

Otago Spotlight Series Cardiovascular Disease

Understanding Arrhythmias

Dr Pete Jones

What are Arrhythmias?

- Altered rhythm of the heart
 - Atrial arrhythmias
 - Atrial flutter
 - Atrial fibrillation

- Ventricular arrhythmias
 - Ventricular tachycardia
 - Ventricular fibrillation

Why Study Them?

- Arrhythmias precipitating cardiac arrest are the most common mechanism of sudden cardiac death
 - Sudden cardiac death is the leading cause of natural death

Why do Arrhythmias Occur?

Structural arrhythmias

· Due to damage to the heart muscle following

a heart attack

Why do Arrhythmias Occur?

- Non-structural, spontaneous arrhythmias
 - Due to the formation of an ectopic pacemaker

Calcium = Contraction

Calcium = Contraction

otago.ac.nz/cvd

What causes Spontaneous Calcium Release?

 Most of the calcium required for contraction comes from an internal reservoir the sarcoplasmic reticulum (SR)

otago.ac.nz/cvd

What causes Spontaneous Calcium Release?

- In addition to normal stimulation RyR2 can open due to calcium within the SR
- In disease RyR2 becomes too sensitive to calcium
 - This deceases the SR 'threshold' at which it will release calcium.

How do we know this?

 We can measure calcium inside the SR using calcium sensitive proteins derived from jellyfish

Why Does this Happen to RyR2 During Heart Disease?

- A diseased heart experiences many stressors including:
 - Increased oxidation
 - Increased sympathetic drive
 - Increased nerve activity to the heart
 - Alterations in the amount of certain proteins in cells

We have found that all of these things can sensitise RyR2 to calcium in the SR

What's next?

- Obesity and diabetic heart disease
 - 1 in 3 in NZ is overweight
- We want to know how increased fat and glucose affect RyR2 function

What's next?

- Because obesity and diabetes are so common we can study them in human tissue
 - Remove tissue and fat during bypass surgery

- We can then test the susceptibility to arrhythmia and compare diabetics to obese and to lean patients
 - We can also look at what happens if we add the fat from an obese patient to the tissue from a lean patient

 Now we know why RyR2 becomes dysfunctional can we fix it?

otago.ac.nz/cvd

 Can we make an inhibitor of RyR2 that is not a βblocker?

Acknowledgements

- Joe Zhang
- Helen Waddell
- Shivan Lingam
- Janet McLay
- Manesh Deo
- Ella Wu
- Katie Hoeksema
- Shivan Lingam

Collaborators

- Wayne Chen (U Calgary)
- Angela Dulhunty (ANU)
- Allan Gamble (UoO, Pharmacy)
- Bill Louch (Oslo)

- •Regis Lamberts •Richard Bunton
- •Michael Williams •Marilyn Noye
- Chris Baldi
- Sean Coffey
- •Pankaj Saxena
- •Ivor Galvin
- •Patients at Dunedin Hospital

 Now we know why RyR2 becomes dysfunctional can we fix it?

Great!

However:

• Problem with β-blockers is their compliance is low

otago.ac.nz/cvd

Zhou Q et al. Nat. Med. 2011

Can we make an inhibitor of RyR2 that is not a β-

blocker?

Does VK-II-86 prevent arrhythmias?

Untreated

Treated for 2 weeks

