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Abstract

This paper shows that the nonparametric bootstrap is inconsistent, and the parametric bootstrap
is consistent for inference of the threshold point in discontinuous threshold regression. An interesting
phenomenon is that the asymptotic nonparametric bootstrap distribution of the threshold point is discrete
and depends on the sampling path of the original data. This is because the threshold point is essentially
a boundary of the sample space, and only the bootstrap sampling on the data in the neighborhood of
the threshold point is informative. The results are compared with Andrews (2000) where a parameter is
on the boundary of the parameter space rather than the sample space. The method developed in this
paper is generic in deriving the asymptotic bootstrap distribution. The remedies to the nonparametric

bootstrap failure in the literature are also summarized.
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1 Introduction

Since the introduction by Efron (1979), the bootstrap has become a popular alternative of the asymptotic
inference, either when the asymptotic distribution is difficult to derive or the finite sample refinement can be
achieved. Meanwhile, many examples of the bootstrap failure surface. Most of these examples are contributed
by statisticians; see Andrews (2000, p400) for a list of themﬂ To my knowledge, there are also three examples
contributed by econometricians: the case when a parameter is on the boundary of the parameter space in
Andrews (2000), the maximum score estimator in Abrevaya and Huang (2005), and the matching estimator
for the program evaluation in Abadie and Imbens (2008). This paper contributes another example where
the nonparametric bootstrap fails: the least squares estimator (LSE) of the threshold point in discontinuous
threshold regression.
The typical setup of threshold regression is
. 0
By +o2e,  q>7;

Elelz,q] 0,

where ¢ is the threshold variable used to split the sample and has a density f, (-), z € R*, 8 = (87, 35)" € R?**
and 0 = (01,02)" are threshold parameters on mean and variance in the two regimes, Ele?] = 1 is a
normalization of the error variance and adopts conditional heteroskedasticity, and all the other variables
have the same definitions as in the linear regression framework. The threshold regression model has many
applications; see, e.g., Yu (2007) and Lee and Seo (2008) for the examples. Define 6 = (6’,7)/, which is the
parameter of interest in applications. Most literature on threshold regression concentrates on the nonregular
parameter 7 since inference for the regular parameters g is standard.

In discontinuous threshold regression where ([3'1,01)/ — (5/2, ag)l is a fixed constant, Gonzalo and Wolf
(2005) claim that "it is not known whether a bootstrap approach would work". This motivates them to use
the subsampling for the construction of confidence intervals. Footnote 3 in Seo and Linton (2007) indicates
that the bootstrap may be inconsistent in their simulations. There are some related results in the structural
change literature. For example, in the framework with asymptotically diminishing threshold effect like that in
Hansen (2000), Antoch et al (1995) show that the bootstrap is valid in the structural change model. See also
Huskovd and Kirch (2008) for the validity of the block bootstrap in the time series context. The extension
of the arguments in these two papers to threshold regression is straightforward. In a similar framework as
considered in this paper, Diimbgen (1991) finds that the bootstrap has the correct convergence rate in the
structural change model without proving its validity. In this paper, we confirm that the bootstrap has the
right convergence rate, and also show that it is not valid for inference of the threshold point.

Before presenting main results on the bootstrap inference, the LSE of § and the basic probability structure
in the bootstrap environment are defined. Suppose a random sample {wi}?zl is observed, where w; =
(yi, 5, @), the LSE of v is usually defined by a profiled procedure.

5 = argming, (7).
where

Qn (7) = min ;mmw»

!See also, e.g., Horowitz (2001), Bickel et al (1997), and Beran (1997).



with
m(w]) = (y —a'B,1(q < ) — &' By1(g > 7))° . (2)

Usually, there is an interval of v minimizing this objective function. Following the literature, the left end
point of the interval is taken as the minimizer. To express the model in matrix notation, define the n x 1
vectors Y and e by stacking the variables y; and e;, and the n x k matrices X, X<, and X, by stacking
the vectors a}, 2;1(q; <) and 2;1(¢q; > 7). Let

< B () ) = arg iy 3™ (wl6) = ( (X, Xey) T XLY ) |

(X/>'YX>’Y)_1 X/>WY

then the LSE of 3 is defined as (Bll ) ,B; (ﬁ))/ = (3/17 B;)/ The bootstrap estimator (B*/ﬁ*)/of (6’,7)/
is defined in the same way as above except using the bootstrap sample {w;};_,.

The basic probability structure in the bootstrap environment is defined as follows. Let P, and P} be the
empirical measure of the original data and the bootstrap sample wi,--- ,w}, respectivelyﬂ P, is a random

measure, and its randomness is defined by the data generating process (DGP) of the original data. P} can

L, 1 1 &
Pn = 525“,: = E;Mm’(swi?

where M,,; is the number of times that w; is drawn from the original sample, and M,, = (M1, , Mpn)

be written as

follows the multinomial distribution with parameters n and cell probabilities all equal to % (and independent
of the original data {w;}._,). Suppose M, is defined on a probability space (7,8, P*) which describes a
probability structure with an expanding support. For the original sample, take w; as the ith coordinate
projection from the probability space (£°°, A%, P>°). For the joint randomness involving both M, and
{w;}?_,, define the product probability space

(2% x T, A% x B, P,) = (2%, A%, P>®) x (T, B, P*),

where P, = P x P* denotes the whole randomness in the nonparametric bootstrapﬂ

For the parametric bootstrap, a similar probability structure can be constructed as in the nonparametric
case. The only difference is that the parametric distribution with the estimator as the true value is used as
pP*.

This paper is organized as follows. In Section 2, an extreme case of threshold regression is used to
illustrate why the nonparametric bootstrap is inconsistent, and the parametric bootstrap is consistent for
the threshold point. Section 3 presents similar results for the general model. Section 4 uses numerical
examples to show the intuition behind these results. Section 5 provides some remedies in the literature to
the nonparametric bootstrap failure, and Section 6 concludes. All proofs and lemmas are left to Appendix
A and B, respectively. A word on notation: any parameter with a subscript 0 means its true value, any
symbol with a superscript * means an object under P* defined above instead of under the outer measure as

used in some other literature, and ~ signifies weak convergence under the true parameter value.

2In other words, P, is the population measure of Py, and P, the original population measure, is the population measure of
Py,.
3See Problem 3.6.1 in Van der Vaart and Wellner (1996) for a formal construction of this probability space.



2 When There is No Error Term: An Illustration

First, simplify to the extreme case as follows:

y=1(¢<7), ¢~ U[0,1]. (3)

This corresponds to x =1, 819 =1, B899 =0, 010 = 020 =0 in . Here, g follows a uniform distribution on
[0,1], and 4 = 1/2 is of main interest. Note that there is no error term e in , so the observed y values
can only be 0 or 1. In this case, the threshold point is essentially a "middle" boundary of ¢ as shown in Yu
(2007). 4 depends on whether there exists ¢; no greater than 1/2 or not. If there is ¢; no greater than 1/2,
then % equals the ¢; closest to 1/2 from the left. Otherwise, 7 equals the g; closest to 1/2 from the right.
Since the probability that all ¢;’s are greater than 1/2 equals (%)n which converges to zero, we can assume
7 < % in the following discussion. For ¢ < 0,

P(n(H -y <t)
=P (a ¢ (vo + 5. 70] for all 4) (4)
=1+ %)n — e,

so the asymptotic distribution of n (¥ — v,) is a negative standard exponential, and there is no density on
the positive axis. Note further that 7 is a nondecreasing function of n, and there is no data point between
~ and 7.

2.1 Invalidity of the Nonparametric Bootstrap

The objective function of the least squares estimation is

n

> wi—1a <)*.

i=1

In order to use the nonparametric bootstrap to approximate the distribution of n (¥ — 7,), we need to obtain
the asymptotic distribution of n (3" —7), where

n
~ . * * 2
N = arg min E (yi — g <v)°,

i=1

and (yF, qF) follows the empirical distribution Fnﬂ The asymptotic distribution of n (3" — %) can be derived
conditional on the data as n goes to infinity. Since 7y is essentially a boundary, the following derivation is
similar to that in Example 3 of Bickel et al (1997).

