
1

Full citation: Meldrum, S., Licorish, S. A., Owen, C. A. and Savarimuthu, B. T. 2020. Understanding
stack overflow code quality: A recommendation of caution. Science of Computer Programming, 199.
doi: 102516. 10.1016/j.scico.2020.102516

Understanding Stack Overflow Code Quality: A
Recommendation of Caution

Sarah Meldrum, Sherlock A. Licorish*, Caitlin A. Owen and Bastin Tony Roy Savarimuthu
Department of Information Science

University of Otago
Dunedin, New Zealand

sarah-meldrum@outlook.com, sherlock.licorish@otago.ac.nz, oweca636@student.otago.ac.nz,
tony.savarimuthu@otago.ac.nz

ABSTRACT
Community Question and Answer (CQA) platforms use the power of online groups to solve problems, or gain
information. While these websites host useful information, it is critical that the details provided on these platforms
are of high quality, and that users can trust the information. This is particularly necessary for software development,
given the ubiquitous use of software across all sections of contemporary society. Stack Overflow is the leading CQA
platform for programmers, with a community comprising over 10 million contributors. While research confirms the
popularity of Stack Overflow, concerns have been raised about the quality of answers that are provided to questions
on Stack Overflow. Code snippets often contained in these answers have been investigated; however, the quality of
these artefacts remains unclear. This could be problematic for the software engineering community, as evidence has
shown that Stack Overflow snippets are frequently used in both open source and commercial software. This research
fills this gap by evaluating the quality of code snippets on Stack Overflow. We explored various aspects of code
snippet quality, including reliability and conformance to programming rules, readability, performance and security.
Outcomes show variation in the quality of Stack Overflow code snippets for the different dimensions; however,
overall, quality issues in Stack Overflow snippets were not always severe. Vigilance is encouraged for those reusing
Stack Overflow code snippets.

Keywords: Stack Overflow; Code Quality; Code Reliability and Conformance to Programming Rules; Code
Readability; Code Performance; Code Security

*Corresponding author

https://doi.org/10.1016/j.scico.2020.102516
mailto:sarah-meldrum@outlook.com
mailto:sherlock.licorish@otago.ac.nz
mailto:oweca636@student.otago.ac.nz
mailto:tony.savarimuthu@otago.ac.nz

2

1. INTRODUCTION
Community Question and Answer (CQA) platforms facilitate the use of the power of the crowd (i.e., online
communities) to solve problems [32]. Platforms such as Stack Overflow and Yahoo!Answers1 provide a service that
benefits those who look to the internet to answer questions or find particular information [56]. In particular, such
platforms benefit software practitioners seeking information, as it is likely that many other people have faced a
similar problem, and so, a relevant question may have already been asked that has invoked a suitable answer. On the
other hand, these platforms also allow new questions to be created, and experts can lend their specific experience,
which allows them to solve a problem and gain the respect of their peers in the community.

While these websites host useful information, it is critical that the information provided on these platforms are of
good quality, and that users can trust the information. This justifies a research agenda to afford this form of quality
assurance. However, as this research area is still developing, even the terminologies used to identify such platforms
are inconsistent. Srba and Bielikova [61] found that multiple terms are used for referring to CQA platforms. For
example, while this paper refers to the types of community question and answer platforms as CQA, it is common for
such platforms to be labelled Q&A, social Q&A and community forums [55, 57]. Beyond the terms used to identify
CQA portals, Krüger, et al. [41] conducted a secondary study of CQA papers and suggest that the quality of
questions and answers is a central challenge of CQA systems. In addition, Srba and Bielikova [61] completed a CQA
survey and noted preservation of long-term sustainability as a key area for future research of these platforms. For
CQA platforms to have long-term sustainability, however, establishing the quality of these sites is key to ensuring
that users trust the platform and feel that they can continue to participate. Other approaches for encouraging
sustainability of CQA platforms in inspiring user participation are to provide tools and employ gamification
techniques [33].

Stack Overflow has been noted as a successful platform due to its user participation, suggesting that its employment
of gamification techniques indeed contribute to its prominence [16]. However, there are questions surrounding the
quality of answers on Stack Overflow [25, 64]. In addition, given that developers use many of the code snippets in
posts on Stack Overflow during development [62], it is important to evaluate the quality of these artefacts. In
particular, while the Stack Overflow community’s collective surveillance may help to identify and improve errors in
code snippets on this platform and users may appropriately use code snippets by adapting them to their specific
problem/task, this is not always the case. Wu, et al. [68] examined how Stack Overflow code snippets were used in
open-source projects and found that only 44% of the files containing Stack Overflow snippets showed that these
snippets were modified prior to reuse by software developers. In fact, Bi [11] has shown that even the
throwing/catching of generic exceptions is missed by software developers reusing Stack Overflow code snippets. We
thus set out to understand the quality of code snippets that are often provided in Stack Overflow posts. The
findings of this research could be helpful for directing future research on Stack Overflow, by facilitating
investigations aimed at providing mechanisms to further scrutinise the aspects of quality that Stack Overflow code
snippets do not meet. Additionally, developers selecting code snippets from Stack Overflow during software
development will have a better understanding of the potential limitations of the code they use.

However, addressing the objective of this research project requires code snippet quality to be defined. This is done
by assessing research and considering code snippet quality in relation to well established and understood software
quality measurements [35]. This has led to our consideration of code reliability and conformance to programming
rules, readability, performance and security (refer to Section 2.1 for discussion on this issue). Given our definition of
quality, consisting of multiple dimensions, code snippets are extracted from Stack Overflow and analysed against
these criteria. We then provide results at multiple levels of granularity, covering all violations (or errors), snippet
specific violations and qualitative analysis assessing the implications for the presence of violations, and Stack
Overflow community’s efforts towards addressing these. The outcomes provided in this work are a survey of Stack
Overflow code snippets’ violations against these quality dimensions, as well as the types of violation that are evident
in code provided by contributors. We also outline the basis for how the software development community may craft
an agenda towards maintaining software quality, notwithstanding the utility that Stack Overflow provides.

1 https://answers.yahoo.com

https://answers.yahoo.com/

3

The remaining sections of this study are structured as follows. Section 2 considers the literature relating to Stack
Overflow, and outlines subsequent research questions. In Section 3, the proposed methodology of this research is
introduced and discussed. This leads to Section 4, which presents the results of the study in relation to the associated
research questions. Section 5 provides a discussion of the results along with the implications. The threats of the
research are next discussed in Section 6. Finally, Section 7 concludes the work and outlines potential areas for future
research.

2. BACKGROUND AND RESEARCH QUESTIONS
In order to achieve the objective of this research, literature related to code quality on Stack Overflow is reviewed in
Section 2.1, with particular emphasis on understanding works that have evaluated code. Thereafter, we synthesise the
related literature to identify gaps and outline our research questions in Section 2.2.

2.1 Code Quality on Stack Overflow
Stack Overflow is the leading CQA platform for programmers, with more than 10 million users, contributing some
16 million questions as of 20192. While few would doubt the utility of Stack Overflow and similar platforms to
software development practitioners, there have been questions regarding the quality of the responses generated to
practitioners’ questions. For instance, in the quest to understand the quality of content on Stack Overflow, Ginsca
and Popescu [25] investigated the relationship between Stack Overflow user profiles and answer quality, finding
correlations between a more complete user profile and answer quality. Jin, et al. [33] studied how the need to ‘win’
reputation rewards can influence answer quality, as users may at times be driven to provide answers without
considering quality implications. Anand and Ravichandran [5] identified a need for separating answer quality from
members’ popularity, as the reward system provided by Stack Overflow sometimes conflicts with quality answers.
For example, users at times may try to answer questions relating to popular or easy topics, which in turn leads to an
increase in their reputation. Additionally, studies such as Treude, et al. [64] and Asaduzzaman, et al. [6] have
investigated how the quality of the question itself can affect the quality of the answer that is provided. These works
all point to the need to be vigilant when approaching Q&A websites such as Stack Overflow for recommended
solutions.

Given the preceding concerns, it is important for research work to help the software development community with
quality validations of Stack Overflow to fill this gap. In addition, given that developers use many of the code
snippets in posts on Stack Overflow during development [62], it is important to evaluate the quality of these
artefacts. Some investigations have been conducted looking at specific aspects of code snippets, such as the work of
Squire and Funkhouser [60], who recommended a 1:3 ratio of code to text in answers on Stack Overflow. The
findings of these authors suggest that there is anticipation of a significant number of code snippets in answers
provided on this portal. Acar, et al. [2] found in an experiment comparing various coding resources that the code
sourced from Stack Overflow was not as secure as official documentation or books, indicating the need for
improving code security. Yang, et al. [69] investigated the usability rates of code from Stack Overflow, finding only
one percent (1%) of Java code extracted could be successfully compiled. These authors found an additional two
percent (totalling 3%) of code could compile when adding class structures and semicolons to code in snippets that
were missing these. While these papers investigate certain attributes of Stack Overflow code (i.e., security or
usability), there is need for a comprehensive evaluation of code quality in Stack Overflow posts.

In fact, more recently, a number of studies have identified the use of Stack Overflow code snippets in open-source
projects and analysed their effect on code quality. Ahmad and Ó Cinnéide [3] assessed GitHub projects, which have
reused Java code snippets, in terms of code cohesion over time. They found that 42% of the project classes exhibited
reduced cohesion, most of which did not regain the cohesion exhibited prior to adding the Stack Overflow code
snippet. Abdalkareem, et al. [1] measured the quality of projects by classifying code commits as bug fixing or non-
bug fixing. They found that the percentage of bug fixing commits in each project file was larger after adding the
Stack Overflow code snippets. Ragkhitwetsagul, et al. [53] conducted a survey of Stack Overflow users, which
found that common issues associated with Stack Overflow answers include outdated solutions and buggy code. This
was confirmed when identifying Java snippets included in open-source projects, 66% of which were considered to be

2 https://en.wikipedia.org/wiki/Stack_Overflow

https://en.wikipedia.org/wiki/Stack_Overflow

4

outdated solutions and over 5% of which were considered to be buggy. Campos, et al. [14] extracted JavaScript
snippets from Stack Overflow and analysed them in terms of code rule violations (using ESLinter),with the most
common violation types relating to style issues (82.9% of the violations). A small number of the code snippets
associated with violations were found to be used in GitHub projects. Nikolaidis, et al. [49] measured quality in terms
of technical debt (the effort required to fix code inefficiencies), determining that the Java code snippets were actually
associated with an overall lower technical debt density than the project code. However, there were a number of cases
when the code snippets were associated with a much larger technical debt density than the project code.

Other studies have examined Stack Overflow code snippets for characteristics indirectly related to code quality.
Treude and Robillard [65] assessed whether Java code snippets on Stack Overflow are self-explanatory. The answer
text and code comments were removed from a sample of code snippets. They were presented to GitHub users, who
determined that less than half of the code snippets were considered to be self-explanatory. The inappropriate use of a
Stack Overflow snippet in a software development project, due to the snippet not being self-explanatory, is likely to
reduce the quality of the project code. Therefore, examining the question and answers (including the user comments)
associated with the code snippet may be needed in order for it to be self-explanatory. Wu, et al. [68] examined how
Stack Overflow code snippets were used in open-source projects, finding that 44% of the files containing Stack
Overflow snippets were modified prior to use in the file. This may be an indication of a lack of code quality
associated with the original snippet. A survey of developers (who use Stack Overflow) found that 32% of
respondents re-implemented code snippets rather than reuse them in their original state because of the perception that
such code snippets may be of poor quality. Yang, et al. [70] also found that the exact duplication of code snippets
was rare in the Python code projects examined.

When considering potential definitions of quality in relation to code (or software) this can be difficult to define due
to different perceptions and expectations [35]. While studies mentioned above relate to code more generally, there
are also studies which consider code quality explicitly. Jones and Bonsignour [35] look at multiple aspects of
software quality such as technical quality, process quality and usage quality, totalling 121 quality attributes. While
the study looks at software quality instead of code quality, these authors outline relevant aspects related to technical
quality that could be of utility to this work. The ISO250103 standard defines software product quality as containing
functional suitability, reliability, performance efficiency, usability, security, compatibility, maintainability and
portability, with a number of sub-characteristics for each. Lu, et al. [44] refer to code quality as readability and
maintainability, using tools to analyse aspects of quality such as potential bugs and comments in code. These authors
also investigate quality in relation to casual and experienced users. Another study investigated code readability as a
component of code quality, correlating these aspects with overall software quality [12].

In terms of Stack Overflow, Rahman, et al. [54] suggest answer comments can be used as a guide to evaluate the
quality of code snippets. They infer that lower quality code snippets would result in more comments. In fact, debate
around the quality of Stack Overflow questions and answers has echoed disagreements. For example, quality of
questions was defined by a score of zero or more and the number of edits in one study [21], while answer quality was
defined as those with scores of four or higher (13% of answers) by another study [48]. Considering these studies, it is
clear that there are various components of code quality that are accepted by the software development community.
How we respond to these metrics in providing a holistic and reliable view of Stack Overflow snippet quality is
central to this study, an issue we consider in Section 3, having outlined our research questions in the following
subsection.

2.2 Research Questions
To achieve the objective of this study, to understand the quality of code snippets that are often provided in
Stack Overflow posts, it is important to consider the questions and concerns related to the quality of answers on
Stack Overflow [25, 64], and the significance of the code snippets in these answers. In addition, it is important to
establish what is meant by code snippet quality, given the variation in understandings and interpretations of quality
[35]. That said, previous works have attempted to consider the measures that may influence or reduce Stack
Overflow answer quality [25, 64]. Measures considered include: the degree to which Stack Overflow code compiles
[69], code cohesion over time [3], the currency of snippet solutions [53], the effort required to fix code inefficiencies

3 http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

5

[49], if code snippets are self-explanatory [65], if code snippets were reused directly [68], and the proportion of text
and code in answers [60]. There has been less interest in investigating Stack Overflow snippet quality holistically.
Given the relative lack of understanding of the quality of code snippets on Stack Overflow, we aim to provide a
multi-dimensional view of code quality on this portal by answering the overarching question what is the quality of
code snippets provided in answers on Stack Overflow?

Code snippet quality refers to the quality of the short snippets of code often contained in answers. This is in contrast
to software quality, which assesses the quality of an overall software project codebase and related artefacts
(including user interfaces, non-functional requirements, and so on) [35]. This extended view of code quality would
not be reliably expected for code snippets provided in Stack Overflow posts, as these are often aimed at answering
very specific coding concerns [26]. For example, in using User Datagram Protocol (UDP) as against Transmission
Control Protocol (TCP), a user may be interested in understanding if there is a server socket for datagrams in Java, as
is the case for the normal server socket (i.e., is it possible to use the “DatagramServerSocket” constructor having
imported the “java.net” package). Recommendations provided in response for such a query may thus be brief, with
little conformance to coding conventions used when writing large volumes of code. Accordingly, in this study, code
snippet quality is defined as having the dimensions of reliability and conformance to programming rules, readability,
performance and security, which are further discussed in Section 3.1.

Given this definition of Stack Overflow code snippet quality, we break down our overarching question into the
following four research questions:

RQ1. What is the reliability and conformance to programming rules of code snippets provided in answers on
Stack Overflow?

RQ2. What is the readability of code snippets provided in answers on Stack Overflow?

RQ3. What is the performance of code snippets provided in answers on Stack Overflow?

RQ4. What is the security of code snippets provided in answers on Stack Overflow?

3. METHODOLOGY
In line with the open nature of our overarching question, what is the quality of code snippets provided in answers on
Stack Overflow?, we employ an exploratory tone to our analyses, starting with an exhaustive body of quantitative
analysis before performing deeper qualitative analysis. This later analysis considers implications for quality
violations, and Stack Overflow community’s effort towards ensuring contributors’ awareness of potential code
quality shortcomings. We provide further details on the two forms of analyses (quantitative and qualitative) below.
First, we further contextualise code snippet quality (in Section 3.1), before then considering code quality on Stack
Overflow (in Section 3.2). The latter subsection outlines the techniques that are adapted to answer RQ1–RQ4, while
the former subsection focusses on further defining code quality.

3.1 Code Snippet Quality Criteria
Code quality is difficult to define [35], and as such it is important to define what is meant by code snippet quality in
this study. In reviewing the literature, it is clear that code quality consists of many dimensions [21, 35]. To establish
a set of code quality attributes in assessing software quality, code quality and code snippet quality are considered
both individually and in relation to each other. When trying to define the quality of code snippets, considering
software quality at a higher-level can be important as this topic is more widely defined and understood. In addition,
in considering code snippet quality, it is assumed that these snippets will be copied and pasted into a larger project
(i.e., are a subset of code). Therefore, an analysis of the literature was performed to understand the various
dimensions of code snippet quality. Note also that it is assumed that Stack Overflow code snippets are intended to be
correct (i.e., not purposefully wrong).

