008) uses the nonparametric posterior to construct

con�dence intervals for 
 in the present framework. The simulation study there indicates that this method

performs better than other methods under some standard setups.

6 Conclusion

In this paper, we show that the nonparametric bootstrap is inconsistent and the parametric bootstrap

is consistent for inference of the threshold point in discontinuous threshold regression. It is found that

the asymptotic nonparametric bootstrap distribution depends on the sample path of the original data.

Such a phenomenon also appears in Andrews (2000). The method developed in this paper is generic in

deriving the asymptotic bootstrap distribution. The remedies to the nonparametric bootstrap failure in the

semiparametric case are summarized.
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Appendix A: Proofs

First, some notations are collected for reference in all lemmas and proofs. The letter C is used as a generic

positive constant, which need not be the same in each occurrence.

�` =
�
�0`; �`

�0
, ` = 1; 2

m (wj�) = (y � x0�11(q � 
)� x0�21(q > 
))
2
;

Mn (�) = Pn (m (�j�)) ;
M (�) = P (m (�j�)) ;
Gnm =

p
n (Mn �M) :

z1

�
wj�2;e�1� =

�f�1 � �2�0 xx0 �f�1 � �2�+ 2f�1 �f�1 � �2�xe, so z1i = z1 (wij�20; �10) ,
z2

�
wj�1;e�2� =

�f�2 � �1�0 xx0 �f�2 � �1�+ 2f�2 �f�2 � �1�xe, so z2i = z2 (wij�10; �20) ,
The following formulas are used repetitively in the following analysis:

m (wj�)
= (x0 (�10 � �1) + �10e)

2
1(qi � 
 ^ 
0) + (x0 (�20 � �2) + �20e)

2
1(qi > 
 _ 
0)

+ (x0 (�10 � �2) + �10e)
2
1(
 ^ 
0 < qi � 
0) + (x0 (�20 � �1) + �20e)

2
1(
0 < q � 
 _ 
0);

so

m (wj�)�m (wj�0)
=
�
(�10 � �1)

0
xx0 (�10 � �1) + 2�10 (�10 � �1)xe

�
1(q � 
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0 < q � 
 _ 
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� T (wj�1; �10)1(q � 
 ^ 
0) + T (wj�2; �20)1(q > 
 _ 
0)
+z1 (wj�2; �10)1(
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� A (wj�) +B (wj�) + C (wj�) +D (wj�) :

Proof of Theorem 1. This proof includes two parts: (i) the �nite-dimensional limit distributions of

(Wn (u) ;W
�
n (u) ; Dn (v) ; D

�
n (v)) are the same as speci�ed in the theorem; (ii) the process (Wn (u) ;W

�
n (u) ; Dn (v) ; D

�
n (v))

is stochastically equicontinuous.

Part (i): We only prove the result for a �xed h, or the Cramér-Wold device can be used. De�ne

T1i =
1p
n
xiei1 (qi � 
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1p
n
S1i;

T2i =
1p
n
xiei1 (qi > 
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1p
n
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T3i = z1i1
�
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v1
n
< qi � 
0

�
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T4i = z2i1
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0 < qi � 
0 +

v2
n

�
;
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where v1 � 0 and v2 > 0. Since

exp
�p
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= 1 + 1
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it follows
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and the result of interest follows. Note that
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Part (ii): The stochastic equicontinuity ofWn (u) andW �

n (u) can be trivially proved since they are linear

functions of u. Now, we concentrate on Dn (v) and D�
n (v). For this purpose, a condition called Aldous�s

(1978) condition is su¢ cient; see Theorem 16 on Page 134 of Pollard (1984). Without loss of generality, we

only prove the result for v > 0. Suppose 0 < v1 < v2 are stopping times in a compact set K, then for any
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Proof of Theorem 2. This proof uses Lemma 5. In this model,
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and d = 2k. From Theorem 1, 
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By the continuous mapping theorem,
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The above discussion is under the Pr probability. From Lemma 2, (s0n; tn)
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Appendix B: Lemmas

Lemma 1 Under Assumptions D4 and D5, for any h 2 R2k+1,
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Proof. First,
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where oP1 (1) is from Assumption D4 and D5.
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and oPr (1) here need some explanation. Poissonization is key in the following discussion.

Note that MNn;1; � � � ;MNn;n are i.i.d. Poisson variables with mean 1. By the analysis in Theorem 3 of

Klaassen and Wellner (1992),
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where the last equality is from a multiplier Glivenko-Cantelli theorem; see, e.g., Lemma 3.6.16 of Van der

Vaart and Wellner (1996). Now,
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from Assumption D4. So
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Similarly, we could prove the result for
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The following lemma appears in Wellner and Zhan (1996) and states relationships among the probability

measures P1, P � and Pr.

Lemma 2 (i) If �n is de�ned only on the probability (Z1;A1; P1) and �n = oP1 (1) (OP1 (1)), then

�n = oPr (1) (OPr (1)); (ii) If �n = oPr (1) (OPr (1)), then �n = oP� (1) (OP� (1)) in P1 probability.

Lemma 3 Under Assumptions D1-D5, both b� and b�� are consistent in Pr probability.
Proof. First, we will prove b
 is consistent. The idea of proof follows from Lemma A.5 of Hansen (2000).
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Suppose 
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Symmetrically, we can show that M (
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0) > 0 for any � > 0. Theorem 2.1 of Newey and

McFadden (1994) can be applied to show b
 is consistent. With the consistency of b
 in hand, it is easy to
show b�1 (b
) and b�2 (b
) are consistent by a dominance argument. Similar arguments show b�� is consistent in
Pr probability, but now a multiplier Glivenko-Cantelli theorem is used for the uniform convergence.
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where the last inequality is from Assumptions D1-D4.
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 ^ 
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2.14 (ii) of Pakes and Pollard (1989). Similarly, fB (wj�) : d (�; �0) < �g, fC (wj�) : d (�; �0) < �g, and
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fD (wj�) : d (�; �0) < �g are VC subgraph. From Theorem 2.14.2 of Van der Vaart and Wellner (1996),
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for n large enough by the strong law of large numbers.

The following Lemma is an extension of Theorem 6.1 of Huang and Wellner (1995) which is an extension

of the argmax continuous mapping theorem. As in Kim and Pollard (1990), de�ne Bloc
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functions x (�) 2 B0loc (R) for which the conditions (i) and (ii) in the de�nition of Cmin (R) are satis�ed.
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Then ((sn; tn) ; (s�n; t
�
n))

d�!
�
argmin

u;v
U(u) +D (v) ; argmin

u;v
U�(u) +D� (v)

�
.

Proof. The proof follows from Theorem 6.1 of Huang and Wellner (1995) by using Dudley�s representation

theorem. The only di¤erence is that the metric for Dmin (R) is substituted by the Skorohod metric on
compacta and the product metric is used on Cmin

�
Rd
�
�Dmin (R).
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