Suppose there are m y;’s taking value 1, and the remaining (n —m) y;’s take value 0, then 7 = q(p,),
and 7 converges to 1/2 as n goes to infinity for any sample point w in Z°° according to Chan (1993), where
q(m) is the m’th order statistic of {qi}?zl. In the bootstrap sampling, as long as (q(m),y(m)) is drawn,
3" = qm)- So P (n(3* —7) =0|F,) =1 — P} ((¢(m)Y(m)) is not drawn) =1 — (1 — %)n —1—e1>0,
while P (n (7 —1/2) = 0) — 0 since the asymptotic distribution of n (¥ — 1/2) is continuous. Therefore, the
bootstrap is not consistent. The following provides the whole asymptotic distribution of n (3" —7) |F,.

4In this paper, F, is used exchangeably with P,.
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Figure 1: Comparison of the Asymptotic Distribution and Asymptotic Bootstrap Distribution in Threshold

Regression without the Error Term

Note that for any ¢ < 0,
Pr(n(3" =7) < t|F,)
SO AN
= P, (no qf is sampled from [y + —, ,y])
n

=)

where k = > 1(7+ L <¢; <7). Conditional on 7, k ~ 1+Bin(n —1, ) converges weakly to

: P 1-(1/2-7)
=1
1 + N(|t|) for any 7, where N(-) is a standard Poisson process, so P: (n (7" —7) < t|F,) converges to

e~ NN (|-]) which is discrete. A new jump in e~ (FNUD)|N(].]) happens as |t| gets larger when
Because P (n (7" —7) <0|F,) — e N, _y +

the expanding interval [¥+ £, 7] covers a new g;. y—
(1 — 6*1) = 1, there is no probability on the positive axis, which is similar as the asymptotic distribution.

The above results are surprising in two aspects. First, while the asymptotic distribution is continuous,
the asymptotic bootstrap distribution is discrete. This is different from conventional models where the as-
ymptotic bootstrap distribution is normal. Essentially, this is because the asymptotic bootstrap distribution
of the threshold point relies on the bootstrap sampling on the local data (i.e., ¥ + % < ¢; <7) rather than
the sampling on the whole dataset in conventional models. Second, the asymptotic bootstrap distribution

depends on the original data. Although the point mass at zero is always 1 — e~ !, how to distribute the
remaining e~* probability depends on how the original data are sampled. When more data (in 1/n rate) are



sampled in the left neighborhood of 1/2, the point masses are closer to zero. Figure [I| shows the asymptotic
distribution and asymptotic bootstrap distributions for two different original sample paths. Clearly, more
original data in bootstrap 2 lie in the left neighborhood of 1/2 than in bootstrap 1.

One important similarity between the asymptotic bootstrap distribution and asymptotic distribution is
that both of them critically depend on the local information around the threshold point. The asymptotic
distribution depends on the density of ¢ at 1/2, while the asymptotic bootstrap distribution depends on the
local data around 7 in the original sample. This is not difficult to understand considering that the true
distribution of ¢ in the asymptotic theory is f,(-) (U[0, 1] in this example), and the true value of «y is 1/2,
while in the nonparametric bootstrap, the true distribution of ¢ is the empirical distribution of {¢;};_,, and
the true value of v is 7.

In summary, although this example is very simple, it shows one general feature of the nonparametric
bootstrap of the threshold point: the local information around v, (or 7) is most important for the bootstrap
inference. As a result, the asymptotic bootstrap distribution is discrete and depends on the original data.
Therefore, the nonparametric bootstrap of the threshold point is invalid.

Since the asymptotic bootstrap distribution depends on the original data, a natural question is whether
the average bootstrap is consisent, where the average bootstrap distribution is the distribution of n (3" — %)
under P,. From the frequentist point of view, infinitely many original sample paths can be potentially drawn
according to P°°. So the average bootstrap distribution can be obtained by first running the nonparametric
bootstrap for each sample path, and then averaging the bootstrap distribution for all sample pathsﬂ In this
example, the question becomes whether E[e‘““‘N (‘”))] = ¢! for t < 0. The answer is no since there is a
point mass at zero in the asymptotic bootstrap distribution for any sample path. The asymptotic density
function resulted from the average bootstrap procedure is also shown in Figure

As the last comment about the invalidity of the nonparametric bootstrap, note that «y is different from
p in Andrews (2000). In Andrews (2000), {X;};_, is a sequence of i.i.d. N(u,1) random variables, where
pw€RY ={z:2>0}. Note that 0 is on the boundary of the parameter space, but it is still in the interior of
the sample space. In contrast, in threshold regression, « is the boundary of the sample space, and is in the
interior of the parameter space. So the reason for the invalidity of the nonparametric bootstrap is different.
Checking the three sufficient conditions for the validity of the bootstrap provided on page 1209 in Bickel
and Freedman (1981), the uniformity condition (6.1b) fails in the nonparametric bootstrap of 7, while in the
nonparametric bootstrap of y, the continuity condition (6.1c) fails. In Andrews (2000), even the parametric
bootstrap fails at 4 = 0, but the parametric bootstrap works in threshold regression as seen in the next

subsection.

2.2 Validity of the Parametric Bootstrap

In the parametric bootstrap sampling, the following DGP is used:

y=1(q¢ <7%),q¢ ~ U0, 1],

n
1=

DGP, 7" is the MLE using {w;};_,. The question left is to derive the asymptotic distribution of n (3" —7)

where 7 is the MLE which is also the LSE in this simple case. For any bootstrap sample {w;},_; from this

conditioning on 7.

For this simple setup, the exact distribution of n (3" —%) conditioning on 5 can be derived explicitly.

5Abadie and Imbens (2008) use a similar method as the average bootstrap to prove the invalidity of the bootstrap for
inference of matching estimators. In conventional models, the average bootstrap is never considered since the asymptotic
bootstrap distribution is the same for almost all original sample paths.



For any ¢ < 0,

Pr(n(@ =7) <th)

~ b P
= i (a ¢ G LA oran )
t, _
= (14 —-)" — ¢’ for any 7,
n

so the parametric bootstrap for 7 is consistent P> almost surely. This is because the uniformity condition
(6.1b) in Bickel and Freedman (1981) fails in the nonparametric bootstrap, but holds in the parametric
bootstrap; see the arguments in their Counter-example 2 for more details. Note the similarity of this
derivation with .

3 The Bootstrap in Threshold Regression: The General Model

Before the formal discussion of the bootstrap inference, we will first specify the regularity conditions and

review the main asymptotic results in threshold regression.

Assumption D:

L w, e W=RxXxQCR2 B, €B CRF B, € B CRF, 0 <0, € Q) CR,0< 02 €0y CR,
Y x Qg is compact, v € I' = [7,7], B9 # Bag, and 019 # 020, Where # is an element by element
operation.

2. Elza’] > Eza’l(¢ <~v)]>0forally €T

3. Exzz'|qg = ~] > 0 uniformly for  in an open neighborhood of ~,.

4. fq() is continuous, and 0 < iq < fo(v) < fy<ocforyel.

5. E[||ze]|’] < oo, and E[|z|"] < co.

6. F [||x||2‘ q= 'y} < oo and E[||zel|| ¢ = 7] < oo uniformly for « in an open neighborhood of .

7. Both z1; and z;; have absolutely continuous distributions, where the distribution of zi; is the limiting
conditional distribution of Z1; given v, + A < ¢; <7y, A <0 as A 10 with

Z1i = {233; (B10 — Bao) d10€i + (B19 — Bap) xzac; (B1o = B2o)}

and the distribution of zy; is the limiting conditional distribution of Zy; given vy < ¢; < v+ A, A >0
as A | 0 with
Zoi = {22} (B19 — Bao) 020€i + (B1o — Bao) izt (B1o — Bao) } -

Assumption D is roughly a subset of Assumption 1 in Hansen (2000). It is very standard. Assumption
D1 does not require By and By to be compact, and Assumption D2 excludes the possibility that 7, is on
the boundary of ¢’s support; see Section 3.1 of Hansen (2000) for more discussions. From Chan (1993) or
Yu (2007), under Assumption D,

Vn (B1 - 510) 4, Zg, ~ FElza'l(¢< ’Yo)]_l N (OaE [33»@/0?0@21 (¢ < ’70)]) ;

Vn (Bz - 520) 4, Zg, ~ E [z2'1 (¢ > 70)]71 N (OaE [5”/030621 (q> ’Yo)]) ;



and

n (3 —7) —> argminD (v) = Zy, (5)
v
with
Ny (|v])
2145 ifv S 07
D (’U) = N;T’Ul)
Z 22i, if v>0.

i=1
Here, Zg,, Zg,, {#14, 22i };~1, N1(-) and Na(-) are independent of each other, and N (-) is a Poisson process
with intensity f,(7vo), ¢ = 1,2. Since D (v) is the cadlag step version of a two-sided compound Poisson
process with D(0) = 0, there is a random interval [M_, M, ) minimizing D (v). Since the left end point of
the minimizing interval is taken as the LSE, Z, = M_. The asymptotic distribution of B is the same as that
in the case when ~, is known, and the asymptotic distribution of 7 is the same as that in the case when f,,
is known. The explicit form of the density of Z, is derived in Appendix D of Yu (2007).