First, considering software quality, Jones and Bonsignour [35] look at software quality from an economical
perspective, going on to define seven categories of software quality: technical/structural quality, process quality,
usage quality, service quality, aesthetic quality, standards quality and legal quality. A more specific and acceptable

6

view of software quality is ISO250104, which defines software product quality in terms of eight characteristics –
functional suitability, reliability, performance efficiency, usability, security, compatibility, maintainability and
portability. Similarly, Spinellis [59] and Zou, et al. [71] recommend the six software quality attributes as defined by
the earlier ISO/IEC9126 standard: functionality, reliability, usability, efficiency, maintainability, and portability;
with security included under functionality, and performance efficiency included under efficiency. The future cost of
coding shortcuts and defects released in code (technical debt) is also now considered integral to code quality [19].
All dimensions of code quality are linked to technical debt, including defects that are related to functional suitability,
reliability, performance efficiency, usability, security, compatibility, maintainability and portability [23]. These
defects may lead to costs associated with loss of opportunity, liability and revision effort [31]. In addition, Kottom
[39] defines five metrics that are important for measuring code quality, particularly pertaining to software testing.
These are: code coverage – how much of the code is tested; security – ensuring code mitigates potential
vulnerabilities; performance and efficiency – understanding how long a program takes to perform particular tasks;
style and complexity – having a unified style and commenting to ensure code can be read by other developers; and
finally, Lines of Code (LOC) – in particular, lines of code per ‘something’ to understand the complexity of the
application (e.g., lines of code per bug).

On the basis that many of the quality guidelines do not provide common and direct metrics for measuring code
quality, efforts have also been dedicated to providing practical quality models. For instance, the maintainability
index (MI) was proposed for providing a measure of source code maintainability [50]. The SIG maintainability
model is said to address the shortcomings of the MI by moving beyond the provision of a measure to provide cues
around specific characteristics of maintainability that are deficient in software [28]. The delta maintainability model
(DMM) extends the SIG maintainability model providing maintainability measurements at the commit level [20].
Quamoco is also said to close the quality characteristics and measurement gap [66]. Other attempts at the provision
of concrete solutions include: Squale [47], CAST which attempts to infer technical debt [15], SQALE [42], and
ColumbusQM [8].

With Stack Overflow providing a source of coding help for less knowledgeable developers, it is plausible that
defects in code snippets may propagate when these are reused unknowingly. More knowledgeable developers may
also make trade-off decisions between long-term code quality and short-term gains in delivering rapid releases (e.g.,
due to market pressure or the need to increase productivity), which may lead to the accumulation of technical debt
[23, 30]. That said, while functional suitability, reliability, performance efficiency, usability, security, compatibility,
maintainability and portability factors may be useful for measuring code snippet quality, these factors are aimed at
assessing an entire software project or packaged software, which means they are not entirely relevant to the small
snippets of code on Stack Overflow. In fact, attempting to use this exhaustive list of measures would also not be
realistic (e.g., it would be unfair to measure the maintainability of Stack Overflow code snippets given that code on
this portal often targets a specific user’s question or concern – see example provided in Section 2.2). Given this
reality, it is important to understand Stack Overflow code snippets at a lower level.

Given the evidence in the general works on software quality above, six potential code snippet quality dimensions
were initially considered in this work. These were: reliability, security, maintainability/readability, usability,
compatibility and performance. Readability was chosen over maintainability because maintainability has been
defined by ISO25010 as consisting of modularity, reusability, analysability, modifiability and testability. While these
components are appropriate for measuring software quality more generally, they would be inappropriate for
assessing code snippets. This is because code snippets are assumed to be a subset of code only, and therefore
assessing the maintainability of the snippet code from a perspective of readability is more appropriate. That said,
such artefacts would lend themselves to checks for conformance to programming best practices (or programming
rules). Programming rules are related to reliability, given the potential for all software faults to influence software
failures at a later stage (i.e., if/when programming constructs are confusing and error prone) [58, pp. 298-299].
Summerville notes that reliability deals with system faults or errors, where failure may range in severity, from
crashes to minor errors [58, pp. 296-297]. It was also noted that reliable systems should conform to specification. If
the intent of Stack Overflow contributors writing code snippet is to provide correct solutions, such solutions should
be free of errors and conform to good programming conventions to be considered reliable. Usability was excluded

4 http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

7

because there was overlap with the reliability dimension, while compatibility was removed because it is difficult to
define whether code snippets are compatible with the question asked without performing complex text mining
analysis. Investigations of such scale are outside the scope of this paper. Furthermore, it is not feasible to establish
the specific code standards that were the target or intention of contributors of code snippets, making it unfair to
evaluate compatibility in relation to software versions. This evaluation left the remaining four code quality attributes
(reliability and conformance to programming rules, readability, performance and security) as the dimensions
that are suitable for measuring code snippet quality as described in Table 1. Detailed assessments of these
dimensions are provided in Section 3.2.4.

Table 1. Code snippet quality dimensions

Quality Dimension Description
Reliability and Conformance
to Programming Rules (RQ1)

Code snippets should not be broken, confusing or prone to runtime errors; meaning that they
should be able to compile (given appropriate syntactic adjustments) and contain no bugs or
errors. Code snippets should also conform to generally accepted programming rules. This can be
measured by attempting to compile and run the code snippets, capturing the specific failure or
violation (refer to Section 3.2.4).

Readability (RQ2) Code snippets should follow standard Java readability conventions to ensure code can be easily
understood and maintained in the future. This can be measured by checking if code snippets
meet such conventions and whether they are explained (refer to Section 3.2.4).

Performance (RQ3) Code snippets should consider the performance or efficiency of proposed solutions. For example,
has the code snippet provided an answer to the question in a way that saves processing or
reduces the number of processing steps (refer to Section 3.2.4)?

Security (RQ4) Code snippets should consider security constraints of proposed solutions, so as not to
compromise security. For example, using interpolated strings instead of prepared statements for
database input would be considered a security error (refer to Section 3.2.4).

3.2 Code Quality on Stack Overflow
Not much is known about the quality of code on Stack Overflow, and so, insights into this phenomenon will help to
inform the software development community’s actions around the use of this platform, and also generate hypotheses
for subsequent testing. To provide these contributions we must evaluate code snippets extracted from Stack
Overflow against the definition of code snippet quality, as described in the previous section. Thus, in this subsection
we provide details around how data was extracted from Stack Overflow in Section 3.2.1. In Section 3.2.2 we discuss
the selection of tools to assess the given quality criteria, and how these tools are tested in a pilot study in Section
3.2.3. We then define the final tool analysis process for this study in Section 3.2.4, and explain our qualitative
analysis process in Section 3.2.5.

3.2.1 Data Extraction and Analysis

Data was extracted from Stack Overflow using Stack Overflow’s data explorer5 which allows data to be queried
using standard SQL Statements. Answer posts which contained at least one “<code>” tag and were from a question
tagged with Java were then sampled. This sample has been chosen due to Java’s popularity6. In addition, we know
that Stack Overflow data are generalizable across languages and time [43, 70] and, therefore, we anticipated that our
sample would provide transferable insights relating to Java code on Stack Overflow for the software development
community.

We next needed to appropriately identify relevant code snippets. The “<code>” tags indicate the presence of a code
snippet, as Stack Overflow’s answers are structured in HTML style, with code snippets included between code tags
(i.e., <code> </code>); see Figure 1.b for example. Finally, answers for 2014, 2015 and 2016 were chosen as these
years had the highest number of questions and answers on Stack Overflow, and we have studied and confirmed a
good level of code reuse that is evident by the software engineering community for these snippets [43]. Thus, it was
fitting to now understand how wholesome these snippets are given their frequent reuse. This resulted in our dataset
comprising 117,526 answers (46,103 accepted answers and 71,423 unaccepted answers). We also extracted the other
attributes pertinent to the questions that generated these answers, and our dataset was imported into a Microsoft SQL
Server database.

5 https://data.stackexchange.com/stackoverflow/query/new
6 Based on RedMonk programming language popularity: http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/

https://data.stackexchange.com/stackoverflow/query/new
http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/

8

The Java code was then extracted from the answerBody of the answer post using a small Java program, with each
code snippet between the tags “<code> … </code>” being saved separately. During our exploration of Stack
Overflow code, we observed that there were in-line code snippets (surrounded by <code> tags) and code blocks
(surrounded by <pre><code> tags). Closer checks of these aspects revealed that in-line code snippets were typically
added as part of text answers when contributors needed to provide explanation (refer to “&&” highlighted in Figure
1), while code blocks provided more substantial implementation of specific solutions (refer to Figure 1.b).
Accordingly, we felt that it would be unrealistic and unfair to analyse the quality of in-line code snippets against our
quality dimensions, and thus excluded these from our sample. This resulted in 404,779 code snippets, from the
117,526 answer posts (191,556 snippets from accepted answers and 213,223 snippets from unaccepted answers). A
brief explanation and summary of this data is shown in Appendix A.

Considering this research project’s proposed analysis and the works of Duijn, et al. [21] and Yang, et al. [69], it was
decided that only code snippets with one or more lines of code (i.e., contained a new line character) would be
analysed for quality. In particular, Yang, et al. [69] found that by excluding single word Java code snippets 6.2% of
code snippets were parsable (up from 3.9%). Therefore, it was important to exclude at a minimum, code snippets that
did not contain a new line character such as single word Java code snippets. The snippets were extracted from the
database using a Java application which checked if the code snippets contained ‘import’, ‘package’ or ‘class’, and
then saved the file as is. If these words were not present these files were encased in a public class structure, in line
with Yang, et al. [69], as shown in Figure 2 (i.e., the first code snippet featured in Figure 1). Each of these files were
saved as a .java file with a unique identifier name (e.g., C1234.java represented code snippet number 1234) so that
results could be traced back to each code snippet.

We were cautious not to manipulate the code snippets extensively to risk confounding out results and analysis, thus,
we did not attempt to conduct extensive repairs on code snippets (e.g., importing packages, deleting spaces, adding
“;”, and so on). In fact, our minimal encasing of code snippets resulted in errors, which we have accounted for in our
analysis below. Exploring these outcomes, we anticipated that additional manipulation of code snippets in order to
increase our pool of Stack Overflow code snippets for analyses would have adversely affected the reliability of our
outcomes. However, we plan to perform follow up snippet repair studies. Our processing allowed 151,954 of the
code snippets from 94,279 answers to be used for our analyses (i.e., 37.5% of the code snippets). This sample
comprises 66,389 snippets from accepted answers and 85,565 snippets from unaccepted answers, allowing us to
compare the quality of snippets across these two groups. Attributes included in our dataset are answer identification
number (answerId), question identification number (questionId), answer score (answerScore), answer creation date
(answerCreationDate), answer body (answerBody), question date (questionDate), question score (questionScore),
view count (ViewCount), answer count (AnswerCount), and comment count (CommentCount). We also computed
LOC7, Code Length8, Code Spaces9 and SPA10 to aid our analyses (refer to Appendix A for descriptions of all our
data attributes and summary statistics for our dataset).

We did not include the history of post edits in our quantitative analysis as the Stack Overflow history logs largely
include details unrelated to code (e.g., title history, tags history, owner history, and so on), and these fields were
‘null’ for most posts. That said, our deeper qualitative analysis considers all historical data related to the posts. The
properties of the 151,954 code snippets that were processed for analysis are visualised in Figure 3 (Figure 3.b shown
using a log scale for the x and y axes). Figure 3.a shows that answers in our sample frequently had one or two
snippets. It is also observed in Figure 3.b that the LOC for the parsed and unparsed code snippets exhibit similar
distributions, with the majority of code snippets in each group including between 4 and 60 LOC. This similarity in
distribution observed here (in Figure 3.b) is promising in terms of the extrapolation of our findings to those code
snippets that did not parse due to errors (further details are provided below).

7 Refers to the number of lines of code.
8 Refers to the length of the code snippet in terms of number of characters.
9 Refers to the number of space characters (i.e., ‘ ’) in the code snippet provided as a part of answers.
10 Refers to the number of code snippets per answer associated with each code snippet.

9

3.2.2 Tool Selection

Considering related research, three possible tools were found for analysis of the code snippets in helping to
understand the four attributes of code snippet quality above. These tools are PMD11, Checkstyle12 and FindBugs13,
as they are able to evaluate Java code and have been used to good effect in this regard in previous research [7, 17,
21]. These tools have also been accepted by the software engineering community, and particularly given the growing
momentum of ‘open-source’ static analysis tools due to their accessibility when compared to ‘closed-source’
alternatives [34]. These tools were initially assessed for appropriateness for this study by considering the checks they
perform in relation to the code snippet quality attributes, and understanding how they perform these checks.
Reliability and conformance to programming rules are assessed by both PMD and FindBugs, and in fact both of
these tools are able to detect common programming flaws and bugs. However, PMD requires code snippets to be in
.java files, while FindBugs requires code to be compiled (.class files). Readability is assessed by Checkstyle as it is
used to check that code meets coding standards, such as the Google and Sun14 standards, including aspects such as
the structure and comments of code. There are two main limitations evident in prior work which quantifies
readability by computing a readability score for code (ranging from 0 to 1) [13]. First, the work does not explain
which readability features are missing in the code. Second, only a limited feature set (containing 19 features) is
considered to compute the readability score. In contrast, Checkstyle used in our work considers three times as many
readability features (i.e., 56 checks; refer to Section 3.2.4), and also identifies which of these features are violated by
the code, which addresses the purpose of the work.

Performance is assessed by specific categories of checks in both FindBugs and PMD, which include 29 and 21
checks respectively. Security is assessed by two of FindBugs’s categories of bug checks, which are security and
malicious code vulnerability, including a total of 28 checks. Each tool has its own particular assumptions and
limitations and these are discussed in Section 6.

11 https://pmd.github.io
12 http://checkstyle.sourceforge.net
13 http://findbugs.sourceforge.net/index.html
14 Note that while this is also known as the Oracle style, the standard was last updated by Sun Microsystems in 1999:
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

https://pmd.github.io/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/index.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

10

Figure 1. Example Stack Overflow Answer (a) and Associated HTML Code Tags (b)

Figure 2. Example of code snippet being encased in a public class structure

a. Example Stack Overflow Answer b. Associated HTML Code Tags

11

Figure 3. Frequency of SPA (a) and Frequency of LOC per Snippet (b)

3.2.3 Code Snippet Pilot

To check the appropriateness of PMD, Checkstyle and FindBugs, a pilot study was conducted on 100 code snippets.
Initially, PMD and Checkstyle were used to analyse 100 code snippets as they both required .java files as inputs.
Outcomes show that PMD was able to capture the unparsable files, and list them as errors in the output. These errors
were then used to determine the code snippet files that should be removed for Checkstyle analysis, as Checkstyle
would not execute with unparsable files. This meant that PMD had to be scheduled to execute first in order to find
the unparsable files, so that these could be removed for Checkstyle. This also left a smaller subset of files to be
compiled for FindBugs. We are cognisant that this reflects a limitation of the work, and this issue is considered at
length in Section 6. Of the 100 code snippets that were analysed 35 could be analysed by PMD and Checkstyle, as
they were able to be parsed and constructed into an Abstract Syntax Tree15. Even though these 35 code snippets were
parsable (see Figure 4 for examples of snippets that caused errors), only nine could be compiled and therefore
analysed by FindBugs. The result output of FindBugs includes summary information about the bugs found in
individual files as well as the details of each individual bug found. From this process, we noticed that files which had
not been edited (i.e., contained ‘import’, ‘class’ or ‘package’) could not be compiled due to the class name and file
name (which was saved as a unique identifier) being different. Therefore, to overcome this issue in recovering as
many files as possible for analysis “public class” was replaced with “class” in these files in an attempt to bypass this
rule. Other reasons for parsing and compilation errors included missing brackets, quote marks, packages and import
statements. There were also instances of unexpected return values (for methods with a void return type) and the
absence of a main class. As noted above, we were very cautious not to manipulate the code snippets to risk
confounding out results and analysis, and so we decided against trying to repair the snippets to increase our code
pool. However, on examining some of the files that were not parsable, we observe that indeed the content therein
was not useful programming code, instead at times some snippets included pseudo code or documentation as a way
of explaining coding concepts (refer to Figure 4). Accordingly, employing heuristics to fix such code snippets would
not be a trivial exercise.

In ensuring reliability of the outcomes, the first two authors informally checked the generated output for 100 random
errors (50 for each author) that were returned by the PMD, Checkstyle and FindBugs tools against the actual code
snippets from where the violations were derived (e.g., several ‘Coupling’ errors were returned by PMD). These
checks showed that the 100 errors were all traceable in the actual code snippets. We were thus satisfied that the tools
were suitable for our planned analyses. We performed the full quantitative analysis (via the PMD, Checkstyle and
FindBugs tools), then the second and third authors performed two rounds of formal reliability checks involving

15 https://www.techopedia.com/definition/22431/abstract-syntax-tree-ast

https://www.techopedia.com/definition/22431/abstract-syntax-tree-ast

12

deeper qualitative analysis (refer to Section 3.2.5).

