What if the Dunedin Energy Centre converted to wood fuel?

A summer project by Ella Oberschneider Supervised by Michael Jack, Physics Department, University of Otago

(michael.jack@otago.ac.nz)

Dunedin Energy Centre (DEC)

- Internationally district heating is regarded as a sustainable, low-cost method of supplying heat¹
- NZ's largest district heating plant (30 MW capacity)
- Supplies ~60 GWh/year of heat to:
 - University of Otago
 - Dunedin Hospital
 - Cadbury
- Burns 13 thousand tonnes of coal per year
- From 2010 to 2016 carried out trials to burn wood fuel instead of coal
 - No technical constraints!
 - Similar results found internationally²

What if the DEC converted to wood fuel?

- Are there sufficient supplies of wood?
- What would the Greenhouse emission reductions be?
- What would the impact on the local environment be?
- What are the economic consequences for Dunedin?
 - Jobs?
 - Marketing?

Wood fuel availability

Growing harvest volumes — plentiful supplies of residues long term

Source: http://woodco.org.nz/images/stories/pdfs/woodscape/woodscaperegionalreportfinal2_web.pdf

Wood fuel availability

Based on historic plantings, more than enough sustainably-managed plantation wood waste available for fuel in the Dunedin area (estimates include only cost-effective landing site recovery)

Greenhouse gas emissions

- The DHC currently burns 13 thousand tonnes of coal per year
- Combusting this coal releases 27 thousand tonnes of CO₂
 per year¹ 1/2 of the CO₂ emissions from coal in Dunedin²
- In contrast, wood fuel has zero CO₂ emissions (as long as trees are replanted). All CO₂ is reabsorbed by growing trees.
- There are also small amounts life-cycle emissions associated with both coal and wood (e.g. from extraction, harvesting and transport).

Local environmental impact

- Wood produces less particulate emissions (P10).
- In practice, particulate emissions are relatively easily controlled for large modern coal and wood heat plants (less easy for small boilers and domestic fires)
- Other harmful air emissions are significantly higher for coal than wood
 - NO₂ (30% greater)
 - SO₂ (5x greater) difficult to control in coal heat plant
 - heavy metals
- Ash: Coal produces x10 the ash of wood and it is not compostable

Economic impact

- International studies found that wood fuel requires 4
 FTE for every FTE for coal¹. E.g. conversion of DEC could possibly result in ~17 additional jobs¹.
- Benefit to local economy no coal mines in Dunedin but *local* plantation forests.
- Marketing Dunedin's Clean Green Image
 - Environmental status of NZ worth > \$900 M in tourism
 - In US >60% of students take sustainability into account when choosing a University² – NZ likely to follow suit
 - Closer to home a Otago University Association survey found >70% of students want the University to reduce investment in fossil fuels

¹http://www.sciencedirect.com/science/article/pii/S0961953497100058

Looking to the future

- Dunedin Energy Centre: 50 year old boilers –
 Opportunity for new modern wood boilers (10 year time frame)
- Otago University seeking to move towards carbon neutral campus – Largest opportunity to reduce emissions is from DEC moving to wood fuel
 - no technical barriers to this happening today!
- Hospital rebuild Opportunity to continue with lowcost, sustainable heat source (if DEC moves to wood fuel)
- Possibility of expanding heat pipe network to other parts of Dunedin (e.g. central city)— most cost-effective, sustainable heating solution for large users

Conceptual plan of central city district heating scheme.

Courtesy of Neville Auton

What if the DEC converted to wood fuel?

- Are there sufficient supplies of wood? Plentiful supplies of wood fuel driven by long-term increases in harvest volumes
- What would the Greenhouse emission reductions be? 27 thousand tonnes per year - ½ Dunedin's total emissions from coal (in one easy hit!)
- What would the impact on the local environment be? Less particulates, less NO_X , SO_X and heavy metals. Large-scale heat plants minimalize air emissions.
- What are the economic consequences for Dunedin?
 - Jobs? Increase in local jobs and benefits to local economy
 - Marketing? Significant marketing benefits