3.1 Invalidity of the Nonparametric Bootstrap

Define N,, as a Poisson number with mean n and independent of the original observations, then My, 1,
,Mp, » are iid. Poisson variables with mean 1. From Lemma 1 in Appendix B, Poissonization is
possible. See Kac (1949) and Klaassen and Wellner (1992) for an introduction of Poissonization. Define

h= (u,v) = (u},u),v) as the local parameter for #, then

nP, (m( By + fﬁo"‘ ) m (- 50770))
= U Eziz1 (g < vo)lur +up B (w21 (qi > 7o) uz — Wi (u) + Dy, (v) + op= (1),

and
Py (m (|60 + : (-180:70)
n m , —m(-|B,,
n 0ot \F Yo + n 0' 70
= u Efziril (g < v)lur + up B [ixi1 (g > o) ug — Wy (u) = W (u) + D, (v) +op, (1)
Here,
n U
Duw) = D |m(wibvo+ =) —m(wily)]
i=1
v
= Zzh ( <Q'L<'70)+le2z (%<q¢§’yo+ﬁ),
* = v
D) = > My, |m (wilyo+ =) = m (wily)]
i=1
B v n B v
= ZMNmizlil (% + - <q < ’Yo) + ;MNmiZ%l (Vo <q <9+ E) ;
with

m (wly) = (y — ' B1o1(g <) — ' Bael(g > 7))*,



and

Wn (U,) Wln (ul) + WQn (u2) )
Wi(u) = Wi, () + Wy, (u2),

with

Win (u1)

|
g
o

Wl*n (ul)

I
g
R

Waop (u2) = ug (2\730 ineil (gi > ’Yo)> )

2 n
W3, (u2) = g ( ;%) Z(MNn,i —1)wie;1 (g > 70)) :

From the form of D}, (v), it is clear that the bootstrap sampling in the neighborhood of v, is most important.
So essentially only the sampling on the finite data points around =, is relevant. In contrast, W7y, (u1) and
Wi, (u2) take an average form, which makes their asymptotic properties very different from D} (v). The
following Theorem 1 gives the joint weak limit of (W, (u), W) (u), D, (v), D} (v)), which is critical in
deriving the asymptotic bootstrap distribution in Theorem 2.

Theorem 1 Under Assumption D,
Wi (u), Wy (u), D (v), Dy, (0)) ~ (W (u), W" (u),, D (v),, D* (v))
on any compact set, where

W(u) = 2uiWi+ 2uiWs,
W* (u) = 2u)Wy + 2ubW5,

with Wi and W{ following the same distribution N (O,E [x20%0621 (¢ < ’yo)]), Wy and W5 following the
same distribution N (0, E [2203ye*1 (¢ > 7,)]), and (D (v),D* (v)) being a bivariate vector of compound
Poisson process. D (v) is the same as that in (@, and

Ni(|v]) Ni(|v])
> Nz, ifv<0; >, i if v <0;
* _ i=1 — i=1
D*(v) =3 N =90 M)
> Ni*+22i; if v>0; 2335 if v >0;
i=1 i=1

with {Ni*_, Nl-*+}i>1 being independent standard Poisson variablesﬁ Furthermore, Wy, Wa, Wi, W5, {21, Zgi}izp
{N;;,Ni’;}pl, Ni() and Na(-) are independent of each other.

D* (v) is called a multiplier compound Poisson process, which is highly correlated with D (v) since

{#1i;22i};51, N1(+) and Na(+) are the same as those in D(v). The randomness in {21, 22;},5,, Ni(+) and

6From the proof in Appendix B, {N:_’N:'*}Dl is just {MNmi}izr The following is an intuitive derivation for the fact



N5 () is introduced by the original data, so the randomness introduced by the bootstrap appears only in
{N; ,Nj }.o, Since E[N; | = E [N;,] =1 for any i, the average jump size of z}; and z3; in D* (v) is the
same as z1; and zg; in D(v). But the distribution of z}; and z3; instead of their mean determines the jumps

in D* (v). The distribution of 27, is

Py (21; < @)

Sohey Pr (N =k, 21 < ) if x < 0;
= €_1+Z:.;1P’r (N;‘_:k,zlig%) lfﬂjzo,
> ke %(I)l (%), if z < 0;

e+ 3 %‘I’l (%) , ifx >0

where @1 (-) is the cdf of z1;. The distribution of 23, can be similarly derived. Since there is a point mass
e~1 at zero in the distribution of 2}; and 23, the sample path of D* (v) is very different from that of D(v).
When Nj (N/,) is equal to zero, the ith and (i — 1)th jump on v < 0 (v > 0) in D(v) are combined into
one jump. When N/ (N}, ) is greater than 1, the ith jump on v <0 (v > 0) in D(v) is magnified.

Theorem 2 Under Assumption D,

(i) the bootstrap estimator 3* is consistent; that is, \/n (B* — B) 4, Zj5 as m — oo in P> probability,
where Z; has the same distribution as Zg = ( Zél Z/’32 )l and is independent of Zg.
(ii)
n(F—=7v),n( " =) <, (Zy,2%) asn — oo in P, probability,
where

7, = arg muinD* (v).

(iii)
n(® =7) 4, 73 — Z as n — oo in P probability.
where Z7 — Z and Zj are independent conditional on the original data.
When v, is known, the validity of the bootstrap for regular parameters 3 is a standard result. When
vo is unknown, (i) shows that the bootstrap is still valid and the asymptotic bootstrap distribution is the

same as that for the case when v is known. The validity of the bootstrap for 5 is due to the separability
of W (u) and W* (u) in the weak limit of nP} (m ( ‘50 + ﬁﬂ’o + %) —m (- |50,70)) and their linearity

oo
that {Mp;},~, can be approximated by {N;"_,N;';} oy The finite-dimensional marginal distribution of {N?" N.*_} is
Z g ‘i1 = Ji=1

i+ 7

P* (N;1+ = hiygor Ny = ki NS = ki Nf = kim,)
= lim n! (5)k(1fj+m)nik

n—ooky 4l kgl ki, N (n — k) \n n

o= (i+m)

B T o R P

et e~ e~ 1 et
T okas! kij+! k! Kiy, !

where k = ki, ++-- -+k¢j+ +ki—+---+ki,, —. The independence is understandable. Note that Corr (M, My;) = fﬁ <0,
but Corr (Mp;, Mpj) — 0 when n — oco. Corr (Mp;, Myp;) = —ﬁ is generally true for exchangeable random variables with

fixed sum n; see, for example, Aldous (1985), page 8. The negativity of the correlation is understandable since for a fixed n, an
increase in one component of a multinomial vector requires a decrease in another component.



with respect to u. This point is first noted in Abrevaya and Huang (2005). In their case, the weak limit is
separable but not linear, so the bootstrap fails. In the bootstrap for -, the randomness from the original
data and that from the bootstrap sampling are neither separable nor linear. In consequence, the bootstrap
is not valid for ~.