Figure 4. Examples of snippets that caused parsing errors

3.2.4 Final Tool Analysis Process

Given the results of the 100 code snippet pilot study, a final processing pipeline was determined as shown in Figure
5. The 151,954 code snippets extracted from the database were first analysed by PMD to determine the number of
parsable files, so these could be removed before Checkstyle could be executed. This subset of files were then
compiled, for the FindBugs tool to analyse. For each of these tools, the frequency of broken checks or bugs found, in
addition to the types of checks/bugs found, were analysed. Outputs of all tools are available in XML format; an
example of each output is shown in Appendix C. A detailed explanation of how each quality dimension is assessed is
provided below, while a summary of the tools used and the code quality dimensions assessed by these tools are
shown in Table 2.

Figure 5. Process for code snippet analysis

Reliability and Conformance to Programming Rules (RQ1): Code snippets should not be broken, confusing or
prone to runtime errors; meaning that they should be able to compile (given appropriate syntactic adjustments) and
contain no bugs or errors. Code snippets should also conform to generally accepted programming rules. This was
assessed by conducting checks using PMD, to determine the number of checks that have not been met (i.e., checks
that are violated). The checks that were chosen to be assessed initially included all PMD categories of checks;
however, summary and subjective checks were excluded as they do not assess reliability and conformance to
programming rules (e.g., ‘controversial’ and ‘code size’ categories). These checks were clearly identified by the tool,
where the first two authors assessed their relevance to code reliability and conformance to programming rules and
agreed that they were not relevant (multiple rounds of formal reliability checks were subsequently conducted, refer
to Section 3.2.5). This totals 10 context categories, with a total of 82 individual reliability checks and 138 individual
conformance to programming rules checks, as listed in Appendix D.1. Each of the context categories was added to
an XML file as required for input for the tool. In addition to understanding the number of checks violated per code
snippet, and the categories of violations, the priorities of violations can be assessed from one (highest priority –
‘change absolutely required’) to four (lowest priority – ‘change optional’). For transparency, rigour and
completeness, we report on all violations that were detected, before closely examining those violations that are
relevant to code snippets, and then providing further outcomes for deeper qualitative analysis. This pattern of
reporting is provided for all four categories of violations (i.e., code reliability and conformance to programming
rules, readability, performance and security).

13

Table 2. Tools used to assess code snippet quality attributes

Quality Attribute How it is assessed (tool) Number of checks
Reliability and Conformance to
Programming Rules

PMD 220

Readability Checkstyle – Google checks 56
Performance FindBugs (performance category) 29
Security FindBugs (security and malicious code vulnerability categories) 28

Readability (RQ2): Code snippets should follow standard Java readability conventions to ensure code can be easily
understood and maintained in the future. This was assessed by using Checkstyle to check against Google’s Java style
conventions, to see how many of these conventions are not met by Stack Overflow code snippets. Google’s Java
style was chosen over the Sun’s Java style due to its detailed guide16, and Checkstyle’s coverage of the standard17
was adapted. It is also assumed that these styles largely duplicate each other, and thus, by conforming to Sun’s Java
style, contributors to Stack Overflow will also largely satisfy Google’s Java style (and vice versa). In addition,
Checkstyle supplies the relevant input file google_checks.xml18, which assesses the structure of the files in line with
the Google Java style. This file also details the 56 checks that are assessed (see D.2 in Appendix D).

Performance (RQ3): Code snippets should consider the performance or efficiency of proposed solutions. This was
assessed by using the FindBugs tool, and assessing the performance category of bugs, to see how many have been
found, totalling 29 bug checks. These are detailed in Appendix D (see D.3). By default, FindBugs searches for all
bugs, so performance results are extracted from this larger dataset. Results are assessed in relation to the number of
violations per code snippet and the types (categories) of bug violations found.

Security (RQ4): Code snippets should consider security constraints of proposed solutions, so as not to compromise
security. This was assessed by using the FindBugs tool, and assessing the security and malicious code vulnerability
categories of bugs, to see how many have been found, totalling 28 checks, as detailed in Appendix D (see D.4). As
performance and security are assessed by the same tool, FindBugs, they are processed and analysed in the same way.

While wrapping the code snippet in a class declaration was necessary for analysing some of the code snippets, as
noted above, this caused nine types of reliability and conformance to programming rules and readability errors
identified by the tools described in Section 3.2.2 (see Table 3). In Table 3, the IndentationCheck errors occurred
because the class wrapper was added without indenting the original code. The WhitespaceAroundCheck errors
occurred because the class declaration wrapper did not include a space between the <codeIdentifier> and the open
curly bracket (refer to Figure 2). The CloneMethodReturnTypeMustMatchClassName and ProperLogger errors
occurred because the class name was the code snippet unique identifier rather than a name used within the snippet.
The code snippets that already included class declarations were saved in Java files named after the code snippet
unique identifier. This caused an OuterTypeFilenameCheck error as the file name did not match the class name. The
rest of the errors were caused by the omission of a keyword in the class declaration. Table 3 shows that altogether,
nine types of violations were caused by our data pre-processing, with these varying between 0.93%
(CommentsIndentationCheck) and 100% (OuterTypeFilenameCheck) of the total number of errors of those types that
were found in the Stack Overflow code snippets.

Note that not all incidences of the nine types of errors in Table 3 were caused by our pre-processing steps. This detail
is provided in Table 3 (in the ‘% of Total Number of Violations’ column). It is noted in Table 3 that only the
‘OuterTypeFilenameCheck’ errors were entirely caused by our pre-processing steps (see the ‘100%’ entered in the
‘% of Total Number of Violations’ column). Some of the code snippets that were not manipulated by us reported
many incidences of the other eight types of errors when they were analysed. For instance, the
‘ClassWithOnlyPrivateConstructorsShouldBeFinal’ errors were largely evident in other Stack Overflow snippets that
were not manipulated (i.e., only 16.33% of this type of error were caused by our pre-processing steps). Examples of
the errors caused by the class declaration wrapper and Java file names are shown in Appendix B. The specific errors
that were caused by our pre-processing steps were all removed prior to subsequent analysis and reporting of the
outcomes, which are provided in Sections 4.1.1, 4.2.1, 4.3.1 and 4.4.1.

16 https://google.github.io/styleguide/javaguide.html
17 http://checkstyle.sourceforge.net/google_style.html
18 https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

https://google.github.io/styleguide/javaguide.html
http://checkstyle.sourceforge.net/google_style.html
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

14

Table 3. Errors caused by class declaration and Java file names (pre-processing steps)

Violation Name Quality Dimension Tool Cause of Violation Number of
Violations

% of Total
Number of
Violations

ClassWithOnlyPriv
ateConstructorsSho
uldBeFinal

Reliability and
Conformance to
Programming Rules

PMD A class with private constructors is
not ‘final’.

32 16.33

CloneMethodMustI
mplementCloneable

Reliability and
Conformance to
Programming Rules

PMD The ‘clone’ method is implemented
by a class that does not implement
the ‘Cloneable’ interface.

7 36.84

CloneMethodReturn
TypeMustMatchCla
ssName

Reliability and
Conformance to
Programming Rules

PMD The return type of the ‘clone’
method does not match the class
name.

7 38.89

ProperLogger Reliability and
Conformance to
Programming Rules

PMD A logger is not associated with the
correct class name.

2 25.00

UseUtilityClass Reliability and
Conformance to
Programming Rules

PMD A class only has static methods but
is not a utility/abstract class.

5775 53.91

CommentsIndentati
onCheck

Readability Checkstyle A comment is incorrectly indented. 15 0.93

IndentationCheck Readability Checkstyle A line of code is incorrectly
indented.

63026 15.68

OuterTypeFilename
Check

Readability Checkstyle The class name does not match the
file name.

14396 100.00

WhitespaceAround
Check

Readability Checkstyle The open curly bracket associated
with the class declaration is not
surrounded by whitespace.

34710 29.82

3.2.5 Qualitative Analysis

While the PMD, Checkstyle and FindBugs tools allowed us to conduct an exhaustive body of quantitative analysis, it
was necessary to perform deeper qualitative analysis to triangulate these outcomes, thus making our insights more
meaningful to the software engineering community. This later analysis was largely intended to reliably assess code
snippets and consider implications for quality violations and Stack Overflow community’s effort towards ensuring
contributors’ awareness of potential code quality shortcomings. We performed two phases of qualitative analyses, as
detailed below.

Violations Analysis (phase 1): We checked all types of violations returned by the tools for their relevance to code
snippets. Since code snippets on Stack Overflow are embedded in answers that provide context for their use, it was
necessary to determine the violations that would be fairly attributed to code snippets. We explored all types of
violations that were returned by the tools (reliability and conformance to programming rules=191, readability=50,
performance=25 and security=14), identified irrelevant violations and removed them from our analysis. The
following violation characteristics were considered as not being relevant to code snippets:

• Violations relating to the lack of particular types of content in the code snippet, which do not prevent a
program from running (e.g. comments, Javadoc tags).

• Violations relating to Java file names (as a code snippet is not directly associated with a Java file).
• Violations relating to the inclusion of code that would not cause a runtime error if removed.

Table 4 provides a summary of the violations that were deemed irrelevant to code snippets. In arriving at the
decision to tag the three violations characteristics above as irrelevant, each violation (of the total 280 violations) was
selected by the second and third authors and discussed, with arguments put forward for ‘inclusion/exclusion’ and
debated in a ‘first round’ of evaluation (using a bottom up process). If there was agreement between the authors the
violation was flagged true, or false otherwise. Violations which attracted a false flag were discussed in a second
round of evaluations, where final agreement was recorded (true or false). We used these outcomes to compute inter-
rater agreement as measured using Holsti’s coefficient of reliability measurement (C.R.) [29], which revealed a
96.7% agreement initially (first round) and then 100% subsequently (second round). This represents excellent
agreement between evaluators, suggesting that a consistent and reliable approach was taken. The violations that were
included as relevant to code snippets are reported in Sections 4.1.2, 4.2.2, 4.3.2 and 4.4.2.

15

Table 4. Violations (errors) that were deemed irrelevant to code snippets
Violation Name Quality Dimension Tool Cause of Error Number of

Errors
UncommentedEmptyCon
structor

Reliability and
Conformance to
Programming Rules

PMD An empty constructor is not associated
with a comment.

468

UncommentedEmptyMet
hodBody

Reliability and
Conformance to
Programming Rules

PMD An empty method is not associated with a
comment.

1061

UnusedPrivateField Reliability and
Conformance to
Programming Rules

PMD A private field is declared but not used. 3727

UnusedPrivateMethod Reliability and
Conformance to
Programming Rules

PMD A private method is declared but not
used.

1676

UnusedImports Reliability and
Conformance to
Programming Rules

PMD An import statement is included in the
code but not used.

1274

JavadocMethodCheck Readability Checkstyle A method is missing a Javadoc comment. 19595
OneTopLevelClassCheck Readability Checkstyle Each top-level ‘class’, ‘interface’ or

‘enum’ should be in its own source file.
1724

Upm_Uncalled_Private
Method

Performance FindBugs A private method is declared but not
used.

272

Urf_Unread_Field Performance FindBugs A field is assigned a value but not read. 2508
Uuf_Unused_Field Performance FindBugs A field is declared but not used/assigned a

value.
607

Snippet Analysis (phase 2): We conducted a second round of deeper qualitative analysis at the snippet level. We used
purposive sampling, a common approach used in qualitative studies [45] to select a sample based on a specific purpose
or strategy. In our work, the strategy was to select at least one code snippet for each specific type of violation within
all the four broader categories of violations (see all the different types of violations in Appendix D). Purposive
sampling thus enabled manual scrutiny and evaluation of all types of violations, in so doing, accommodating
heterogeneous violation types (i.e., our work employs heterogeneity sampling a specific sub-type of purposive
sampling [63]). Note that purposive sampling is the most common type of sampling technique used in the software
engineering community (out of 10 sampling techniques), with 61% of the studies (145 out of 236) employing this
technique [4]. Our analysis included 60 code snippets that returned violations for each of the four code quality
categories (i.e., reliability and conformance to programming rules, readability, performance and security), thus a total
of 240 snippets were considered. The number 60 is chosen for each category in our study because it accommodates
for the largest number of specific types of violations in the four categories rounded to the nearest ten (i.e., the
readability category has 56 different types of violations, and this number 56 is rounded to 60). Note that the sample
size considered is not only representative of the different types of violations (as indicated above), but also compares
with what is considered in the domain of code snippet analysis (e.g., 100 snippets were studied in Baltes, et al. [9],
136 in Campos, et al. [14], and 200 in Duijn, et al. [21]).

To conduct the analysis, the second and third authors first jointly determined the number of instances for each
violation in order to sample at least one code snippet for each error and sample code snippets proportional to the
number of instances of an error. Once samples were extracted (60 each), code snippets were studied. We determined
the line numbers associated with the error as identified by the tool and then confirmed that the violation was not a
false positive. We subsequently studied all of the Stack Overflow artefacts that were related to that code snippet
(question, answers, comments, histories, and so on). Here, tracing from the question, we explored all the contextual
information that was provided by contributors to determine whether there was evidence that the context of the code
snippet would prevent the error from propagating to developers’ code if the snippet was reused. For instance, we
studied the ‘text/answer’ around the code snippet that described whether the code was taken from the question code
that should be changed, whether the code should be added to the question code or whether the code is meant to
explain a programming concept or method (i.e., not intended for a specific program). We also explored the potential
that the answer may directly discuss the error featured in the sampled snippet and its implications. To support this
evaluation, we studied the ‘comments/responses’ and ‘histories’ (including code edits) to ascertain the presence of a
solution to the error or awareness that the error exists among the Stack Overflow community members. If the context
around a code snippet makes it clear that the error is unlikely to propagate if the code was reused, we recorded this

16

information. We next studied the possible implications of the error not being fixed based on Java programming
guidelines19. In ensuring a reliable inductive process, the second and third authors jointly developed the process and
worked through one snippet for each category of violation (i.e., reliability and conformance to programming rules,
readability, performance and security) in ensuring the process was rigorous. The third author then analysed 240
Stack Overflow code snippets independently (60 for each category of violation), before the second author performed
a counter analysis of 100 of these snippets (25 for each category of violation). Differences in viewpoints were
recorded by the second author, before formal discussions ensued for each difference noted. Overall, there were seven
differences observed initially (93% agreement); however, these were all resolved on consensus (resulting in 100%
agreement) [29]. Outcomes from these deeper analysis are reported in Sections 4.1.3, 4.2.3, 4.3.3 and 4.4.3.

4. RESULTS
In Figure 6, we visualise the general patterns of outcomes for violations that were found by the PMD, Checkstyle
and FindBugs tools (excluding those violations that were introduced (during pre-processing) by the class declaration
wrapper or code snippet unique identifier file name). As seen in Figure 3, the results in Figure 6 show that the code
snippets that produce errors and the code snippets that do not produce errors have somewhat similar properties (refer
to Figure 6.a). The majority of the code snippets that do not produce reliability and conformance to programming
rules errors consist of between four and 10 LOC, and the majority of code snippets that do produce reliability and
conformance to programming rules errors consist of greater than four LOC (refer to Figure 6.a). The pattern of
outcomes is also convergent for performance violations, where the majority of the code snippets that do not produce
performance errors and those that do produce performance errors consist of greater than four LOC. The majority of
both the code snippets that do not produce errors and code snippets that produce errors consist of greater than four
LOC for readability and security errors. Figure 6.b also shows that longer code snippets are more likely to produce
errors and a larger number of errors, particularly for reliability and conformance to programming rules and
readability errors.

19 https://checkstyle.sourceforge.io/apidocs/, https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html,
http://findbugs.sourceforge.net/bugDescriptions.html

a. Frequency of LOC per Snippet

https://checkstyle.sourceforge.io/apidocs/
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
http://findbugs.sourceforge.net/bugDescriptions.html

17

Figure 6. Frequency of LOC per snippet (a) and Mean number of violations for LOC per snippet (b)

In order to answer the research questions, RQ1–RQ4, the results are divided into four subsections, Sections 4.1 to
4.4. For these research questions and code snippet quality dimensions, both an understanding of how often the
checks were broken (or number of violations found) and the types of checks/violations found are presented. We also
report on outcomes for the snippet relevant violations and qualitative analysis. Section 4.5 then provides a summary
of these results, including additional correlational evaluations between the quality dimensions and a range of code
snippet variables, in line with our exploratory stance. We thereby look to evaluate other potential attributes that may
impact the pattern of results observed in Sections 4.1 to 4.4, as another form of triangulation.

Analysing the initial 151,954 code snippets, 50,717 were analysed for reliability and conformance to programming
rules using PMD, but only 50,472 were assessed for readability using Checkstyle due to errors (i.e., related to UTF-8
parsing issues). A further 8,010 code snippets were assessed for performance and security using FindBugs. This
pipeline is summarised in Figure 5, which also depicts the number of unparsable and uncompilable files that were
encountered. A summary of these results is shown in Table 5, considering the number of violations per code snippet.
We also provide examples of code violations throughout the qualitative results in Sections 4.1.3, 4.2.3, 4.3.3 and
4.4.3. Finally, the correlation of variables was assessed for each quality dimension using Spearman’s rank correlation
(rho) given that the distributions violated the normality assumption. Our code snippet dataset is available for follow
up analysis here: https://tinyurl.com/uv8jtfq. Please include the full citation to this study if you reuse this dataset.

4.1 Reliability and Conformance to Programming Rules (RQ1)
4.1.1 All Reliability and Conformance to Programming Rules Violations

As noted in Section 3, from the 151,954 included code snippets, 50,717 (33.38%) were parsable and could be
analysed by the PMD tool. This left 101,237 code snippets which the tool was unable to parse due to an “error while
parsing” or “error while processing”. We are aware that this represents a limitation of the study, and have addressed
this issue at length in Section 6. The parsable code snippets were analysed and resulted in 244,266 violations from
36,810 (72.58%) code snippets. On average, there were 4.82 violations per code snippet, with the minimum number
of violations per code snippet being zero, and the maximum number being 269. The code snippet associated with
269 violations has LOC=597. The answer containing the snippet (for Question ID 26843289) is rated poorly by
Stack Overflow users, having a score of only 0. Figure 7.a shows that the majority of the code snippets contain a
small number of violations, while a small number of code snippets contain a large number of violations. Figure 7.b
shows the same data grouped into bins of five to provide a more compressed visual representation of the data. This
shows that 62.81% (23,121) of snippets with violations had between one and five violations, 19.99% (7359) had
between six and 10 violations, 8.11% (2987) had between 11 and 15 violations, 3.72% (1370) had between 16 and
20 violations, and only 5.36% (1,973) had more than 20 violations. Categorised by priority in Figure 8, 1.22%
(285/23,316) of reliability violations had the highest priority of violation, 0.60% (139) were priority two, the
majority of violations (98.16%, or 22,886) were priority three and 0.03% (6) were priority four. For conformance to
programming rules violations, 0.29% (638/220,950) had the highest priority of violation, 9.98% (22,058) were
priority two, the majority of violations (87.29%, or 192,858) were priority three and 2.44% (5396) were priority four

b. Mean Number of Violations for LOC per Snippet

https://tinyurl.com/uv8jtfq

18

(refer to Figure 8). Table 6 displays the number of violations as categorised by violation category from PMD. Here it
is shown that the code style category represents the majority of violations with 109,553, followed by design with
57,083 violations, best practices with 42,717 violations and reliability with 23,316 violations. Table 6 reveals that
the least prominent violations belonged to the Jakarta Commons logging category (with only 39 violations). These
violations varied across priorities; however, on balance the most common categories are primarily associated with
priority three violations. We next examine those violations with particular relevance to code snippets in detail.

Table 5. Summary of violations per code snippet for the four quality attributes

Number of Violations Reliability and
Conformance to
Programming Rules

Readability Performance Security

Minimum 0 0 0 0
Lower Quartile 0 0 0 0
Median 2 3 0 0
Average 4.82 10.51 0.49 0.01
Upper Quartile 6 12 1 0
Maximum 269 667 18 4
No. of Code Snippets analysed 50717 50472 8010 8010

Figure 7. Number of reliability and conformance to programming rules violations per snippet (a) and Number of

reliability and conformance to programming rules violations grouped (b)

4.1.2 Snippet Relevant Violations

Of the 186 reliability and conformance to programming rules violations considered to be relevant to code snippets,
the 20% most relevant violations (38 violations) for code snippets were determined. As the PMD tool assigns a
priority to each violation, the violation types were ranked in order of priority (starting with the highest priority
violations) followed by number of violations (see Table 7). The most relevant violation was

19

AvoidThrowingRawExceptionTypes, which is associated with a high priority because using a raw exception type can
make the cause of an error unclear and, therefore, lead to debugging difficulties. Also, the violation is equally
relevant to both code snippets and Java files because throwing an exception is often required and managing errors is
an important part of the functionality of a program. That said, this violation was not observed to be very frequent in
Stack Overflow code snippets (261 times or 0.12%). Other relevant reliability and conformance to programming
rules violations sorted by priority (criticality) are provided in Table 7, which shows various incidences, with some
being particularly prominent (e.g., MethodArgumentCouldBeFinal, LocalVariableCouldBeFinal, LawOfDemeter and
SystemPrintln). The least relevant violation included in the top 20% of violations was
AvoidInstantiatingObjectsInLoops because although it is associated with a large number of violations (1,959),
performing a computationally expensive operation is considered to be of lower priority.

Figure 8. Priority of reliability and conformance to programming rules violations

Table 6. Number of reliability and conformance to programming rules violations per category

Rules violated by category Priority Number of Violations Percentage of Violations
Code Style 1,3,4 109553 44.85%
Design 1,3 57083 23.37%
Best Practices 2,3,4 42717 17.49%
Reliability 1,2,3,4 23316 9.55%
Performance 2,3 6620 2.71%
Multithreading 1,3,4 3274 1.34%
Documentation 3 1529 0.63%
Additional rulesets 3 83 0.03%
Java Logging 2 52 0.02%
Jakarta Commons Logging 3 39 0.02%
Total 244266

Table 7. Reliability and conformance to programming rules violations most relevant to code snippets
Rule Violated Priority Number of

Violations
Percentage of
Violations

Rule Violated Priority Number of
Violations

Percentage of
Violations

AvoidThrowingRaw
ExceptionTypes

1 291 0.12 SingletonClass
ReturningNew
Instance*

2 12 < 0.01

ConstructorCalls
OverridableMethod*

1 248 0.10 AvoidLosing
Exception
Information*

2 7 < 0.01

ClassWithOnlyPrivate
ConstructorsShould

1 163 0.07 SingleMethod
Singleton*

2 6 < 0.01

20

BeFinal
EmptyMethodIn
AbstractClassShould
BeAbstract

1 84 0.03 MoreThanOne
Logger*

2 4 < 0.01

AbstractClassWithout
AnyMethod

1 52 0.02 Short
Instantiation

2 4 < 0.01

AvoidThrowingNull
PointerException

1 47 0.02 ProperClone
Implementation*

2 4 < 0.01

ReturnEmptyArray
RatherThanNull*

1 37 0.02 BrokenNull
Check*

2 1 < 0.01

DoubleChecked
Locking

1 1 < 0.01 Byte
Instantiation

2 1 < 0.01

SystemPrintln 2 20068 8.22 MethodArgument
CouldBeFinal

3 53930 22.08

AvoidReassigning
Parameters

2 1301 0.53 LocalVariable
CouldBeFinal

3 49194 20.14

IntegerInstantiation 2 271 0.11 LawOfDemeter 3 42505 17.40
StringInstantiation 2 193 0.08 BeanMembers

ShouldSerialize*
3 17913 7.33

GuardLogStatement 2 127 0.05 UseUtilityClass 3 4938 2.02
GuardLogStatement
JavaUtil

2 52 0.02 ImmutableField 3 3910 1.60

LoggerIsNotStatic
Final*

2 47 0.02 AccessorMethod
Generation

3 3026 1.24

AvoidBranchingState
mentAsLastInLoop*

2 43 0.02 DoNotUse
Threads

3 2785 1.14

BooleanInstantiation 2 24 0.01 UnusedLocal
Variable

3 2315 0.95

LongInstantiation 2 17 0.01 AvoidPrint
StackTrace

3 2102 0.86

AvoidMultipleUnary
Operators*

2 15 0.01 Avoid
Instantiating
ObjectsInLoops

3 1959 0.80

*Reliability violations

4.1.3 Qualitative Analysis

As noted in Section 3.2.5, we sampled 60 code snippets that returned reliability and conformance to programming
rules violations for deeper qualitative analysis. With a goal to shed more light on the severity and seriousness (or
lack thereof) of these violations, we sampled 30 snippets from the priority one category (highest priority – ‘change
absolutely required’) and 30 from the priority four category (lowest priority – ‘change optional’) for analysis. We
sampled all categories of violations for these two priorities, exploring the rule that was violated, the implication for
breaking the rule (for code reuse) and context that is provided around the snippets (e.g., in question, answers,
comments) which may lead to fixing the violation or an awareness that it exists.

Table 8 provides a summary of our outcomes for the 30 priority one violations. Here it is shown that eight different
violations were evident in the code snippets, with some awareness among the community for three types of
violations or 37.5% (AbstractClassWithoutAnyMethod, DoubleCheckedLocking, EmptyMethodInAbstractClass-
ShouldBeAbstract). This evidence is promising as the violations point to the Stack Overflow community’s awareness
of coding standards related to proper inheritance behaviour of classes, the performance of objects and appropriate
use of classes. For example, the ‘singletonInstance’ object should be ‘volatile’ or a nested static class could be used
to implement lazy initialisation. While the code snippet in Figure 9.a (‘SingletonClass’ class, Question ID 23721115)
and accompanying text do not make reference to ‘double-checked locking’, the issues associated with this snippet
are made clear by the comments and rating (-1) that were generated by the answer. All of the comments state that the
‘singletonInstance’ object needs to be volatile. If the question author or a developer copied the code snippet for
reuse, they are likely to edit the snippet based on the comments that were provided.

Less awareness was observed for five other types (62.5%) of violations in Table 8
(AvoidThrowingNullPointerException, AvoidThrowingRawExceptionTypes, ClassWithOnlyPrivateConstructors-
ShouldBeFinal, ConstructorCallsOverridableMethod, ReturnEmptyArrayRatherThanNull). These code reliability
and conformance to programming rules violations relate to proper error handling (and especially for helping with
debugging), inconsistency in class design and usage and handling of nulls and potential exceptions. Throwing

21

‘NullPointerExceptions’ could be fixed by including an error message which is recognisable as a programmer-
initiated exception, thus making the cause of the error clear. A class that is not ‘final’ (i.e., can be extended) and has
only ‘private constructors’ (invocation can only occur inside the class) may lead to subclasses being created when it
is assumed that this is not the case (by others), leading to potential security challenges. A constructor calling an
‘overridable method’ may cause it to be invoked on an object which has not been entirely constructed, leading to
debugging difficulties. Returning a ‘null reference’ may cause an unexpected ‘NullPointerException’, and such
references require null checks making code complicated and unreadable. An example of this lack of awareness (or
oversight) by the Stack Overflow community is seen for Question ID 27386421 (refer to Figure 9.b). The author
included ‘//etc’ as a comment in the code block, which makes it clear that more conditional statements need to be
used in order to return ‘neighbours’. However, if all of the required conditional statements are not used, the
“getNeighbor” method may return a null reference. There is no evidence in any of the artefacts for this question (ID
27386421) to suggest that members of the Stack Overflow community observed this violation.

Figure 9. Answer associated with Question ID 23721115 (a) and Code snippet associated with

Question ID 27386421 (b)

We observed a similar mixed pattern of outcomes for the 30 code snippets with less serious priority one reliability
and conformance to programming rules violations (lowest priority – ‘change optional’). Of 10 different types of
violations, evidence showed that there was context provided around the snippets (e.g., in question, answers,
comments) which may lead to fixing four types of violations (40%) or an awareness that these exist (e.g., for
ExtendsObject and DontCallThreadRun). On the other hand, there was no such evidence for six types (60%) of
violations (e.g., UselessParentheses and DuplicateImports). While these violations may not be assessed seriously,
they could make code expressions hard to read and increase the size of code and the chance of unwanted
dependencies when a package is no longer being used. It would thus be prudent for the Stack Overflow community
to guard against them.

Table 8. Qualitative analysis for priority one (highest priority) reliability and conformance to programming rules
violations

Rule Implications of Breaking Rule Question IDs Context
Would Fix
Error (%)

AbstractClassWithout
AnyMethod

An abstract class designed to only store data fields may be
inappropriately instantiated.

22486484, 22431364 100

AvoidThrowingNull
PointerException

The use of NullPointerExceptions may cause confusion if it is
assumed that an error has been thrown by the virtual machine
rather than due to an error in the code.

24458961, 27019889 0

AvoidThrowingRaw
ExceptionTypes

By throwing a ‘RuntimeException’, ‘Throwable’, ‘Exception’ or
‘Error’, the cause of the error might be unclear.

21117967, 24694493,
26122332, 23198269,
23291448, 25600796,
24393070, 25474907

0

ClassWithOnlyPrivate
ConstructorsShould
BeFinal

A class that is not ‘final’ and has only private constructors may
cause confusion and security breaches.

20940715, 25646266,
22196185, 26044625,
22436954

0

a. Answer Associated with Question ID 23721115 b. Code Snippet Associated with Question ID 27386421

22

ConstructorCalls
OverridableMethod*

A constructor calling an overridable method may cause it to be
invoked on an object which has not been entirely constructed or
cause debugging challenges.

25467866, 22443386,
26145664, 21142696,
21128671, 26028341,
23943042

0

DoubleChecked
Locking

Double-checked locking improves the performance of accessing
objects, but it can provide debugging challenges.

23721115 100

EmptyMethodIn
AbstractClassShould
BeAbstract

A non-‘abstract’ empty method inside an ‘abstract’ class may allow
the class to be used by developers inappropriately.

21198215, 26662116,
23128335

33.33

ReturnEmptyArray
RatherThanNull*

Returning a null reference may cause an unexpected
‘NullPointerException’, which makes the code more complicated.

27386421, 23568386 0

*Reliability violations

4.2 Readability (RQ2)
4.2.1 All Readability Violations

Of the 50,717 parsable code snippets coming out of the pipeline in the previous section, 50,472 codes snippets could
be analysed by Checkstyle to evaluate readability. As noted above, this reduced number is due to UTF-8 characters
being unsupported by Checkstyle. This resulted in 530,521 violations for 50,472 code snippets. Figure 10.a shows
the same trend in the number of readability violations and frequency of snippets as for the number of reliability and
conformance to programming rules violations and frequency of snippets (see Figure 7.a). However, there are more
snippets with a larger number of readability violations than those for reliability and conformance to programming
rules violations. Grouped into bins of five, as shown in Figure 10.b, 44.41% (16,604) of code snippets with
violations contained between one and five violations, 18.18% (6,797) contain between six and 10 violations, 10.68%
(3,995) contain between 11 and 15 violations, 6.79% (2,538) contain between 16 and 20 violations, and 19.94%
(7,457) contain more than 20 violations. On average, there were 10.51 violations per code snippet, with the
minimum number of violations per code snippet being zero and the maximum number of violations being 667. Table
9 shows that the most common category of violation was Indentation with 340,499 (64.18%) violations, followed by
Whitespace with 104,220 (19.64%) violations, Blocks with 29,266 (5.52%) violations and Javadoc with 21,186
(3.99%) violations. Others were less frequent in Table 9 (Naming=15,147, Sizes=7,798, Imports=4,384,
Coding=3,452, Other=2,272, Design=1,724, Modifier=504 and Annotation=69). We next drill down further into the
snippet relevant violations.

23

Figure 10. Number of readability violations per snippet (a) and Number of readability violations grouped (b)

Table 9. Number of readability violations grouped by violation category

Rules violated by category Number of Violations Percentage of Violations
Indentation 340499 64.18%
Whitespace 104220 19.64%
Blocks 29266 5.52%
Javadoc 21186 3.99%
Naming 15147 2.86%
Sizes 7798 1.47%
Imports 4384 0.83%
Coding 3452 0.65%
Other 2272 0.43%
Design 1724 0.32%
Modifier 504 0.10%
Annotation 69 0.01%
Total 530521

4.2.2 Snippet Relevant Violations

Of the 48 readability violations considered to be relevant to code snippets, the 20% most relevant violations (10
violations) for code snippets were determined. As the Checkstyle tool does not assign a priority to each violation, the
violation types were ranked based on a combination of perceived relevance, importance of violation and number of
violations (see Table 10). As with the reliability check to decide on the relevance of the violation to code snippets in
Section 3.2.5, authors two and three examined these checks agreeing on their relevance over the others. The most
relevant violation selected was LeftCurlyCheck, which is a frequent violation (18051 violations) that provides
inconsistency with Java coding standards. Other violations in Table 10 occurred less frequently; however, these were
still common (e.g., NeedBracesCheck, RightCurlyCheck and AvoidStarImportCheck). The least relevant violation
included in the top 20% of readability violations was UpperEllCheck because, although the lowercase letter ‘l’ can

24

be confused with the number 1, this problem is relatively infrequent (64 violations) and may not be severely
troublesome to developers. We review all of these violations with deeper qualitative analysis in the next subsection.

Table 10. Readability violations most relevant to code snippets
Rule Violated Number of Violations Percentage of Violations
LeftCurlyCheck 18051 3.40
NeedBracesCheck 6519 1.23
RightCurlyCheck 4082 0.77
AvoidStarImportCheck 2252 0.42
ArrayTypeStyleCheck 2131 0.40
VariableDeclarationUsageDistanceCheck 1218 0.23
ModifierOrderCheck 504 0.10
MissingSwitchDefaultCheck 278 0.05
AvoidEscapedUnicodeCharactersCheck 77 0.01
UpperEllCheck 64 0.01

4.2.3 Qualitative Analysis

As in Section 4.1.3, we sampled 60 snippets covering all types of readability violation for our qualitative analysis.
This sample covered 50 different violations of those 56 in the list for Appendix D.2 (one violation was removed as it
was caused by our pre-processing steps and five were not detected in the code snippets). Of the 50 violations, there
was no context provided around the snippets (e.g., in question, answers, comments) which may lead to fixing 44
types of violations (88%) or an awareness that these exist (refer to Table 11). The opposite was observed for the
remaining six or 12% (EmptyBlockCheck, RightCurlyCheck, FallThroughCheck, NoFinalizerCheck, UpperEllCheck,
OperatorWrapCheck).