From (ii), n (3" —7) 4, Z3 — Z, as m — oo in P, probability by the continuous mapping theorem.
Zy — Z is the asymptotic distribution of the average bootstrap of 7. The distribution of Z7 under P
can be derived by the simulation method proposed in Appendix D of Yu (2007), but take caution that two
jumps in D* (v) can be combined into one when N or N, equals zero. This distribution is expected to be
continuous but more spreading than Z., as N (N; ) can take values other than 1. Since D(v) and D* (v)
are highly correlated, Z} and Z, are highly correlated under P,. As in the case without the error term,
there is expected to be a point mass at zero in the distribution of Z7 — Z, under P, although ZJ and Z,
are both continuous[]]

By (iii), the asymptotic bootstrap distributions for the nonregular parameter v and for the regular
parameters (3 are independent conditional on the original data, which is similar to the asymptotic distribution
as shown in . This is because the bootstrap samplings for the inference of § and - use information
independently. Conditional on the original data, the randomness introduced by the bootstrap in B* takes an
average form; see, e.g., the term ﬁ i (Mn, .+ — 1) zie;1 (q; <) in WY, (u1). Accordingly, the bootstrap
sampling on a single data point doe;_rllot contribute much to the asymptotic bootstrap distribution. This
"global" sampling on the original data averages out the effect of {My, ;};_, and makes the bootstrap
distribution for 8 converge to a normal distribution. In contrast, only "local" sampling on the data around
Yo is informative to the inference of the threshold point as shown in D} above. This is why {Ni*_7 Ni*+}l.>1
appears in D* (v), but not in W* (u).

The asymptotic distribution of n (3" —7) |F,, is discrete and critically depends on D (-). The magnitude
of the point masses depends on {214, 22i},~,, and the location of the point masses depends on both N(-),
¢ =1,2, and {z1;, 22i};~,. Since Z, is fixed conditional on the original data, the nonparametric bootstrap
distribution (Z — Z,) TD (+) is just a location shift of Z¥|D (-). See the numerical example in Section 4.2
below for more concrete description of Z3 — Z.,.

The method developed in Theorem 2 is very general in deriving the asymptotic bootstrap distribution.
Take a revisit to Andrews (2000). A natural estimator of y is ji,, = max {Ym 0} which is also the maximum
likelihood estimator of 4, where X, = 3"  X;. Under p =0, \/n (Y: - Yn) and /nX, are asymptot-
ically independent N(0,1), where X, = L3 X[ with X7 ~ F,, and the limit variables are denoted as
Z* and Z. Then the asymptotic distribution of the average bootstrap of p at 0 is

vn gy, —1,) = vn (max {YZ, 0} — max { X, 0})
4 max {Z + Z*,0} — max {Z,0} .

The bootstrap distribution converges weakly to the conditional distribution of max {Z + Z*,0} —max {Z, 0}
given Z:

max {Z*,—Z}, if Z >0;
Z+max{Z*,-Z}, U Z<0

"This point mass is less than 1 — e~1, because 7 is not necessarily 7* even if it is sampled in the bootstrap unlike in the
case without error term. The numerical example in Section 4.2 below provides more description of Z: — Z~ under Pr.
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Figure 2: Comparison of the Asymptotic Distribution and Asymptotic Bootstrap Distribution in Andrews
(2000)

so this asymptotic bootstrap distribution also depends on the original sampling path although only through
an asymptotic sufficient statistic X,,. This point is shown in Figure In Figure |2} the asymptotic bootstrap
distribution varies when Z changes. When Z > 0, there is a point mass at —Z, and when Z < 0, there
is a point mass at 0. The point masses are increasing when Z gets smaller. The asymptotic bootstrap

distribution matches the asymptotic distribution only when Z = Oﬂ

3.2 Validity of the Parametric Bootstrap

To prove the validity of the parametric bootstrap in the general model , Proposition 1.1 in Beran (1997)
can be used. The critical step is to check the condition a) there, which is done in Yu (2007). To save space,
the proof will not be repeated here.

It is worth pointing out that the parametric wild bootstrap is not valid. In the parametric wild bootstrap,
we condition on {z;, ¢; };,, and only utilize the randomness from f (e|z, ¢; @), where v € R% is some nuisance
parameter affecting the shape of the error distribution, and & is its MLE. The invalidity of the parametric
wild bootstrap can be seen from the illustrative example in Section 2. Because the distribution of the error
term is a point mass at zero, each bootstrap sample coincides with the original sample. As a result, each
bootstrap estimator is the same as the original MLE and does not include any randomness when conditioning

on the original data. In consequence, the bootstrap confidence interval only includes the MLE itself and

o(t), when t > —Z; . )

s . e ®(—%), whent=-Z; it 2 >0
It can be shown that the asymptotic bootstrap distribution is ot — 2) when ¢ > 0: When Z — oo,

, i Z <.

d(-2), when t = 0;
this distribution converges to the standard normal. When Z — —oo, this distribution converges to a point mass at zero.
293(15)‘1)(15), when t < 0;
The asymptotic average bootstrap distribution is f,oo O (—2z)p(2)dz, when ¢t = 0; where ¢ (+) is the standard
0 .
30(t) + [, #(t — 2)(2)dz,  when > 0;
normal density, and ® (-) is the standard normal cdf, which has a point mass only at zero.
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does not cover vy, for almost all original sample pathes. On the contrary, Remark 3.6 in Chernozhukov and
Hong (2004) shows that the parametric wild bootstrap is valid in constructing confidence intervals for the
boundary parameters they considered. This difference can be explained as follows. We know the parametric
bootstrap is valid because it maintains the probability structure around the boundary. In Chernozhukov
and Hong (2004), the boundary parameters appear in the conditional distribution of y on z, and there is no
boundary parameter in the distribution of z, so simulating from f(e|z; @) in their setup is enough to mimic
the original probability structure around the boundary. In threshold regression, however, «y is a boundary of
g, so we must simulate from the joint distribution f(y,z,q), which covers both f (e|z, ¢; @) and f(z,q), to
keep the probability structure around . See Algorithm 1 and 2 in Section 4.2 of Yu (2007) for a concrete
description of such a procedure. In practice, even in parametric models, f(z,q) is seldom specified, so the
parametric bootstrap was never used in applicationsﬂ As shown in Yu (2007), the Bayesian credible set is
a good choice in parametric models since it does not rely on the specific form of f(z,q).

4 Numerical Examples

It is appropriate to pause here to provide more intuition behind Theorems 1 and 2 by considering the
following two numerical examples. We first apply the general results in Section 3 to the simple example in
Section 2, then consider a more practical example where the error term is present. To simplify notations,

Z* and Z without subscripts are used for Z} and Z, in the following discussion.

4.1 When There is No Error Term: A Revisit

In the case without the error term,

D(v) = Ni(Jv]), ifv<O0;
] No(v),  ifw>0;

and
Neh
# = N ifo<0
D* (v) Na o) _
. if v >0;
Z Nz‘+7
i=1
Now,
P(n(3 —3) =0 Fy) — P* (Vi >0) =1 ¢,
and for ¢ <0,

Py (n(3" —7) <t[Fn)
P*(Nj_=0)=¢"1, if N(|t]) =0,
P (Nf, — O,N2*7 — 0) — 6_27 lf N(|t‘) = 17

P* (Poisson(k + 1) = 0) = e=*+1 - if N(|t]) = k,

o (EN(H)

9When ¢ is independent of (z,€), we can condition on {z;}!_,, and simulate only from f (e|z;,q; &) and f(g). But the
problem remains since f(q) is seldom known in reality.
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where N(|¢|) is a truncated Poisson process starting from to = sup {t : Ny (|t|) = 0}. This N(|¢|) is the same
N([|t]) as in Section 2.1. Because n (¥* — v,) |F, is a location shift of n (¥* —7) |F,, it can be shown that
for t <0,

P (n(3" =) < t|Fy) — e MU [I0]

The point mass of Z*|N;(-) at the kth jump of D(v) on v <0 is
P* (N7 =0 for j <k and Njyyy_ >0) = * (1-¢7),
which is exponentially decaying. Under P,, for t < 0,
P.(n(y" =~y <t)— F [e‘Nl(ltD] = exp{t — t/e},

which is continuous. Note that Z has a thinner tail than Z* and Z* — Z. For comparison, their densities on
t < 0 are listed below:

[z (t) = e

Jz- (t) = exp{t — t/e} (1 - )

fre—z(t)=exp{t —t/e—1} (1 —e1).

4.2 When There is An Error Term

Suppose the population model is
y=1q¢<7)+e q~U0,1], (6)

where e ~ N(0,1) is independent of gq. This setup is the same as except that an error term e is added
in. v is the only parameter of interest.
From , the asymptotic distribution of the LSE is as follows:

n(¥—") 4, argminD (v)

where
Nieh) M) )
D (v) = = = )
Na(v) Na(v) if v > 0;
> ozmi= ) (1-2¢), ’
i=1 i=1
{ei_, ef,i=1,--+,Ni(-), Ng(')} are independent of each other, e; and e; follow the same distribution as e,

and Nj (-) and Nj (-) are standard Poisson processes.
From Theorem 2,

n({* —7) N argminD” (v) — argminD (v) in P* probability,
v v

where D (v) is defined above and

Nilleh o NeD
(v) Na(v) N2 (v) if v > 0.
> 2=y, Nz,
i=1 i=1

19The asymptotic distribution of n (3* — ) |Fr is discrete but has no point at 0. This is easy to understand since the
support of Z*|N1(-) is the jumping locations of Ni(-), and N1(-) does not have a jump at zero.
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Figure 3: Dependence of the Distribution of Z* — Z on D(-)

Figure [3| shows the dependence of the distribution of Z* — Z on D(:). For comparison, the density of Z
is also dotted in Figure [3] which is very different from the conditional distribution of (Z* — Z)|D(:) in all
cases. The support of (Z* — Z)|D(-) is a subset of the jumping locations of D(:). For the three sample paths
of D(-) in Figure [3] arg mvinD (v) is obtained at the Oth, 2nd on v < 0, and 3rd on v > 0 jump, respectively.
Compared to Figure|l] there are some differences in the distribution of (Z* — Z)|D (-) with and without the
error term. First, there is positive probability on the positive axis. Second, not every jumping location of
D (-) on v < 0 corresponds to a point mass. Third, the probability mass function is not necessarily monotone

on the negative axis. Fourth, the point mass at zero is not fixed as 1 — e~ !.

The distribution of (Z* — Z) |D(+) has three main characteristics. First, the largest point mass is at zero
in all cases and depends on D()E For example, when Min_ = 0, where Min_ is the number of jumps

before attaining the minimum of D(v) on v <0,

Py (7" =7 Fy)
— P*(Zf>0,Z5>0/D(-)
(1—F7(0)) (1 F5 (0-))

k
where F7 (+) is the conditional cdf of min { o2, k=1,2,--- }, and Fy (-) is similarly deﬁned z}; or
i=1

HFor comparison, Z has the largest density also at zero.

> 0 and Z2 > 0 with Z; =

12Note that on such sample paths, Z1 1,2,“-} and Zo =

k
min { Sz, k=
i=1
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z3; follows a discrete conditional distribution, so F§ (0—) # F5 (0) in generalE This is different from what
happens in Appendix D of Yu (2007), where F5 (0—) = F5(0) since zo; follows an absolute continuous
distribution. Furthermore, the conditional distribution of z}; (z3;) depends on . So

P (ZF > 0)
= pP* (Nl*_zn >O,N{k_211+N;_212 >O,"‘)
= pP* (Nf_ > O,Nf_zn + N;_Zlg > O,Nl*_le + N2*_212 + N§_213 > 0, .. )
< 1- e L.

This probability depends on the realized value of {z1;};o,. If z;; > 0 for all ¢ > 2, then P* (Z} > 0) =
1 - e’lﬁ For a general realization of {z1;};-,, the probability P*(Zf > 0) is not tractable. Similar
arguments can apply to P* (Z5 > 0). When Min_ # 0, the calculation is more complicated.

Second, large point masses often happen at deeply negative jumps, and at the left of them there are
decaying point masses. This will be illustrated by the following calculations. Suppose Min_ = 0, z1; > 0,
z12 < 0, z1; > 0 for ¢ > 2 and z9; > 0 for all ¢. In this case, P* (Min_ =1) = 0

P* (Min_ =2)
= P*(N{_zi1+ N5 212 <0,N;_ >0)
= (=)D P (Nfzn k2 <0) P* (NG = k)

00 —1
= (1=, ek—'P* (Nf_ < k?)
= . 11
_ (S) 671 [—k
= (1-¢N)) | o ZFO

sz 1
z11

-
£l
and

P* (Min_ = 3)
= P* (Nf_le+N§_Zlg+N§_213 SO,NI_ >O)
= P*(N{_z11+N5_2z12 <0,N;_ =0,N;_ >0)

B _ 0o 671 7]9;12 671
= e '(1-e 1)Zk—0k!ZJL_O HJ].!

= e 'P*(Min_ =2),

where |x] is the greatest integer less than x. For k > 3, it can be similarly shown that P* (Min_ = k) =
e 1P*(Min_ =k —1). For more complicated sample paths of D(v), the decaying rate may not be exactly
e L.

Third, there is no point mass in the right neighborhood of 0. For example, when Min_ = 0, there are
no point masses on 0 < v < |vg_| + v14, where vy =sup {v : Ny (|v|) = k} and v =sup{v: Ny (v) =k}
for £ > 0. This phenomenon is due to the fact that the left endpoint of the minimizing interval is taken as
the estimator.

k
min { > 294, k=1,2,--- 5, which implies z11 > 0.
i=1
13For example, suppose za; > 0 for all 4 > 1, then F3 (0—) =0, but F5 (0) =1— P* (Z; > O) =1- (1 — eil) =e L
14Such sample paths have P> probability 0.
5 There is a general result: if z1p < 0, then P* (Min_ =k — 1) = 0; if 29p, > 0, then P* (Min4 = k) = 0, where Miny is
the number of jumps before attaining the minimum of D(v) on v > 0.
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Figure 4: Comparison of the Asymptotic Distributions under P,

The distributions of Z, Z* and Z* — Z under P, are shown in Figure [ The distribution of Z* has a
thicker tail than Z as expected. The left thick tail is due to the fact that N/ can take value 0 on positive
21;’s and values greater than 1 on negative 21;’s, and the right thick tail is due to the fact that N/, can take
values greater than 1 on negative zo;’s. The distribution of Z* — Z is approximated by 1 million simulated
draws. The striking feature of this distribution is that there is a point mass (less than 1 —e~!) at zero. Also,
the magnified version of the distribution of Z* — Z at bottom right of Figure 3 shows that there is no much
density in the right neighborhood of zero, which can be derived from the third point above.

Although Figure [3] and [ show that the asymptotic bootstrap distribution is very different from the
asymptotic distribution, the bootstrap is still useful in practice if the quantiles are close to each other. In
Table 1 and Figure |5, some simulation results are reported for the example above, where an equal-tailed 95%
coverage confidence interval is used as the bootstrap confidence interval. In Table 1, "Average" means the
average of the quantiles and coverage among all sample paths of D (). The numbers under "Asymptotic"
are the benchmark for the bootstrap inference. From Table 1 and Figure [5] the 2.5% and 97.5% quantiles
of the asymptotic bootstrap distribution depends heavily on the original samples, and the same happens to
the coverage. In Table 1, the items under "Average" are different from those under "Average Bootstrap"
because the two operations of taking a quantile and taking an average of distributions can not be exchanged.
By comparing the quantiles under "Asymptotic" and "Average Bootstrap", we conclude that Z* — Z has a
thicker tail than Z as in the case without the error term. In Figure [5] there is a large point mass at zero
in the distribution of the 97.5% quantile. This is not surprising according to Figure [3| where the asymptotic
bootstrap probability on the positive axis is small for the three representative sample paths of D (+). In the
distribution of coverage, an interesting phenomenon is that there is a hump between 0.6 and 0.7. Table 1
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Figure 5: Distributions of 2.5% and 97.5% Quantiles and the Coverage

and Figure [5| suggest that it is risky to use the bootstrap confidence interval as the set estimation of the
threshold point.

‘ 2.5% Quantile ‘ 97.5% Quantile ‘ Coverage

Asymptotic -12.83 11.74 95.00%
Min -64.68 0 15.49%
Max -0.02 73.00 99.99%
Average -14.55 13.62 84.93%
Average Bootstrap -21.86 21.44 99.01%

Table 1: Quantiles and Coverage under the Asymptotic Bootstrap Distribution

5 Remedies in the Semiparametric Case

As shown in Section 3, the nonparametric bootstrap is inconsistent for inference of the threshold point in
discontinuous threshold regression, so some remedies are needed to the nonparametric bootstrap failure.
Another motivation of the remedies comes from the difficulty of statistical inference based on the asymptotic
distribution .