The use of a statement with an empty code block (EmptyBlockCheck) provides confusion about the purpose or
importance of the block. On the other hand, the use of an incorrect right bracket (RightCurlyCheck) may make the
end of a code block (e.g., method, class) less obvious, causing important code to be left out of the block. For a
‘switch’ statement, a ‘case’ block that does not end with a ‘break’ statement (FallThroughCheck) is likely to cause
confusion about the process flow associated with the code as well as incorrect execution of code statements for a
particular state/condition. A ‘finalize’ method (NoFinalizerCheck) may exhibit unpredictable behaviour, which may
cause problems in terms of debugging/testing, performance and portability. The use of a lowercase ‘l’
(UpperEllCheck) may cause confusion about the type of a data structure and, therefore, the possible operations
associated with it. Finally, while incorrectly positioning operators in a statement over multiple code lines
(OperatorWrapCheck) is a minor issue, it may cause the code statement to be less readable (particularly for large
amounts of code). Code snippets and commentary adhering to these coding rules may be assessed as highly readable,
and it was pleasing to see the Stack Overflow community demonstrating such awareness.

For example, in considering the EmptyBlockCheck violation for the code snippet associated with Question ID
23392208, the question makes it clear that the purpose of the code snippet is to show how to distinguish between
object types ‘List<Cat>’ and ‘List<Orange>’. This is why the code has empty ‘if’ blocks. However, the purpose of
the code would have been clearer if comments had been included in the ‘if’ blocks (e.g., “//do something”). The
answer associated with the code snippet for Question ID 23350956, written on April 28, 2014, only states that the
‘switch’ statement should start with “case 0” rather than “case 1”. However, another answer (written on April 29,
2014) states that a ‘break’ statement is needed at the end of each ‘case’ block (refer to Figure 11.a), thus providing
context for reducing the likelihood of the FallThroughCheck violation if the code was reused.

The evidence for the lack of context for 44 out of 50 violations (88%) is not good for Stack Overflow code
readability overall however. Such errors include: AnnotationLocationCheck, ArrayTypeStyleCheck,
EmptyCatchBlockCheck, NeedBracesCheck, MultipleVariableDeclarationsCheck,
OverloadMethodsDeclarationOrderCheck, AvoidStarImportCheck, NonEmptyAtclauseDescriptionCheck,
ModifierOrderCheck, ParameterNameCheck and SeparatorWrapCheck (refer to Table 11 for full details). For
instance, although not serious, the indentation of annotations (AnnotationLocationCheck) makes code less readable.
This may also have a flow-on effect to code below the annotations that are also incorrectly indented and therefore
harder to read or debug (e.g., which statements/structures are associated with which brackets). This is the case for the
code snippet associated with Question ID 27692431 (refer to Figure 11.b), as the class declaration has the same

25

indentation as the annotation (we grouped two other indentation checks with this violation in Table 11). The use of
an empty ‘catch’ block (EmptyCatchBlockCheck) may lead to confusion about the purpose or importance of the
block (refer to answer for Question ID 24427892). Also, there may be usability and security issues associated with
not dealing with an identified error. Multiple variable declarations (MultipleVariableDeclarationsCheck) on one line
can make the code less readable in terms of finding variable declarations and traversing longer code lines (refer to
answer for Question ID 25873979). Importing all classes in a package (AvoidStarImportCheck) leads to tight
coupling between packages, which may cause errors and confusion when debugging in terms of naming conflicts.
This may also increase compilation time (refer to answer for Question ID 27012261). The incorrect order of
modifiers (ModifierOrderCheck) may cause confusion about the state or visibility of a class or variable and therefore
issues associated with security (refer to answer for Question ID 26948858). While incorrectly positioning separators
in a statement over multiple code lines (SeparatorWrapCheck) is a minor issue, it may cause the code statement to
be less readable and lead to confusion about the relationship between the variable and its method (refer to answer for
Question ID 25513263).

We provide additional details for 50 readability violations in Table 11. In particular, we list the rule that was
violated, the implication for breaking the rule (for code reuse) and degree of context (in %) that is provided around
the snippets (e.g., in question, answers, comments) which may lead to fixing the violation or an awareness that it
exists.

Figure 11. Another answer associated with Question ID 23350956 (a) and Code snippet associated with

Question ID 27692431 (b)

Table 11. Qualitative analysis for readability violations

Rule Implications of Breaking Rule Question
IDs

Context
Would Fix
Error (%)

AnnotationLocationCheck,
CommentsIndentationCheck,
IndentationCheck

Inappropriate indentation affects code readability and could lead
to confusion when debugging.

27692431 0

ArrayTypeStyleCheck The use of incorrect coding style for an array type may lead to
accidental misuse.

25184589 0

AvoidEscapedUnicodeCharacters
Check

The use of a Unicode escape character makes it unclear what is
being represented, which makes the code hard to understand.

24177348 0

EmptyBlockCheck The use of a statement with an empty code block may lead to
confusion about the purpose or importance of the block.

23392208 100

EmptyCatchBlockCheck The use of an empty ‘catch’ block may lead to confusion about
the purpose of the block and usability and security issues.

24427892 0

LeftCurlyCheck The use of an incorrect left bracket style makes it less clear that
the code is written in Java and encourages accidentally use.

23041258,
26649619,
27867492

0

NeedBracesCheck Not including brackets around a code block may cause confusion
about the process flow associated with the code.

27606577 0

a. Another Answer Associated with Question ID 23350956 b. Code Snippet Associated with Question ID 27692431

26

RightCurlyCheck The use of an incorrect right bracket style at the end of a code
block (e.g. method) causes important code to be left out.

24361899 100

FallThroughCheck For a ‘switch’ statement, a ‘case’ block that does not end with a
‘break’ statement may cause confusion about the process flow
associated with the code and incorrect execution of code.

23350956 100

IllegalTokenTextCheck The use of an octal or Unicode escape character makes it less
clear what is being represented and affects understandability.

22545603 0

MissingSwitchDefaultCheck By not including a ‘default’ clause, the ‘switch’ statement is
unlikely to represent all current possible states/conditions as well
as new states introduced in the future, leading to runtime errors.

23771902 0

MultipleVariableDeclarations
Check

Multiple variable declarations on one line can make the code less
readable in terms of finding variable declarations.

25873979 0

NoFinalizerCheck A ‘finalize’ method can exhibit unpredictable behaviour, which
may cause debugging/testing, performance and portability issues.

23762150 100

OneStatementPerLineCheck Multiple statements on one line can make the code less readable
and wrongly suggest that they are related in terms of code logic.

24619436 0

OverloadMethodsDeclarationOrder
Check

By not grouping overloaded method declarations together, it
would take longer to find related methods in the code.

23531704 0

VariableDeclarationUsageDistance
Check

By having many code lines between a variable declaration and
the first statement that uses the variable makes code unreadable.

23789340 0

OneTopLevelClassCheck By not including a top-level class in its own source file, the file
will be larger and unreadable, affecting debugging.

23614212 0

AvoidStarImportCheck Importing all classes in a package leads to tight coupling between
packages, which may cause errors and increase compilation time.

27012261 0

CustomImportOrderCheck If the import statements are not in the order that the packages are
being used the process flow of code is unclear during coding.

26204433 0

AtclauseOrderCheck Javadoc tags in the wrong order may cause confusion for new
developers trying to understand the purpose of a method or class.

27817940 0

JavadocMethodCheck A method without a Javadoc comment may lead to conflicting
interpretations about the purpose of the method and inconsistent
code.

23720050,
23960536,
24714712

0

JavadocParagraphCheck Incorrect usage of paragraph tags may cause Javadoc content to
be less readable and lower understandability of classes/methods.

21242110 0

JavadocTagContinuation
IndentationCheck

Incorrect indentation of tags may cause Javadoc content to be
less readable and hinder understanding of classes/methods.

27796029 0

NonEmptyAtclauseDescription
Check

Empty Javadoc tags may cause developers to have inconsistent or
conflicting interpretations about the purpose of classes/methods.

22493512 0

SingleLineJavadocCheck,
SummaryJavadocCheck

Fragmented summary or incorrect layout of Javadoc comment
may cause it to be unreadable and hinder understandability.

26030062,
25421365

0

ModifierOrderCheck Incorrect order of modifiers may cause confusion about the state
or visibility of a class or variable and security issues.

26948858 0

AbbreviationAsWordInNameCheck
, CatchParameterNameCheck,
ClassTypeParameterNameCheck,
InterfaceTypeParameterName
Check, LocalVariableNameCheck,
MemberNameCheck,
MethodNameCheck,
MethodTypeParameterNameCheck,
PackageNameCheck,
ParameterNameCheck,
TypeNameCheck

By not following Java naming style standards, it less clear to
developers what type of structure is being represented when code
references a particular name. This may hinder understanding of
the purpose of the code and cause confusion about the possible
operations associated with a structure.

25934321,
21202523,
22856547,
21908768,
27184879,
26386057,
26752021,
23061313,
27068654,
23774985,
21238083

0

LineLengthCheck Use of long lines of code makes the file less readable and may
require horizontal scrolling, slowing down programming time.

26450282 0

UpperEllCheck The use of a lowercase ‘l’ may cause confusion about the type of
a data structure and the operations associated with it.

27336026 100

EmptyLineSeparatorCheck Declarations that are not separated by empty lines are less
readable and confuses the start, end and scope of a structure.

26228495 0

FileTabCharacterCheck Use of tab characters in code may require developers to configure
the tab width of their text editor, and increase readability issues.

26945024 0

GenericWhitespaceCheck Whitespace around a generic type physically separates a variable
type from its generic type leading to understandability issues.

23448238 0

MethodParamPadCheck Whitespace around method parameter brackets physically
separates a method name call from its parameters, causing
developers to think that there is code missing from the statement.

22389102 0

OperatorWrapCheck Incorrectly positioning operators in a statement over multiple
code lines may cause the code statement to be less readable.

26304185 100

ParenPadCheck Whitespace around method parameters may confuse the
relationship between the method name and the parameters.

26630799,
25644671

0

27

SeparatorWrapCheck Incorrectly positioning separators in a statement over multiple
code lines may cause the code statement to be less readable.

25513263 0

WhitespaceAroundCheck While a lack of whitespace around operators or brackets is a
minor issue, it can cause the code statement to be less elegant or
less readable. This may hinder understanding of the code.

27306448,
22688682,
22263989,
25825289,
25276828,
26491038,
25106112,
27369075

0

4.3 Performance (RQ3)
4.3.1 All Performance Violations

Of the 50,472 code snippets analysed by Checkstyle that were then compiled, 8,010 code snippets could be analysed
by FindBugs to evaluate performance and security. Of the results in the performance category there were 3,949
violations for 2,936 (36.65%) code snippets. This means that 5,074 (63.35%) code snippets had no performance
violations. Figure 12.a shows the same trend in the number of performance violations as for reliability and
conformance to programming rules and readability violations (see Figures 7.a and 10.a). However, there are less
snippets with a small number of violations because fewer snippets could be analysed by FindBugs than PMD and
Checkstyle and there are fewer performance violation checks than for reliability and conformance to programming
rules or readability. As shown in Figure 12.b, of the code snippets that had violations, 2,719 (92.61%) code snippets
contain between one and two violations, 182 (6.20%) code snippets contain between three and four violations, 28
(0.95%) code snippets contain between five and six violations, four code snippets (0.14%) contain between seven
and 10, and only three code snippets (0.10%) contain more than 10 violations. The minimum number of performance
violations in a single code snippet was zero, while the maximum was 18, with an average of 0.49 violations per
snippet, across all snippets assessed. The majority of the performance violations were from the Unread field category
(63.51%, or 2,508), followed by Unused field (15.37%, 607) and Private method is never called (6.89%, 272). These
outcomes are shown in Table 12.

Figure 12. Number of performance violations per snippet (a) and Number of performance violations grouped (b)

28

Table 12. Number of performance violations grouped by bug category

Rules violated by category Number of Violations Percentage of Violations
Unread field 2508 63.51%
Unused filed 607 15.37%
Private method is never called 272 6.89%
Inner class could be static 173 4.38%
Dubious method used 132 3.34%
String concatenation in loop 90 2.28%
Questionable boxing of primitive value 84 2.13%
Unread field should be static 73 1.85%
Inefficient map iterator 7 0.18%
Unnecessary Math on constants 3 0.08%
Total 3949

4.3.2 Snippet Relevant Violations

Of the 18 performance violations considered to be relevant to code snippets, the 20% most relevant violations (five
violations) for code snippets were determined. As the FindBugs tool assigns a priority to each violation, the violation
types were ranked in order of priority (starting with the highest priority violations) followed by number of violations
(see Table 13). The most relevant violation was Dm_Boxed_Primitive_For_Parsing, which is associated with a high
priority because parsing a value is a common programming operation and, therefore, should be performed in a
computationally efficient way. Although Dm_Boxed_Primitive_Tostring is associated with a greater number of
violations compared to Dm_Gc, Dm_Boxed_Primitive_Tostring is associated with a greater number of priority one
violations (most critical). The least relevant violation included in the top 20% of violations was
Sic_Inner_Should_Be_Static because although there were a greater number of these violations (88 violations in
Table 13) compared to Dm_Boxed_Primitive_For_Parsing, based on the priority values, the computational
efficiency of inner classes is considered less important than the computational efficiency of operations on a single
variable.

Table 13. Performance violations most relevant to code snippets
Rule Violated Priority Number of Violations Percentage of Violations
Dm_Boxed_Primitive_For_Parsing 1 14 2.49
Dm_Gc 1 2 0.36
Dm_Boxed_Primitive_Tostring 1,2 5 0.89
Sbsc_Use_Stringbuffer_Concatenation 2 90 16.01
Sic_Inner_Should_Be_Static 2 88 15.66

4.3.3 Qualitative Analysis

For the qualitative analysis, our sample of 60 code snippets covered 21 performance violations (refer to D.3 for full
coverage of performance checks). In Table 14, 14 of the 21 performance violations (66.7%) would be overcome by
the Stack Overflow community as there was context provided around the snippets (e.g., in question, answers,
comments) which may lead to fixing these violations or an awareness that these exist (refer to Table 14). There was
a lack of awareness for the remaining 7 violations (or 33.3%).

These neglected performance violations include: Bx_Boxing_Immediately_Unboxed_To_Perform_Coercion,
Dm_Nextint_Via_Nextdouble, Dm_Number_Ctor, Sic_Inner_Should_Be_Static, Sic_Inner_Should_Be_Static_Anon,
Sic_Inner_Should_Be_Static_Needs_This, Wmi_Wrong_Map_Iterator (refer to Table 14 for details). These
violations negatively affect software performance for many reasons. For instance, boxing and then immediately
unboxing a primitive value (Bx_Boxing_Immediately_Unboxed_To_Perform_Coercion) in order to convert the type
of the value unnecessarily increases compilation time. Under conditions where it is necessary to optimise
compilation time, such violations would be an impediment. In the same way, generating a floating-point value and
then converting it to an integer involves an unnecessary conversion (Dm_Nextint_Via_Nextdouble), which may slow
down code and affect its readability. The use of the number constructor always creates a new object and, therefore,
does not allow the caching of values (Dm_Number_Ctor). This uses unnecessary memory and slows down code.
Furthermore, the inner class’s embedded reference to the outer class object makes the instances of the inner class
larger and may keep the reference available longer than necessary, which wastes memory
(Sic_Inner_Should_Be_Static, Sic_Inner_Should_Be_Static_Anon, Sic_Inner_Should_Be_Static_Needs_This).

29

Finally, the use of the ‘keySet’ iterator method is inefficient and therefore may slow down the program
(Wmi_Wrong_Map_Iterator). These are undesirable performance issues in Stack Overflow code snippets for which
the community seem to lack awareness or there is oversight.

On the contrary, contributors seem aware of other performance violations, and fittingly suggested interventions to
overcome these (see Table 14). For instance, boxing and then immediately unboxing a primitive value forces the
compiler to undo the work of the boxing (Bx_Boxing_Immediately_Unboxed), which increases compilation time. We
observed that for the code snippet in response to Question ID 21597991 (refer to Figure 13.a), it was clear from the
comments on code lines 3 and 4 that these lines should be removed when retrieving input from the command line
(code lines 5 and 6). This issue is also discussed by the contributor in the text that surrounded the snippet. The use of
the floating-point number constructor always creates a new object and, therefore, does not allow the caching of
values (Dm_Fp_Number_Ctor). This uses unnecessary memory and slows down code. We observed that for the code
snippet in response to Question ID 26260792, it was clear from the third comment posted below the answer that
“amount.intValue()” and “amount.doubleValue()” could be used “instead of casting”. If the question author or a
developer copied the code snippet for reuse, they are likely to edit the snippet based on the comment. The
unnecessary use of a ‘Math’ class method may slow down the program and make the code less readable
(Um_Unnecessary_Math). We observed that for the code snippet in response to Question ID 21510763, it was clear
that the contributor’s goal was to provide details for the community to understand the behaviour of the ‘Math.ceil’
method (refer to Figure 13.b). This is illustrated through the use of constant values in the answer code snippet.