Four remedies are potentially useful. The first one is suggested in Hansen (2000). Hansen (2000) uses
a framework with an asymptotically diminishing threshold effect in mean and proves that the confidence
interval constructed by inverting the likelihood ratio statistic is asymptotically valid. As mentioned in the
introduction, the nonparametric bootstrap is also valid in this framework. But the nonparametric bootstrap
is not a practical choice as there is no way to distinguish a real dataset following the framework of Hansen
(2000) or that used in this paperm

The second remedy in the literature is the subsampling method in discontinuous threshold regression by
Gonzalo and Wolf (2005). The subsampling method is asymptotically valid as long as there is an asymptotic
distribution which is continuous. Gonzalo and Wolf (2005) do not prove the continuity of the asymptotic
distribution , and Appendix D of Yu (2007) fills this gap.

The third remedy is proposed in Seo and Linton (2007), which is based on the smoothed least squares
estimation in our framework. The drawbacks of this method are that the convergence rate is less than n and

a smoothing parameter needs to be specified in practice.

16Note that Theorem 3 in Hansen (2000) guarantees that the confidence interval there is at least conservative in a dominating
case of Chan (1993)’s framework.
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The fourth remedy is suggested by Yu (2008). Yu (2008) uses the nonparametric posterior to construct
confidence intervals for 7 in the present framework. The simulation study there indicates that this method

performs better than other methods under some standard setups.

6 Conclusion

In this paper, we show that the nonparametric bootstrap is inconsistent and the parametric bootstrap
is consistent for inference of the threshold point in discontinuous threshold regression. It is found that
the asymptotic nonparametric bootstrap distribution depends on the sample path of the original data.
Such a phenomenon also appears in Andrews (2000). The method developed in this paper is generic in
deriving the asymptotic bootstrap distribution. The remedies to the nonparametric bootstrap failure in the
semiparametric case are summarized.
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Appendix A: Proofs

First, some notations are collected for reference in all lemmas and proofs. The letter C' is used as a generic

positive constant, which need not be the same in each occurrence.

00 = (B),00) s £=1,2

) = (y—'Bi1(g <) —'Bal(g > 7)),
Mn(e) = Pn(m(-|9)),

) = P(m(9),
Gom = n(M,—M).

~ —~ /! —_— —
Z1 <w|92, 91) = (51 - 32) xz’ (51 - 52) + 201 (51 - ﬁz) we, 50 Z1; = 21 (w;ilb20, 010) 5
~ — / — —
Za <w|91, 92) = (52 - 51) za' (ﬂz - 51) + 203 (52 - 51) e, $0 Za; = Z2 (wilb10,020) ,
The following formulas are used repetitively in the following analysis:

m (w|0)
= (2’ (B1o — B1) + ‘7106)2 (g <y A7) + (' (Bag — Ba) + 0206)2 1(gi > vV )
+ (2’ (B1o — Ba) + 0106)2 1(y Avo < @i <) + (@ (Bag — B1) + 0206)2 (7o < g <7 V)

SO

m (w|0) —m (w|fo)
= [(510 - 51)/95»’5/ (B1o = B1) + 2010 (Bro — 51)95@] 1(g <y A7)

+ [(Bao — By) w’ (Byg — Ba) + 2020 (Bag — Ba) ze] 1(g > vV o)

+ Z1 (w|02,010) Ly A vo < g < 7g) +Z2 (w]b,020) (g < g <7V 0)
= T (w1, 610) 1(a < 7 A7) + T (] 620) 1 > 7V 7o)
+21 (w]02,010) L(y A vo < @ < 79) + Z2 (w]01,020) L7 < g <7V )
= A(w|f) + B (w]f) + C (w|0) + D (w|h).

Proof of Theorem 1. This proof includes two parts: (i) the finite-dimensional limit distributions of
Wy (uw),, W} (u), Dy (v), D} (v)) are the same as specified in the theorem; (ii) the process (W, (u), Wy (u) , Dy, (v), D} (v))
is stochastically equicontinuous.

Part (i): We only prove the result for a fixed h, or the Cramér-Wold device can be used. Define

1 1
T, = \/»xzez (¢ <o) = 75’11',
1 1
Ty = fﬂfzez (i >70) = %5’21'7
T3, = 7zl (70 +—<¢< Wo)
v
Ty = Z21 (’YO<QZ<%+ rf)’
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where v; < 0 and v9 > 0. Since

exp{v—1t1 T35} = 1+1 ( +—<¢ < ’Yo> lexp {V—=T1tu1z1;} — 1],
exp {vV—1t1oTyi} = 1+1 (’y <qi <o+ n) lexp {V—1t12%2;} — 1],
exp {V-Ttai My, ;T5i} = 1+1 (’Y + 3 < qi < 'Yo) lexp {V—1t21 M, iZ1:} — 1],
exp {V—1ltyoMp, iTsi} = 1+1 ("/o <¢ <7+ %) [exp {V~Ttaa My, iZ2i} — 1],
it follows
P (exp {\/jl s Thi 4 s19T0i + sy (M, i — 1) Tis + 85y (M, o — 1) Toi })
+t11T3i +t1oTyi + toaMn,, i T3 + t2o M, iThi

= P (exp {(V=IST /v/n}) + = £y () Pr (exp {V=15'TF v/} [exp {V=Ttnz1:} = 1] | = 70-)
+2 fq (7o) Pr (exp {FS/TR/I} [exp {V=1t12Z2; } — 1] } 4 = Yo+)
+ fq (7o) P (exp {FS/TR/I} [eXp{rtleNn 12’1;} ”(b = 70—)

+ fq ('70 (eXp {Fs TR/\f} [exp {FtQQMN ZZQZ} — 1] | q; = 'yo—i—) +o0 <'r11)

= 1+711 —%s]s—qu (vo)v1 (E [{exp {V=1t1z1i} }| ¢i = _]_1)

+ 4 (v0) v2 (B [{exp {V=Tt2Z2: } } @ = v0+] = 1) + fo (v0) o1 (E [{exp {V=1t: My, iz0:} } @ = 70— = 1)
+fq (7o) v2 (B [{exp {V—Tt2Mn, iZ2i} }| @i = vo+] — 1)] +o0 <111) ,

!/
Sh (M, i —1)S1, (Mn,:—1)55 ) , 0(1) in the first equal-
ity is a quantity going to zero uniformly over ¢ = 1,--- ,n from Assumption D4, the last equality is from the
Taylor expansion of exp {/—1s'T}?/\/n}, and

(! / / ! N R /
where s = (s1; s1p sy 832), T;" = ( Sti

j — P’I‘ (TiRTiR/)
E [za'e*1 (g < 7y)] 0 0 0
_ 0 E [z2'e*1 (¢ > 7y)] 0 0
B 0 0 E [za'e®1 (¢ < 7,)] 0
0 0 0 E [za'e*1 (¢ > 7y)]
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s11 T +s12 ), Toi+ 501 ) (M, i — 1) Thi 4522 > (M, — 1) T

V) i=1 i=1 i=1 i=1
Ht11 > Tas +t12 Y, Tui +tor > My, i Tai +ta2 Y, Mn, T
i=1 i=1 i=1 i=1

H P, (exp {vV/=1['T] /v/n+ t11 T3 + t12T4i + tor M, i Tsi + toaMn, ;Tui] })
i=1

— exp{is Is+ fq (7o ”1( [{eXp{\/itllzh}H%* 7] 71)

fa (Vo) v2 (E [{exp {\/jltlgfgi}H @ =Yo+] — 1) + fq (7o) v1 (E [{exp {\/77521MN 1211}}| 4 ="—]—1)
+fq (7o) v2 (E [{exp {V—1toaMn, iZ2i } }| @ = vo+] — 1)} ;

and the result of interest follows. Note that { N;_, N; +}z>1 is just {MNW}Z>17 and E [Mn,, iZu|qi = Yo+ =
MNn,, izei, £ = 1,2, since {My,, i}, is independent of the data.