While there were numerous performance violations in Stack Overflow code snippets, our deeper analysis shows that
the community was more aware of these violations than the reliability and conformance to programming rules
violations and readability violations (reliability and conformance to programming rules=37.5%, readability=12%,
performance=66.7%).

Figure 13. Code snippet associated with Question ID 21597991 (a) and Answer associated with

Question ID 21510763 (b)

Table 14. Qualitative analysis for performance violations

Rule Implications of Breaking Rule Question IDs Context
Would Fix
Error (%)

Bx_Boxing_Immediately_
Unboxed

Boxing and then immediately unboxing a primitive value
increases compilation time.

21597991 100

Bx_Boxing_Immediately_
Unboxed_To_Perform_
Coercion

Boxing and then immediately unboxing a primitive value
in order to convert the type of the value unnecessarily
increases compilation time.

26807872 0

Dm_Boxed_Primitive_For_
Parsing

Boxing and then unboxing a primitive value for parsing is
inefficient, increasing compilation time.

23014428 100

Dm_Boxed_Primitive_Tostring The use of a boxed primitive only for calling ‘toString()’
creates a new object and slows down code.

27096670 100

Dm_Fp_Number_Ctor The use of the floating-point number constructor always
creates a new object; this does not allow the caching of
values and slows down code.

26260792 100

Dm_Gc Explicit garbage collection is computationally expensive
and can slow down a program.

23831157 100

a. Code Snippet Associated with Question ID 21597991 b. Answer Associated with Question ID 21510763

30

Dm_Nextint_Via_Nextdouble Generating a random floating-point value and then
converting it to an integer involves an unnecessary
conversion, which may slow down (unreadable) code.

25926194, 26734389 0

Dm_Number_Ctor The use of integer number constructors always creates a
new object, slowing down code.

25150130, 23273936 0

Dm_String_Ctor The use of the String constructor wastes memory and
increases the length of code lines.

22082451, 27417861 100

Dm_String_Tostring Invoking a String’s ‘toString()’ method makes the code
less readable and may slow down the program.

21329215 100

Dm_String_Void_Ctor The use of the String constructor with no arguments
wastes memory, slows down the program and increases
the length of code lines.

20926110 100

Sbsc_Use_Stringbuffer_
Concatenation

Concatenating a string using the ‘+’ operator in a loop is
inefficient and slows down the program.

26873488, 21589139 100

Sic_Inner_Should_Be_Static,
Sic_Inner_Should_Be_Static_
Anon,
Sic_Inner_Should_Be_Static_
Needs_This

The inner class’s embedded reference to the outer class
object makes the instances of the inner class larger and
may keep the reference available longer than necessary,
which wastes memory.

22059165, 21010495,
24213048, 26559724,
25396727

0
0
0

Ss_Should_Be_Static The use of an instance/non-static variable that has the
same value across instances of a class wastes memory.

26999888, 22662566 50

Um_Unnecessary_Math The unnecessary use of a ‘Math’ class method may slow
down the program and make the code less readable.

21510763 100

Upm_Uncalled_Private_
Method

An uncalled private method makes a code file longer,
slows down compilation time and may be a source of
confusion.

26093739, 27851789,
26269209, 24478027

100

Urf_Unread_Field An unread field wastes memory and multiple unread
fields would make the Java class file longer. It may also
lead to confusion about the purpose of the field and
related code. However, for a substantial software
development project, there may be a lag between
declaring/initialising a field and the implementation of
functionality that uses the field.

27087229, 22567272,
27741462, 24066627,
25336361, 20973988,
24780956, 22772664,
21531089, 22049133,
24098269, 21608283,
22680424, 22044902,
24432977, 24961245,
21950439, 22521144,
22758214, 24372932,
24651403, 22316800

100

Uuf_Unused_Field An unused field may cause an error when compiling as
well as errors due to the default value of the field. It may
also lead to confusion about the purpose of the field and
related code.

21204589, 24865229,
23727501 (x2),
21972809, 22541952,
26936567, 22138665,
26262857

88.89

Wmi_Wrong_Map_Iterator The use of the ‘keySet’ iterator method is inefficient and
may slow down the program, particularly for many
iterations.

25796079 0

4.4 Security (RQ4)
4.4.1 All Security Violations

The same 8,010 code snippets that were examined to analyse performance were also used to analyse security, as both
aspects were analysed using the FindBugs tool. Of the results in the security and malicious code vulnerability
categories, there were 75 FindBugs violations for 59 (0.74%) code snippets. This means that 7,951 (99.26%) of code
snippets did not contain any violations relating to security. Figure 14 shows that of the code snippets that had
violations, 46 (77.97%) code snippets contained one violation, 11 (18.64%) code snippets contained two violations,
with a single code snippet containing three and four violations. On average, there were 0.01 violations per snippet,
with the minimum number of security violations in a single code snippet being zero, and a maximum of four, across
all snippets assessed.

Table 15 shows that a majority of the security violations were in the mutable static field category, 64/75 (85.33%),
which relates to the visibility and types of variables. In addition, use doPrivileged had five violations (6.67%),
expose internal representation had three violations (4.00%), dubious method used20 had two violations (2.67%), and
string reference to mutable object had a single violation (1.33%).

20 While ‘dubious method used’ is a type of bug in both the performance and security categories, they represent different bugs.

31

Figure 14. Number of security violations per snippet

Table 15. Number of security violations grouped by bug category

Rules violated by category Number of Violations Percentage of Violations
Mutable static field 64 85.33%
Use doPrivileged 5 6.67%
Expose internal representation 3 4.00%
Dubious method used 2 2.67%
Storing reference to mutable object 1 1.33%
Total 75

4.4.2 Snippet Relevant Violations

Of the 11 security violations considered to be relevant to code snippets, the 20% most relevant violations (three
violations) for code snippets were determined. As the FindBugs tool assigns a priority to each violation, the violation
types were ranked in order of priority (starting with the highest priority violations) followed by number of violations
(see Table 16). While both Ei_Expose_Rep and Dp_Create_Classloader_Inside_Do_Privileged exhibit two
violations associated with priority two, Ei_Expose_Rep is considered to be more important because passing mutable
object references between different components of a system is a common operation and, therefore, should not be
vulnerable to security breaches. The least relevant violation included in the top 20% of violations was
Ms_Final_Pkgprotect because although there were a greater number of these violations (6 violations) compared to
Dp_Create_Classloader_Inside_Do_Privileged or Ei_Expose_Rep, Ms_Final_Pkgprotect is associated with fewer
priority two violations. We examine these violations in greater depth in the next subsection.

Table 16. Security violations most relevant to code snippets
Rule Violated Priority Number of Violations Percentage of Violations
Ei_Expose_Rep 2 3 4.00
Dp_Create_Classloader_Inside_Do_Privileged 2 3 4.00
Ms_Final_Pkgprotect 2,3 6 8.00

4.4.3 Qualitative Analysis

Finally, in following the same process as was used for our deeper qualitative analysis of reliability and conformance
to programming rules, readability and performance violations, we sampled 60 violations from the available 59 code
snippets that returned security violations for qualitative analysis. We sampled all categories of security violations,
exploring the rule that was violated, the implication for breaking the rule (for code reuse) and context that is
provided around the snippets (e.g., in question, answers, comments) which may lead to fixing the violation or an
awareness that it exists. Altogether, Stack Overflow code snippets violated 11 security checks (refer to Table 17).
Evidence in Table 17 shows that violations for four of these checks (36.4%) would be overcome by the Stack
Overflow community as there was context provided around the snippets (e.g., in question, answers, comments)

32

which may lead to fixing many of these violations or an awareness that they exist. There was less awareness around
the other seven violations (63.4%) however, which were missed by the Stack Overflow community.

The Stack Overflow community were not aware of (or did not worked to address) the Dmi_Constant_Db_Password,
Dp_Create_Classloader_Inside_Do_Privileged, Dp_Do_Inside_Do_Privileged, Ei_Expose_Rep2,
Ei_Expose_Static_Rep2, Ms_Expose_Rep and Ms_Pkgprotect violations. A hardcoded database password
(Dmi_Constant_Db_Password) allows anyone with access to the source code or compiled code to learn the
password. This is likely to cause a security breach. If a security manager is installed, creating a classloader requires
permissions (Dp_Create_Classloader_Inside_Do_Privileged) and, therefore, may require a ‘doPrivileged’ block
(temporarily providing greater privileges in order to perform the task) in order to avoid errors. If a security manager
is not installed, creating a classloader may cause a security breach. A similar threat persists for the
Dp_Do_Inside_Do_Privileged violation. If a security manager is installed, calling a method that requires
permissions may need a ‘doPrivileged’ block (temporarily providing greater privileges in order to perform the task)
in order to avoid errors. Storing a reference to an externally mutable object in a (static) field may cause a security
breach; the object may be involved in unchecked changes and accessed by untrusted code (Ei_Expose_Rep2 and
Ei_Expose_Static_Rep2). A ‘public’ and ‘static’ method that returns a reference to a ‘static’ array may cause a
security breach because any code that calls the method can modify the array (Ms_Expose_Rep). Finally, a mutable
‘static’ field that is ‘public’ could be changed by malicious code, causing a security breach (Ms_Pkgprotect). These
are undesirable security issues in Stack Overflow code snippets for which the community seem to lack awareness or
there is oversight.

More positive, the Stack Overflow community mitigated Ei_Expose_Rep, Ms_Final_Pkgprotect,
Ms_Ooi_Pkgprotect and Ms_Should_Be_Final violations. Returning a reference to a mutable object field value
exposes the internal representation of the object associated with the field (Ei_Expose_Rep). Unchecked changes to
the mutable object may cause a security breach. For the code snippet in response to Question ID 27867068 (refer to
Figure 15.a), another answer includes a get method that returns a clone of the array. However, this answer is at the
bottom of the page, which may lead to contributors missing it. A mutable ‘static’ field that is not ‘final’ or ‘package’
protected could be accidentally changed by code in another package (Ms_Final_Pkgprotect). Also, the field could be
changed by malicious code, causing a security breach. For the code snippet in response to Question ID 21668288,
another answer uses a ‘private’ field. However, this answer is at the bottom of the page; notwithstanding also that the
answer associated with the violation has been accepted by the question author. An interface field that is ‘public’ and
references a mutable object could be accidentally changed by code in another package (Ms_Ooi_Pkgprotect). Also,
the field could be changed by malicious code, causing a security breach. For the code snippet in response to Question
ID 21936973 (refer to Figure 15.b), one of the comments posted below the question advises “against declaring
variables in interfaces”. However, there is no discussion about removing the ‘public’ modifier. Also, the comment is
not visible without clicking the ‘show more comments’ button. Therefore, the question author and Stack Overflow
readers may not see the comment. Finally, a ‘public’ and ‘static’ field that is not ‘final’ could be changed by
malicious code (Ms_Should_Be_Final), causing a security breach. Also, the field could be accidentally changed by
code in another package. For the code snippet in response to Question ID 25305523, the purpose of the answer is to
compare enums and static constants in terms of memory usage rather than to solve a problem relating to a specific
program. Therefore, community members may become aware of this when the snippet is reused, avoiding the error
in the process. Altogether, there was mixed evidence around Stack Overflow contributors’ vigilance of the reliability
and conformance to programming rules, readability, performance and security errors that were evident in code
snippets.

33

Figure 15. Another answer associated with Question ID 27867068 (a) and Code snippet and comments associated

with Question ID 21936973 (b)

Table 17. Qualitative analysis for security violations
Rule Implications of Breaking Rule Question IDs Context

Would Fix
Error

Dmi_Constant_Db_
Password

A hardcoded constant database password allows anyone with
access to the source code or compiled code to learn the
password. This is likely to cause a security breach.

21361781, 25453794 0

Dp_Create_Classloader_
Inside_Do_Privileged

If a security manager is installed, creating a classloader
requires permissions and therefore may require a
‘doPrivileged’ block (temporarily providing greater
privileges in order to perform the task) in order to avoid
errors.

25897954 0

Dp_Do_Inside_Do_
Privileged

If a security manager is installed, calling a method that
requires permissions may need a ‘doPrivileged’ block
(temporarily providing greater privileges in order to perform
the task) in order to avoid errors.

23119851, 25869837 0

Ei_Expose_Rep Returning a reference to a mutable object field value exposes
the internal representation of the object associated with the
field. This may cause a security breach.

27867068, 22200047,
23855548

33.33

Ei_Expose_Rep2 Storing a reference to an externally mutable object in a field
may cause a security breach; the object may be involved in
unchecked changes and may be accessed by untrusted code.

23855548 0

Ei_Expose_Static_Rep2 Storing a reference to an externally mutable object in a
‘static’ field may cause a security breach.

22166799 0

Ms_Expose_Rep A ‘public’ and ‘static’ method that returns a reference to a
‘static’ array may cause a security breach because any code
that calls the method can modify the array.

21668288 0

Ms_Final_Pkgprotect A mutable ‘static’ field that is not ‘final’ or ‘package’
protected could be accidentally changed by code in another
package or malicious code.

25399642, 21407966
(x2), 27305650,
21668288, 23602309

16.67

Ms_Ooi_Pkgprotect An interface field that is ‘public’ and references a mutable
object could be accidentally or maliciously changed.

21936973 100

Ms_Pkgprotect A mutable ‘static’ field that is ‘public’ could be changed by
malicious code, causing a security breach.

26088277, 27670892,
21081297

0

Ms_Should_Be_Final A ‘public’ and ‘static’ field that is not ‘final’ could be
changed by malicious code, causing a security breach. Also,
the field could be accidentally changed by code in another
package.

21387240, 22963154,
22285223, 26746164,
25382192, 27700614,
25331328, 27659172,
25550225, 22644734,
20942861, 23258715,
25305523, 21909943,
24831177, 25980489,
21591563, 24748098,
21875435, 25705148,
22644734, 26867697,
24635388, 25712918,
26332527, 26714126,
22618624, 23913096,
4335378, 25498133,

48.72

a. Another Answer Associated with Question ID 27867068 b. Code Snippet and Comments Associated with
Question ID 21936973

34

25236546, 27177079,
27478837, 24450300,
20962911, 21666998,
27670892, 27673848,
24454439

4.5 Results Summary (Triangulation)
Outcomes in this work show that a majority of reliability and conformance to programming rules violations
(88.32%) are priority three (“change recommended”), while only 0.38% are priority one violations (“change
absolutely required”). Approximately a third of code snippets assessed had between one and five readability
violations, with performance and security code snippets having on average less than one violation. These findings
suggest that the quality of Stack Overflow code snippets varies, depending on the dimension being examined. To
triangulate these results, Spearman’s rank correlation (rho) testing was performed for the 8,010 code snippets that
were analysed for all four of the quality dimensions (reliability and conformance to programming rules, readability,
performance and security). These were assessed considering Cohen’s classification, in terms of low (0 < rho ≤ 0.29),
medium (0.3 ≤ rho ≤ 0.49), and high (rho ≥ 0.50) correlations [18]. We provide correlation results in Table 18, for
Stack Overflow code reliability and conformance to programming rules, readability, performance and security. We
focus mainly on the medium to high statistically significant correlations given the established view that such results
are often noteworthy [18].

The outcomes in Table 18 show that the higher the Questions Score received, the more View Count such questions
received (rho=0.33). This pattern of outcome was also similar for Question Score and Answer Score, with higher
scoring questions also attracting higher scoring answers, but with a lower statistically significant correlation
(rho=0.28). Code Length naturally had a strong statistically significant correlation with Code Spaces and LOC,
where these variables were almost linear (rho=0.96 for Code Spaces, rho=0.94 for LOC). Code Spaces was also
strongly correlated with LOC (rho=0.95). SPA had a statistically significant positive correlation with Answer Score
(rho=0.28), which is likely to be due to a more informative answer including more code snippets. However, SPA had
a statistically significant negative correlation with measures relating to the size of a code snippet (e.g., rho=-0.25 for
LOC). This suggests that an answer that includes multiple code snippets uses each code snippet to focus on a specific
operation or piece of functionality, making the answer shorter.

Both the number of reliability and conformance to programming rules violations and the number of readability
violations had strong statistically significant correlations with Code Length, Code Spaces and LOC (e.g., rho=0.83
for the number of reliability and conformance to programming rules violations and LOC). This shows that code that
was longer in length tended to have more reliability and conformance to programming rules violations and
readability violations. In fact, Table 18 shows that longer code snippets were prone to both types of violations, as we
observed that the number of reliability and conformance to programming rules violations had a strong statistically
significant correlation with the number of readability violations (rho=0.73). In contrast, the number of performance
violations and the number of security violations were not strongly correlated with Code Length, Code Spaces and
LOC (e.g., rho=0.09 for the number of performance violations and LOC). Also, the number of performance
violations was not correlated with the number of security violations (rho=-0.02). In fact, although there was
statistically significant correlations between the range of code snippet attributes (measures) and performance and
security violations in Table 18, these correlations were all low (0 < rho ≤ 0.29). Similar outcomes were also
observed when performing correlation analysis for code snippets with SPA = 1 separately from those where SPA > 1
(e.g., for the correlation between reliability and conformance to programming rules violations and readability
violations, rho=0.72 for SPA=1 while rho=0.70 for SPA>1).

To probe these outcomes further, correlation testing was also performed for each of the quality dimensions
separately, using all of the code snippets analysed by each tool (PMD, Checkstyle and FindBugs). The correlation
patterns for each quality dimension were consistent (and almost identical) with the patterns found for the 8,010 code
snippets analysed for all of the quality dimensions. The measures relating to the size of a code snippet were strongly
correlated with each other across all of the quality dimensions (e.g., rho=0.94 for the correlation between LOC and
Code Length for all of the quality dimensions). Questions Score had a statistically significant medium correlation
with View Count for both reliability and conformance to programming rules violations and readability violations
(rho=0.40) as well as for performance and security violations (rho=0.33). There was also a lower correlation

35

between Question Score and Answer Score for performance and security violations (rho=0.28) but a slightly larger
correlation for reliability and conformance to programming rules violations and readability violations (rho=0.32).
Similar to the correlations shown in Table 18, the number of violations had strong statistically significant
correlations with Code Length, Code Spaces and LOC for both reliability and conformance to programming rules
violations and readability violations (e.g., rho=0.84 for the correlation between number of violations and Code
Length for reliability and conformance to programming rules violations).

Finally, in considering our correlation analysis for code snippets in accepted and unaccepted answers, it is noted in
Table 18 that posts with accepted answers had lower Answer Count (rho=-0.27) and accepted answers unsurprisingly
had both a higher Answer Score (rho=0.34) and more SPA (rho=0.24). However, overall, there was no difference in
quality between accepted and unaccepted answers. This pattern of outcome was consistent for all quality dimensions
that were investigated in the work (reliability and conformance to programming rules, readability, performance and
security).

Table 18. Summary code quality correlations

Code
Attributes

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1. Question Score 1 *0.33 *0.14 *-0.03 *0.28 *0.03 *0.03 *0.03 *0.08 *-0.03 0.00 0.00 0.01 0.00
2. View Count 1 *0.20 *0.10 *0.12 *0.15 *0.15 *0.14 0.00 *-0.06 *0.12 *0.12 *0.03 -0.02
3. Answer Count 1 *0.11 *-0.05 0.01 *0.03 *0.02 *-0.09 *-0.27 *0.04 *0.03 0.00 -0.02
4. Comment Count 1 0.00 *0.07 *0.09 *0.09 0.00 -0.02 *0.08 *0.08 0.01 0.00
5. Answer Score 1 *-0.10 *-0.09 *-0.09 *0.28 *0.34 *-0.09 *-0.13 *0.03 -0.01
6. Code Length 1 *0.96 *0.94 *-0.27 0.00 *0.83 *0.79 *0.10 *-0.03
7. Code Spaces 1 *0.95 *-0.26 0.00 *0.82 *0.82 *0.10 *-0.04
8. LOC 1 *-0.25 0.01 *0.83 *0.82 *0.09 *-0.04
9. SPA 1 *0.24 *-0.25 *-0.27 0.00 0.02
10. Accepted (1)
/Unaccepted (0) 1 -0.01 -0.01 0.02 -0.01

Number of
Violations

11. Reliability and
Conformance to
Programming Rules
(RQ1)

 1 *0.73 *0.16 *-0.04

12. Readability (RQ2) 1 *0.11 *-0.04
13. Performance (RQ3) 1 -0.02
14. Security (RQ4) 1

Keys: * indicates significance (p < 0.05), italics indicates medium effect size using Cohen’s classification (0.3 ≤ rho ≤ 0.49), bold indicates high effect size using
Cohen’s classification (rho ≥ 0.50)

5. DISCUSSION AND IMPLICATIONS
Q&A portals such as Stack Overflow are now central to the way software developers address their knowledge
deficiencies when creating software [26]. Thus, there is increasing interest and drive to understand the quality of the
content that is provided on such portals [25]. We set out to understand the quality of code snippets that are often
provided in Stack Overflow posts. In order to do so, we operationalise code snippet quality along the dimensions of
reliability and conformance to programming rules, readability, performance and security, given that Stack Overflow
code snippets often target a specific user’s question or concern [69]. We then developed four research questions
(RQ1–RQ4) in Section 2, and presented associated results in the previous section (Section 4). Here we revisit these
results and assess their implications in the following four subsections (Sections 5.1 to 5.4), reflecting on our survey
of Stack Overflow code snippets’ violations against the assessed quality dimensions, as well as the types of violation
that are evident in code snippets that are provided by contributors. We then summarise the outcomes of additional
correlation analyses performed in Section 5.5.

5.1 Reliability and Conformance to Programming Rules (RQ1)
What is the reliability and conformance to programming rules of code snippets provided in answers on Stack
Overflow? We observed that code snippets on Stack Overflow exhibited similar properties, regardless of the
existence of violations or not. We also observed that longer code snippets were more likely to produce errors and a
larger number of errors. In assessing snippet reliability and conformance to programming rules, we evaluated if code
snippets were broken, confusing or prone to runtime errors. We also checked for code snippets’ conformance to
generally accepted programming rules. Checks considered aspects such as bad comparisons, the use of empty
finalizer and return types, coupling, appropriate use of abstract classes, exceptions handling, the correct use of public
and private constructors, and so on (refer to D.1 in Appendix D for further details). We observed nearly five
violations for each snippet, suggesting that contributors did not focus on the reliability and conformance to
programming rules of the code or its ability to compile without errors. That said, if developers in need of help copy

36

such snippets into their solutions without an awareness of the need to perform refinements, this could lead to the
development of poor quality software [68]. This could be particularly troubling, especially if developers are novices,
and not cognisant of the reliability and conformance to programming rules aspects considered above. In fact, for
many developers, online sources such as Stack Overflow are of utility when they are faced with issues that require
knowledge they do not possess [52], and previous evidence has shown that for open source projects which reused
Stack Overflow code, only 44% of the snippets were modified prior to their reuse [68]. This brings into focus the
potential for the remaining 56% of snippets to have reliability and conformance to programming rules violations. In
addition, questions arise around developers’ likely understanding of code snippets and their degree of reliability
more generally, which in turn brings into question the quality of the software they are likely to develop [37].

Pleasing to observe, however, is the fact that 13,793 code snippets did not contain any reliability or conformance to
programming rules violation (out of 50,713 snippets). Such code snippets of course are likely to benefit from
extensive review from the many Stack Overflow contributors. The fact that contributors on the platform are
rewarded points by other members of the community for their efforts, and especially where answers provided are
exceptional, is perhaps of utility for encouraging these complete solutions. For instance, good answers receive votes
from community members on Stack Overflow which leads to such answers amassing a score indicative of the
number of people in the Stack Overflow community who think the answer is helpful. Notwithstanding some
concerns around contributors’ gamification of votes [33], users of the Stack Overflow community generally gauge
this measure to evaluate answers. We would thus expect those answers without reliability and conformance to
programming rules violations to be ranked favourably. Overall, while numerous reliability and conformance to
programming rules violations were evident in Stack Overflow code snippets, it is positive that only a very small
amount of reliability and conformance to programming rules violations were of the highest priority and the majority
were priority three violations. Such a priority is described as “behaviour is confusing, perhaps buggy, and/or against
standards/best practices”21. This suggests that the code snippets on Stack Overflow may be assessed as generally
reliable, which somewhat aligns with the findings of Acar, et al. [2], who found that, as a resource, Stack Overflow
produced more functional code than other coding resources. In fact, a majority of violations were categorised in the
Code Style ruleset which may align with previous outcomes of these authors, as code style of software can often be
subjective. For example, software developers may prioritise security or functionality of their code over style or
efficiency. Given this reality and the priority of the violations found in Stack Overflow snippets, we believe that
developers, while being cautious, could rely on the code snippets found on Stack Overflow to solve their problems.
As Parnin and Treude [51] found that 84% of Google search results for a given API contained Stack Overflow
results on the first page, it may be fitting that developers turn to Stack Overflow for solutions to their programming
problems instead of less scrutinised Q&A portals and blogs.

However, looking at our outcomes in terms of relevance and using a more contextual lens, we see instances of
violations ranging from the throwing of a raw exception, the inappropriate use of a method argument or local
variable to the instantiating of objects in loops. While not alarming, these issues are noteworthy when considering
that novice programmers may reuse Stack Overflow code, thereby inheriting these errors subconsciously. More
seasoned developers may also use such code in a hurry, accepting the risks for short term gain, thereby accumulating
technical debt. For instance, the throwing of raw exceptions may lead to a lack of clarity, thus extending debugging
time. In many cases the Stack Overflow community did not observe these violations, which reinforces the argument
that developers should be vigilant when reusing code on Stack Overflow.

5.2 Readability (RQ2)
What is the readability of code snippets provided in answers on Stack Overflow? Our outcomes show that Stack
Overflow code snippets contain on average 10.5 readability violations. Readability in this work is defined as
conforming to Google’s Java conventions and standards (refer to Section 3.1). We anticipated that if Stack Overflow
code snippets conformed to such conventions, snippets will be easily understood by the community and, thus, their
reuse will lead to good quality maintainable software in the future [27]. At a more granular level, readability checks
covered the location of annotations, the prevalence of empty blocks and line separators, good Javadoc conventions,
good use of variables, methods and package names, and so on (refer to C.2 in Appendix D for further details). Here

21 http://pmd.sourceforge.net/pmd-5.0.5/rule-guidelines.html

http://pmd.sourceforge.net/pmd-5.0.5/rule-guidelines.html

37

we see a tendency by the Stack Overflow community to neglect such conventions, again with the potential to affect
those reusing snippets in their solutions.

In fact, our evidence points to a much lower level of readability standard for Stack Overflow snippets when
compared to their reliability and conformance to programming rules (noted above), suggesting that there was indeed
less vigilance around code readability. While this could be somewhat attributed to variance in the use and
conformance of coding styles and conventions, readability aspects considered above can be assessed universally (i.e.,
good use of variables, methods and package names are central to good programming practice). This assessment is
supported by the high prevalence of Indentation, Whitespace, Blocks, Javadoc and Naming readability violations
resulting from Stack Overflow snippets. Here we observed that even when Javadoc constructs were used, which is
perhaps not expected in code snippets, these at times did not conform to convention. This evidence could be
somewhat concerning [52], especially for novice developers seeking help with little awareness of the inadequacy of
Stack Overflow snippets.

On the other hand, the high degree of readability violations may be systemic due to the nature of the code snippets
that are provided in answers, which are held to be relatively small [69]. Given the likelihood of shorter length code
fragments and the neglect of conventions, those reusing such code may be less watchful for this form of inadequacy,
particularly the more seasoned members. Of course, the same could be seen with novice members, who are likely to
lack awareness. Aspects of readability conventions considered support this assessment, as noted above (e.g., for
Javadoc). While it may be an expectation for large applications to conform to Javadoc conventions to ensure that
programmers understand code, and for software to be maintainable, it is also entirely reasonable that Stack Overflow
code snippets are small enough for basic comments to suffice. In fact, these code snippets are often embedded in text
that provides explanation outside of the code snippet itself. Squire and Funkhouser [60] found that the ratio of text to
code should be approximately 3:1 for answers if developers are to benefit sufficiently from contextual insights.
These authors suggest that quality answers (and questions) require sufficient text to explain the code snippet, in order
to allow other users to understand the reasoning for the proposed solution. What is sufficient may be debatable,
however, and may be linked to the competence of those consuming the knowledge at the time. Also, it does not help
that many code snippets and associated explanations are assessed as inadequate by the programming community
[65].

Looking at our outcomes in terms of violations’ relevance and using more contextual lens, we observed mixed
evidence for Stack Overflow community’s awareness that readability violations exist. For example, in considering
the EmptyBlockCheck violation, it was clear that the purpose of the code snippet was to show how to distinguish
between object types, and thus the code has empty ‘if’ blocks. We also observed that the FallThroughCheck error
was dealt with through recommendations by other Stack Overflow contributors, suggesting that a ‘break’ statement
is needed at the end of each ‘case’ block (refer to Figure 11.a). Notwithstanding these examples, however, the
majority of readability violations went unnoticed by the community (e.g., AnnotationLocationCheck,
EmptyCatchBlockCheck and AvoidStarImportCheck violations). These violations may pose challenges to code
readability. For instance, the use of an empty ‘catch’ block (EmptyCatchBlockCheck) may lead to confusion about
the purpose or importance of the block. Also, there may be usability and security issues associated with not dealing
with an identified error, with potential long term consequences [3].

Our findings suggest that some Stack Overflow code snippets may not conform to recommended readability coding
conventions, and so developers should be aware of this inadequacy. Those using Stack Overflow code snippets
should be willing to properly explore the associated text that is provided as part of answers (and comments) to
exhaust all details around the intended solution and associated code. That way, developers could make their own
enhancements where context is lacking, and will be able to make informed judgement around the reuse of Stack
Overflow code snippets.

5.3 Performance (RQ3)
What is the performance of code snippets provided in answers on Stack Overflow? Our outcomes show that, on
average, 0.5 performance violations were found in each code snippet, which provides validation of the Stack
Overflow platform. Performance in this work was assessed in terms of the efficiency of the proposed solution.
Aspects related to how methods invoke constructors, the allocation of objects, string handling, calling of methods,
and so on, are considered under this dimension (refer to D.3 in Appendix D for further details). In fact, the positive

38

outcome for limited performance issues in Stack Overflow code snippets is supported by our results showing that for
those code snippets that contained performance violations, the majority of performance violations were related to the
unread field (63.5%) category, followed by unused field (15.4%). These issues, while perhaps impacting on memory
if they are to remain in software code, may not be assessed as critical, particularly given that code snippets are often
small in length. That said, if Stack Overflow code snippets are used cumulatively in a code base, such issues could
potentially add up, affecting the overall performance of the software and product quality [38].

In fact, evidence indeed confirms that this issue could be challenging for mobile developers, establishing that as
much as 5.7% of code published in apps is reused from Stack Overflow [1]. In some contexts, developers have been
shown to publish apps largely comprising of reused code [46]. With reuse also extending to teams operating in top-
tier software development companies such as Google [10], software released with performance issues could be
ubiquitous and troubling for the software engineering community. An example of how catastrophic code reuse can
be is illustrated by Bi [11]. This author shows that a piece of Stack Overflow code was used in the NissanConnect
EV mobile app, which accidentally displayed a piece of text reading “App explanation: the spirit of stack overflow is
coders helping coders”. The Stack Overflow answer which has been reused indicates the need to modify the sample
string provided22.

Examining the performance violations for relevance to code snippets and through deeper qualitative lens, we
observed that there were noteworthy performance violations in Stack Overflow snippets at times, albeit the
community seems aware of some of the violations that were observed. For instance, of the violations that were
missed by the community, boxing and then immediately unboxing a primitive value
(Bx_Boxing_Immediately_Unboxed_To_Perform_Coercion), in order to convert the type of the value, unnecessarily
increases compilation time. Under conditions where it is necessary to optimise compilation time, such violations
would be an impediment. In the same way, generating a floating-point value and then converting it to an integer
involves an unnecessary conversion (Dm_Nextint_Via_Nextdouble), which may slow down code and affect its
readability. The use of the number constructor always creates a new object and, therefore, does not allow the caching
of values (Dm_Number_Ctor). This uses unnecessary memory and slows down code.

With evidence confirming that anomalies in reused code tend to propagate [40], becoming detrimental to product
quality in the long run [36], developers are encouraged to be vigilant when copying Stack Overflow code snippets
for reuse. That said, given that, overall, there were limited performance violations in the snippets analysed,
developers may also take comfort knowing that code snippets contributed on Stack Overflow generally conform to
good performance conventions. Perhaps the Stack Overflow community itself may also encourage the use of good
standards to at least maintain the status quo.

5.4 Security (RQ4)
What is the security of code snippets provided in answers on Stack Overflow? Results in this work reveal that there
were very few security violations in Stack Overflow snippets. Security violations in this work were assessed in
relation to a number of constraints, including the handling of passwords (e.g., evidence of hardcoded or empty
passwords), the handling of absolute and relative paths, the use of constants in SQL strings, the invocation of
methods in privilege blocks, how references to mutable objects are returned, the protection of fields, methods and
classes, and so on (refer to D.4 in Appendix D for further details). When compared to the other three dimensions
above (reliability and conformance to programming rules, readability and performance), here we see that there were
very few security threats detected. In fact, most security violations observed (85.3%) were in the mutable static field
category. Such fields may be changed by malicious code and, thus, good security convention demands that they are
made private when used.