Part (ii): The stochastic equicontinuity of W,, (u) and W}¥ (u) can be trivially proved since they are linear

functions of u. Now, we concentrate on D,, (v) and D} (v). For this purpose, a condition called Aldous’s

(1978) condition is sufficient; see Theorem 16 on Page 134 of Pollard (1984). Without loss of generality, we

only prove the result for v > 0. Suppose 0 < v; < vo are stopping times in a compact set K, then for any
>0,

"Ug ’U1|<5

P < sup  |Dy(ve) — Dp(v1)| > 5)

I/\G

IN
5 /—\

s
Il
—

Z|z2i|~ sup 1(70+7ﬁ<qi§70+”7f)>5>

"UQ_’U1|<5

—~
D
—

Z2l sup (3% < <o+ %)
|ve—v1]<6

/€

IN®
m‘g

)

where (1) is obvious, (2) is from Markov’s inequality, and C in (3) can take f, sup E[|Zz|l¢ =7] < o0
Yo<V<7vote
for some € > 0 from Assumptions D4 and D6. Similarly,

‘1}27’(}1|<6

P, ( sup |D;(ve) — D} (v1)| > 5)

n
v
< P Z|MNW-EQ¢\ sup 1(’y0+—<q1<70+ 2)>5
i=1 |’U2 ’Ul‘<5 n
- v v
— 1 2
< Y E||My, %2 sup 1 (70 +—<g <Y+ —) Je
i— |ve—v1|<8 n n
Co
€ )

where C can take f, sup  E[|My, iZ2llqi =~ =f, sup

E[|Z2llqi =] <oc. =
Yo<71<v0te Yo<v<7o+te
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Proof of Theorem 2. This proof uses Lemma 5. In this model,

Bo + f,vo v)—m(-lﬁ(wo)>,
Bo + f,voJrU)m('IBo,%)),

U,+ D, = nP, <m<

Uy+D; = nP; (m <

and d = 2k. From Theorem 1,

U, (u) + Dy, (v)
Uy (u) + Dy, (v)

+

D(v) _ U (u)+ D (v)
W —2ub Wi 4+ D*(v) |\ U (W) +D*(v) )

and from Lemma 4,

—( By~ B
(j”) - f(ﬂg ﬂ%) — Op= (1),
! n (5 =)
* /81 610
(i: ) - f(ﬁz B0 ) =Op, (1)
" n(* =)

oy, = o, = 0 in this model. So from Lemma 5,

where
s = arg gquu’lE [zi2i1 (qi < vo)]ur +usE [zixi1 (g > vo)] ue — 2uf W1 — 2ubWo
B E [zl (g < 7o) Wh
Bl (g > ) Wa )7
t = arg mmD( ),
sf = arg guunzulE (201 (¢ < vo)]ur + usE [l (g > vo)] ua — 2uiWh — 2uyWa — 2u) W5
_ [ Elmail (s <) (W + W)
E [zizi1 (g; > 7)) (Wa + W)
t* = argminD*(v).
v
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By the continuous mapping theorem,

(si/s 1) = (s ) = (57, 8%) = (s
E [zl (g < o)) (W1 + W) = Ezia(1(q: < 7)) Wa
= | Elwajl(a >0 (Wa+W3) = B [w:aj1 (g > 7)) Wa
argminD* (v) — arg minD (v)
E a1 (g; < 7o) Wy
= Bzl (¢ > 7)) W3
argminD* (v) — argminD (v)

The above discussion is under the P, probability. From Lemma 2, (s/,,t,)" and (s%/,t5)" are both Op- (1) in

’I’L’n

P> probability. Therefore, Lemma 5 can also be applied with respect to the probability measure P* in P>

! t / /t/
< ((SZZ,’ t*)) ) <, ( (if,’tz), ) in P> probability,

whence by the continuous mapping theorem,

probability, yielding

(s5,85) = (shotn) —5 (7, 6%) — (s, 1)

E [zl (¢ < 70)]” Wy
= E [z} (g > o)) W5 in P> probability.
argminD* (v) — arg minD (v)

Appendix B: Lemmas

Lemma 1 Under Assumptions D4 and D5, for any h € R?F+1,

np, (m< ﬂo fﬂfYO v>m('50770)>
= W F[z:2i1(q <) ur + ubE [;251 (q; > o) ue — Wi, (u) + Dy, (v) + op= (1),

np, (m ( BO+\;LH770+Z) —m( |50a70))
= uEzizi1 (g < 7o)l ur +up B [zl (qi > vo) ua — Wi (u) — Wy (u) + Dj, (v) + op, (1),

and

where Wy, (u), W} (u), D, (v) and D}, (v) are specified in Section 3.1.
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Proof. First,
( ( ‘50"’ \%770“‘%) —m (- |507’70))
ulelul —UIQ%J%@) 1(gi <voAv0+2)+ E (u’2 ”;qu —u2\/%a?iei) 1(gi >v VY +32)

B1o — Bao — *i) ;T (510 Bag — ) + 2z} (510 Bag — )01061} 1 (% +72<q¢< 'Yo)

3
e

M: 1 M: I M:

T

+ 2 ( \fl - /320) X (/310 + % - /320) (510 \/% - 520) 0'2061':| 1 (’Yo <qi <o+ %)
=ul E [x;x}1 (q; < vg)]ur + ubE [z:251 (¢ > 7o) uz — Wi, (u) + Dy, (v) 4+ ope (1),

where ope (1) is from Assumption D4 and D5.

Second,

nP*( (‘50 Yot )_m('Woﬁo))
‘7mfﬂhﬁ%$ﬂ01(iSw@A70+%)+Eikhiﬁéﬁfur—%%%%@)lwi>70V7w+%)

- E M,,; (
o /
Z My, [ — By — %) TiT (510 Bao — ) + 2z (ﬁw Bao — ) 01061} 1(vo+ 2 <a¢ <)
Z: My, [ \f 520) T, (510 \/15 - 620) — 2z} (/610 + % - /620) 02061} 1 (”Yo <¢G <Y+ %)

= 2 (o5 — oy 20 ) 1o < o) + 2 (55w — w T ) 1(as > 70) — Wy () + D3 () + o, (1)
1= 1=

Efzizi1 (g < 7yo)lw + upE [2iai1 (g > vo)luz = W (u) = Wi (u) + D5, (v) + op, (1),

|
e
S

and op, (1) here need some explanation. Poissonization is key in the following discussion.
Note that My, 1, -+, My, » are i.i.d. Poisson variables with mean 1. By the analysis in Theorem 3 of
Klaassen and Wellner (1992),

Define I} = {i : |[My, i — My;| > j}, then #I = O, (v/n).
With probability approaching 1,

- ;X v
> (M, i — My) (uin'ul uy f > (qz <7 A7+ )
=1

2 .
. #1) v
= 51gn(Nn—n)Z n”u'l "l szml(ql<70/\'yo+ ) Uy
j=1 # ’LGI]
#IJ v
= 2010015 7 Z zieil (qZ <Y A+ )
v # i€l

= op. (1),

where the last equality is from a multiplier Glivenko-Cantelli theorem; see, e.g., Lemma 3.6.16 of Van der
Vaart and Wellner (1996). Now,

mlaj 2010 v
M i ! — i€ 1( A\ —<q < ): 1
Z N, ( RU1 U1\/ﬁx€> Yo 70+n g < o op, (1)
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from Assumption D4. So
2010

TiT v
ZMm< /17 1= U \/ﬁxiei)l(QiS’YO/\’Yo‘Fn)

n /
T;T 20
- Z Mn,.i <Ulllnlul - Uﬁ\/%oxiei) 1(gi <o) +op, (1)

=~

2010

= W E 221 (g < o) ur — ) ( NG > My, iwieid (g < 70)> +op (1).
=1

n ’
Similarly, we could prove the result for > M,; (ué%uz — u’z"—jgmiei) 1(gi > v Vo + 2)
i=1
With probability approaching 1,

; (MNmi — Mp;) [(510 — Bao — :j%) xlm; (510 — Bao — :;%)

U v
+27] (/310 — Bao — \/2»> 01061} 1 (’Yo + - <gq < 70)

= sign (N, Z #Ij Z [(510 Bao — \/ﬁ> ;%] <510 — Bao — :;%)

i€l

+22e; (ﬁlo — Bag — \/27»1> ‘710} (#I% -1 (’Yo + % <q; < ’Yo))

= OPr' (1)7
since #I7 - 1 (o + 2 < ¢; < 7o) = op, (1) uniformly for i € I} by Assumption D4. So
Z up ' u v
ZMM l(ﬂlo — Bao — 2) ;7] <610 Bao — > + 2x; (510 — Bao — 2) Uloei] 1 (’Yo + - << ’Yo)
i=1 vn Vn NG n
n /
U1 v

My, i — = il 1 <g¢ < -

+ ; l(ﬁlo \f Bzo) Ti%; <510 + Jn 520) <»310 \f Bzo) T20€ ] (70 %<7t n)

- v
= ZMNn,i [(510 - »320)lxi$/i (B1o = Bao) + 22 (B1o — Bao) 01062'] 1 (70 + n <¢ < %)

i—1
+ ZMNM' [(ﬂlo — Ba0) mix; (B1o — Bao) — 22 (B1o — Bao) 0206i] 1 (”Yo <¢ <7+ %) +op, (1)

= D;(v)+op, (1).

The following lemma appears in Wellner and Zhan (1996) and states relationships among the probability
measures P>, P* and P,.

Lemma 2 (i) If A, is defined only on the probability (2°°, A%, P>°) and A,, = op= (1) (Op= (1)), then
A, =op, (1) (Op, (1)); (i) If A, = 0op. (1) (Op,. (1)), then A, = op« (1) (Op« (1)) in P> probability.

Lemma 3 Under Assumptions D1-D5, both 9 and 8 are consistent in P, probability.

Proof. First, we will prove 7 is consistent. The idea of proof follows from Lemma A.5 of Hansen (2000).
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Suppose v > v,. Note that Y = X85, + 020e + X<, 00 + ds0€<~,, and X lies in the space spanned
ey — 1__
by P, = X, (X,X,) X

v

0, = 01 — 09, and YW =[X X<,]. So

where e<., is defined by stacking the variables e;1(g; < 7), dg = B — S,

1 1,
“Qu(y) = —Y'I-P)Y

1
= = [20205;30)(%% (I = P))e+20,0030X%, (I — Py)e<y, +2020650e (I — P,) <,
00 XLey, (1= P)) Xeo b+ 03¢ (I = Py) e 4 820l (1= P))ecs,]

o 850 (M (70) = M (70) M (7)™ M (1)) 80 + E | (7206 + d00¢1 (4 < %))’

uniformly for v € T by a Glivenko-Cantelli theorem, where M (v) = E [z2'1(¢ < )]. The second term of
this limit does not depend on v, so we concentrate on the first term. We need only prove that M (vy,) —
M () M (7)™ M (v9) > M (7g) = M (v9) M ()" M (7,) = 0 for any v > ~,, which reduces to prove
M () > M (v,). Since M (y5) > M (7v;) if v > 74, we need only prove that for any € > 0, M (v, +¢€) —
M () > 0. But from Assumptions D3 and D4, M (v, +¢€) — M (yy) = Elza’l(yy < qg<vo+¢€)] >

nf | Blalo=11) (F (040 = F (3)) > 0,
Yo<r<7ote
Symmetrically, we can show that M (v, —e€) — M (vy,) > 0 for any ¢ > 0. Theorem 2.1 of Newey and
McFadden (1994) can be applied to show 7 is consistent. With the consistency of 74 in hand, it is easy to
show 8, (¥) and 8, (¥) are consistent by a dominance argument. Similar arguments show 6 is consistent in

P, probability, but now a multiplier Glivenko-Cantelli theorem is used for the uniform convergence. m

Lemma 4 Under Assumptions D1-D5, 7 = vy + Op (%), ¥ =70+ Op, (%), B = By + Ope (ﬁ), and
B* :BO+OPT <ﬁ)

Proof. We will first prove ¥ = v, + Op= (2). Corollary 3.2.6 of Van der Vaart and Wellner (1996) is used

n
in this proof.

First, M (6) — M (6y) > Cd? (0,00) with d (6,600) = ||0 — 0, + /|7 — Yol for 6 in a neighborhood of ;.

M (6) — M (o)
= E[T(w]b1,6010) 1(qg < v Ayo)] + E [T (w]f2,02) 1(g > 7V 70)]

+E [Z1 (w]02,610) 1(y Ao < ¢ < 70)] + B[22 (w]01,020) 1(vg < g <7V 70)]
= (Bio—B1) Elaa'1(q <7 A7) (Bro — B1) + (Bag — B2) E [zz’1(q > vV 70)] (Bag — B2)

+(Bro = B2) E [z2'1(y Ay < 0 < 70)] (Bro = B2) + (Bag — B1) E 2z’ 1(vg < g <7V 79)] (Bag — 51)
> C (Hﬁm = Bl + 1820 = Ball* + |y — ’Yo|> ;

where the last inequality is from Assumptions D1-D4.

Second, E | sup |G, (m(w]f) —m (w|fp))]| < C§. Since {T (w|f1,010) :d(0,6p) <} is a finite-

d(6,80)<8
dimensional vector space of functions and {1(q <y A7) :d(6,0p) < d} is a VC subgraph class of func-
tions by Lemma 2.4 of Pakes and Pollard (1989), {A (w|0):d(0,0) < d} is VC subgraph by Lemma

2.14 (ii) of Pakes and Pollard (1989). Similarly, {B (w|f) :d(6,60) < d}, {C (w|f) :d(6,00) <}, and
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{D(wl|f) : d(6,0p) < §} are VC subgraph. From Theorem 2.14.2 of Van der Vaart and Wellner (1996),

E| sup |Gy (m(w]0) —m(wlf))| < CVPF?,

d(0,00)<8

where F' is the envelope of {m (w|0) —m (w|fy) : d (6,00) < §}. But from the function form of m (w|f) —
m (w]fy), VPF? < C§ by Assumption D5. So ¢ (8) = & in Corollary 3.2.6 of Van der Vaart and Wellner
(1996) and 2 is decreasing for all 1 < o < 2. Since r2¢ (i) = 1, /nd (5— 00) — Op=~ (1). By the
definition of d, the result follows.

Now, we prove 3* = v, + Op, (%) Since 0 is consistent, we need only concentrate on a neighborhood
N of §y. By the definition of 9,
Prm (w|0 ) < P*m(w|6y).

Thus

o
v

P (m <w|§*) -m (w|90))
(Py = Pa) (m (wl8") = m (wl6o)) + (P = P) (m (wld") = m (wl6o)) + P (m (wld) = m (wlto)) .

From the proof above, P (m (w|0) — m (w|6y)) > Cd? (6,6,), (P, — P) (m (w|0) — m (w|fo)) = Op= (n=/2d (0, 0))
for 6 € N. If we could prove (P — P,) (m (w|0) —m (w|fy)) = Op, (n='/2d(6,6,)) for 6 € N, the result
follows. Conditioning on {w;}._,, a similar argument as above shows that

P, sup |Vn(Py — Py) (m(wl0) —m (w]6))]
d(0,00)<6

< CVP,F2<C

for n large enough by the strong law of large numbers. m

The following Lemma is an extension of Theorem 6.1 of Huang and Wellner (1995) which is an extension
of the argmax continuous mapping theorem. As in Kim and Pollard (1990), define By, (Rd) as the space
of all locally bounded real functions on R? endowed with the uniform metric on compacta. The space
Cuin (R?) is defined as the subset of continuous functions z (-) € By (R?) for which (i) z(¢t) — oo as
(R) is the same as By, (R) except
being endowed with the Skorohod metric on compacta. The space D, (R) is defined as the subset of cadlag
functions z (-) € Bj,. (R) for which the conditions (i) and (ii) in the definition of Cy,;, (R) are satisfied.

loc

t| — oo and (ii) z(¢) achieves its minimum at a unique point in R%. B]

Lemma 5 Suppose (U,,U) are random maps onto B, (Rd) X Bioe (Rd), and (D, DY) are random maps
onto Bj,. (R) x B}, (R). Let (sn,t,) and (s%,t%) be random maps onto R+ x R4+ sych that:

loc loc

(i) (Un + D, Ui + D) ~ (U + D,U* + D*), where
P ((U,U*) € Cuin (RY) x Cppin (RY)) =1

and
P ((D,D*) € Dyin (R) X Dpin (R)) = 1
(ii) (sn,tn) and (s}, th) are uniquely defined and both O, (1);

(iii) Uy (sn) + Dy, (t,) < infU, (u) + infD,, (v) + au, and U} (st) + Dy (¢) < infU (u) + inf D} (v) + o

n’

where oy, and o are both o, (1) .
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u,v

Then ((Spytn), (s5,t5)) <, <arg minU (u) + D (v) ,arg minU* (u) + D* (v)) .
Proof. The proof follows from Theorem 6.1 of Huang and Wellner (1995) by using Dudley’s representation

theorem. The only difference is that the metric for Dy, (R) is substituted by the Skorohod metric on
compacta and the product metric is used on Cyi, (Rd) X Dpin (R). =
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