These outcomes are somewhat in support of the security consciousness of contributors on Stack Overflow, and hold
promise for supporting the community’s profile. However, it is worth noting that these results are in contrast to the
findings of Acar, et al. [2], who conducted manual analysis on a sample of Stack Overflow posts targeted towards
Android developers. These authors found that contributors to Stack Overflow produced significantly less secure code
when compared to official documentation or books, with just 17% of the Stack Overflow answers studied assessed as
containing secured code snippets. It is important to stress that these authors have conducted an experiment involving

22 https://stackoverflow.com/questions/31845450/why-requestwheninuseauthorization-doesnt-prompt-the-user-for-access-to-the-loca

https://stackoverflow.com/questions/31845450/why-requestwheninuseauthorization-doesnt-prompt-the-user-for-access-to-the-loca

39

56 respondents’ evaluation of four scenarios, which may have included non-compilable code. In addition, the four
scenarios were analysed by respondents with varying levels of experience, with 40 of the 56 respondents actually
reporting no professional Android development experience. Thus, this issue should be considered when examining
the outcomes in our work compared to Acar, et al.’s findings. Beyond these issues however, given that Stack
Overflow code snippets are often embedded in text answers, it is pertinent to analyse code snippets that are able to
compile in order to evaluate their security, thus providing a fairer assessment. That way, the community would be
able to have a more holistic view of security issues, particularly if contributors’ intention is not to produce secure
code as such, but to provide the basis for which experienced software developers may customise their solutions to
make these secure for use.

That said, Fischer, et al. [24] also found that 30.9% of code snippets sampled from Stack Overflow, relating to the
Android security API, exhibited security concerns. However, these authors looked at security related code snippets
only, suggesting that certain parameters and algorithms posed risks, and therefore were insecure. This is in contrast
to our work which considers all Java code snippets irrespective of the intention of the contributor. In fact, while
Fischer, et al.’s and Acar, et al.’s studies have found issues with the security of code snippets contributed on Stack
Overflow, neither have assessed security in the general context, requiring a large scale coverage of security
measures. Our own deeper analysis that focussed on snippets’ relevant violations shows that there are security
violations in Stack Overflow code snippets which the community is not aware of, albeit these are not numerous. For
instance, a hardcoded database password (Dmi_Constant_Db_Password) allows anyone with access to the source
code to learn the password. This is likely to cause a security breach. If a security manager is installed, creating a
classloader requires permissions (Dp_Create_Classloader_Inside_Do_Privileged) and, therefore, may require a
‘doPrivileged’ block (temporarily providing greater privileges in order to perform the task) in order to avoid errors.
If a security manager is not installed, creating a classloader may cause a security breach. A similar threat persists for
the Dp_Do_Inside_Do_Privileged violation. If a security manager is installed, calling a method that requires
permissions may need a ‘doPrivileged’ block (temporarily providing greater privileges in order to perform the task)
in order to avoid errors. Storing a reference to an externally mutable object in a (static) field may cause a security
breach; the object may be involved in unchecked changes and accessed by untrusted code (Ei_Expose_Rep2 and
Ei_Expose_Static_Rep2). These issues were all evident in Stack Overflow code, and there was no evidence that the
community understood that these threats existed, suggesting that the wider programming community should exercise
caution when snippets are reused.

5.5 Summary
Longer Stack Overflow code snippets possess more reliability and conformance to programming rules and
readability violations. We anticipated that contributors would be more prudent in the provision of such code.
However, the opposite is observed in our findings, suggesting that Stack Overflow contributors spend little time
focussing on limiting code reliability and conformance to programming rules and readability issues. Perhaps many
contributors anticipate that code snippets are provided as part of textual answers, and so consumers of such snippets
are expected to also peruse the associated text for context and a more complete understanding of the code. This
assumption could be counterproductive for the community if members are less knowledgeable, supporting the need
for vigilance when using such snippets.

We anticipated that code snippets with violations would be detected by the Stack Overflow community and, thus,
such snippets would attract poor scores (downvotes) and limited views, which was somewhat evident in our results
(e.g., the answer to Question ID 23721115 was criticised in comments and given a -1 rating due to reliability issues
that were detected by the Stack Overflow community). This would discourage those intending to reuse poorly
designed code, in favour of Stack Overflow code snippets that attract higher scores. Beyond the example above, we
observed that Java-related questions on Stack Overflow that scored higher received more views, and questions that
scored higher attracted answers with higher scores. In fact, we also observed a statistically significant negative
correlation for Answer Score and Number of Violations for the reliability and conformance to programming rules,
readability and security quality dimensions (rho=-0.09, -0.13 and -0.01 respectively), where those answers that were
scored higher had less violations, albeit these are quantitatively small values [18]. This pattern was not evident
during our closer examination of accepted and unaccepted answers; however, although accepted answers tended to
score higher, they were not superior in quality to unaccepted answers. Evidence here enforces the position that the

40

Stack Overflow community pay less attention to contributions with poor quality, and in fact our outcomes here are
somewhat against previous evidence of Stack Overflow gamification [33].

Reinforcing this sentiment, and our view above that contributors are likely to be more thoughtful in the provision of
longer code snippets on Stack Overflow, code snippets that were longer had less security violations. We also found
answers with more code snippets had less reliability and conformance to programming rules and readability
violations (rho=-0.25 and -0.27 respectively). These answers also attracted a higher score, which is likely to be due
to a more informative answer including more code snippets. These indicators may be useful for the software
development community to consider as hints during the assessment of Stack Overflow code snippets.

6. THREATS
The tools used to assess Stack Overflow code snippets have certain limitations. However, these tools are accepted by
the software engineering community [34], and have also been validated by academic research [7]. For instance,
Ayewah and Pugh [7] evaluated FindBugs using a dataset from Google, finding that this tool was very effective at
detecting bugs, and its use was considered to be beneficial for saving time and money for developers. That said, we
performed multiple rounds of manual checks to validate our outcomes. We first informally checked the generated
output for 100 random errors that were returned by the PMD, Checkstyle and FindBugs tools against the actual code
snippets from where the violations were derived. These checks showed that the 100 errors were all traceable in the
actual code snippets. We next checked all types of violations returned by the tools for their relevance to code
snippets (reliability and conformance to programming rules=191, readability=50, performance=25 and security=14),
with inter-rater agreement as measured using Holsti’s coefficient of reliability measurement (C.R.) [29], revealing
96.7% agreement initially (first round) and then 100% subsequently (second round). Finally, we conducted a final
round of deeper qualitative analysis at the snippet level involving 60 code snippets for each of the four code quality
violation categories (i.e., reliability and conformance to programming rules, readability, performance and security).
Outcomes from our reliability checks for this analysis reveal 93% agreement initially, with differences resolved on
consensus resulting in 100% agreement (refer to Section 3.2.5).

Java is used as a representative sample of code snippets on Stack Overflow. However, different programming
languages have different expected conventions, and so require different processing [69]. Therefore, such code
snippets would require different criteria for evaluation. It was thus not within the scope of this research project to
assess code snippets in answers that were not Java-related, which could be deemed a limitation. However, given
Java’s popularity and its preference in previous research [22, 62], we believe that by studying this language we
provide needed insights for the software engineering community. That said, we have analysed 151,954 Stack
Overflow Java code snippets in this work (refer to Section 3.2). Of this total number of code snippets, 101,237 were
unparsable by PMD (Reliability and conformance to programming rules violations), 241 code snippets could not be
analysed by Checkstyle (Readability violations) and 42,703 code snippets were uncompilable by FindBugs
(Performance and Security violations). Our outcomes at most accounted for 50,717 Stack Overflow code snippets.
These snippets do not represent the entire population of Java code snippets on Stack Overflow, and thus our
outcomes may not be generalizable to all Java posts on Stack Overflow or other programming languages. However,
evidence suggests that similar trends may be evident for other languages [9, 48]. We have also established that Stack
Overflow data are generalizable across languages and time [43], and we observe a similar pattern of outcomes for
aspects of parsable and unparsable Stack Overflow code snippets in this work.

Finally, construct validity aims to verify that a test used to measure a phenomenon actually does so [67]. To ensure
construct validity in this work, the individual code snippets’ quality dimensions were chosen only if they were
considered relevant for evaluating such code [12, 35, 44, 69]. Towards this end, we evaluated a range of code quality
dimensions before identifying four code quality attributes (reliability and conformance to programming rules,
readability, performance and security) that were deemed suitable for measuring code snippet quality (refer to Section
3.1). In maintaining transparency, rigour and completeness, we also reported on all violations that were detected,
before closely examining those violations that were deemed relevant to code snippets, and then providing further
outcomes for deeper qualitative analysis. Our reliability checks and formal measures for inter-rater agreement as
assessed using Holsti’s coefficient of reliability measurement (C.R.) [29] also confirmed excellent agreements (noted
above).We thus believe that we have adequately addressed construct validity in this work, and accordingly, have
limited this threat.

41

7. CONCLUSION AND FUTURE RESEARCH
In this study we set out to answer the overarching question: what is the quality of code snippets provided in answers
on Stack Overflow? We observed that while studies have expressed reservation around the quality of the content
provided in Stack Overflow posts, there has been limited effort aimed at evaluating the quality of code snippets on
this platform. This is undesirable, as evidence has shown that this platform is used heavily by developers for solving
problems during software development. We thus created an agenda to address this gap, and employed an exploratory
approach towards understanding the quality of Stack Overflow code snippets. Key to answering our overarching
question was defining code snippet quality. Through our evaluation of the code quality body of work, code snippet
quality was defined along four dimensions: reliability and conformance to programming rules, readability,
performance and security. Appropriate tools were evaluated and selected for our analyses, and Stack Overflow code
snippets were then assessed in relation to these dimensions. Our analyses were aimed at evaluating the number of
quality violations per snippet, as well as the types of these violations for each of the four code snippet quality
dimensions.

Among our findings, we observed that Stack Overflow code snippets contain 4.8 reliability and conformance to
programming rules violations on average, and 10.5 readability violations. However, on average there were only 0.5
performance violations in code snippets, with much less security violations observed. The majority of reliability and
conformance to programming rules violations were in the “change recommended” category, while whitespace
readability violations were most prevalent. Performance violations were largely of the unread field and unused field
categories, with the mutable static field category comprising the bulk of security violations. We observed that longer
Stack Overflow code snippets possess more reliability and conformance to programming rules and readability
violations, although such snippets were given less attention by the community, and so may not be reused extensively.
Our evidence revealed that Stack Overflow code snippets that were longer had less performance violations,
signalling that the contributors providing answers paid more attention to such offerings. Overall, while vigilance is
encouraged, Stack Overflow snippets evaluated in this study were not of alarmingly poor quality. In fact, these
snippets ranked much higher on performance and security than reliability and conformance to programming rules
and readability.

We encourage the replication of our analysis for other Q&A portals that support software development (e.g.,
Yahoo!Answers). Beyond such avenues for future work, follow up research may also examine Stack Overflow
snippets in relation to licensing adherence, which may provide additional insights into the quality of code on Stack
Overflow. In line with this proposition, there has been some recent research in this area. For instance, Abdalkareem,
et al. [1] have assessed Stack Overflow code reuse in 22 Android applications, while Baltes, et al. [9] and Yang, et
al. [70] have investigated the reuse of Stack Overflow code within GitHub projects. We have also studied Stack
Overflow code snippet reuse in popular open source projects and within the platform itself [43]. These studies have
attempted to understand if software developers provide adequate attributions for copied code. However, these studies
have not examined the direction of potential reuse, in terms of whether contributors copy code from GitHub to Stack
Overflow without attributions, or vice versa. Such insights would be useful for understanding the degree of license
violations prevalent in Stack Overflow code snippets. Another potentially useful project is to further (inductively)
explore the differences in quality across accepted and unaccepted answers, which we are planning to conduct.
Furthermore, research is required to study the repair effort that is involved with fixing defective Stack Overflow
code snippets. These gaps provide avenues for meaningful investigations to further understand Stack Overflow code
quality.

8. REFERENCES
1. Abdalkareem, R., Shihab, E. and Rilling, J. On code reuse from StackOverflow: An exploratory study on Android

apps. Information and Software Technology, 88. 148-158.
2. Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L. and Stransky, C., You Get Where You're Looking For: The

Impact Of Information Sources on Code Security. in Security and Privacy (SP), 2016 IEEE Symposium on, (2016),
IEEE, 289-305.

3. Ahmad, M. and Ó Cinnéide, M., Impact of stack overflow code snippets on software cohesion: a preliminary study. in,
(2019), IEEE Press, 250–254.

42

4. Amir, B. and Ralph, P., There is no random sampling in software engineering research. in Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, (2018), 344-345.

5. Anand, D. and Ravichandran, S. Investigations into the Goodness of Posts in Q&A Forums—Popularity Versus
Quality. in Information Systems Design and Intelligent Applications, Springer, 2015, 639-647.

6. Asaduzzaman, M., Mashiyat, A.S., Roy, C.K. and Schneider, K.A., Answering questions about unanswered questions
of stack overflow. in Proceedings of the 10th Working Conference on Mining Software Repositories, (2013), IEEE
Press, 97-100.

7. Ayewah, N. and Pugh, W., The google findbugs fixit. in Proceedings of the 19th International Symposium on
Software Testing and Analysis, (2010), ACM, 241-252.

8. Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R. and Gyimóthy, T., A probabilistic software quality model. in 2011
27th IEEE International Conference on Software Maintenance (ICSM), (2011), IEEE, 243-252.

9. Baltes, S., Kiefer, R. and Diehl, S., Attribution required: stack overflow code snippets in GitHub projects. in
Proceedings of the 39th International Conference on Software Engineering Companion, (2017), IEEE Press, 161-163.

10. Bauer, V., Eckhardt, J., Hauptmann, B. and Klimek, M., An exploratory study on reuse at google. in Proceedings of
the 1st international workshop on software engineering research and industrial practices, (2014), ACM, 14-23.

11. Bi, F. Nissan app developer busted for copying code from Stack Overflow, The Verge,
https://www.theverge.com/tldr/2016/5/4/11593084/dont-get-busted-copying-code-from-stack-overflow, 2016.

12. Buse, R.P. and Weimer, W.R. Learning a metric for code readability. IEEE Transactions on Software Engineering, 36
(4). 546-558.

13. Buse, R.P. and Weimer, W.R., A metric for software readability. in Proceedings of the 2008 international symposium
on Software testing and analysis, (2008), 121-130.

14. Campos, U., Smethurst, G., Moraes, J.P., Bonifácio, R. and Pinto, G., Mining rule violations in JavaScript code
snippets. in, (2019), IEEE Press, 195–199.

15. CAST. Software Intelligence for Digital Leaders | CAST, https://www.castsoftware.com/, 2019.
16. Cavusoglu, H., Li, Z. and Huang, K.-W., Can Gamification Motivate Voluntary Contributions?: The Case of

StackOverflow Q&A Community. in Proceedings of the 18th ACM Conference Companion on Computer Supported
Cooperative Work & Social Computing, (2015), ACM, 171-174.

17. Chen, F. and Kim, S., Crowd debugging. in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, (2015), ACM, 320-332.

18. Cohen, J. Statistical power analysis for the behavioral sciences. Routledge, 2013.
19. Cunningham, W. The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger, 4 (2). 29-30.
20. di Biase, M., Rastogi, A., Bruntink, M. and van Deursen, A., The delta maintainability model: measuring

maintainability of fine-grained code changes. in 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), (2019), IEEE, 113-122.

21. Duijn, M., Kučera, A. and Bacchelli, A., Quality questions need quality code: Classifying code fragments on stack
overflow. in Proceedings of the 12th Working Conference on Mining Software Repositories, (2015), IEEE Press, 410-
413.

22. Ercan, S., Stokkink, Q. and Bacchelli, A., Predicting answering times on stack overflow. in Proceedings of the 12th
Working Conference on Mining Software Repositories, (2015), IEEE Press, 442-445.

23. Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L. and Gorton, I., Measure it? manage it? ignore it? software
practitioners and technical debt. in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, (2015), ACM, 50-60.

24. Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M. and Fahl, S., Stack Overflow Considered
Harmful? The Impact of Copy&Paste on Android Application Security. in Security and Privacy (SP), 2017 IEEE
Symposium on, (2017), IEEE, 121-136.

25. Ginsca, A.L. and Popescu, A., User profiling for answer quality assessment in Q&A communities. in Proceedings of
the 2013 workshop on Data-driven user behavioral modelling and mining from social media, (2013), ACM, 25-28.

26. Gupta, R. and Reddy, P.K., Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow.
in Proceedings of the 3rd IKDD Conference on Data Science, 2016, (2016), ACM, 13.

27. Haefliger, S., Von Krogh, G. and Spaeth, S. Code reuse in open source software. Management science, 54 (1). 180-
193.

28. Heitlager, I. A Practical Model for Measuring Maintainability–a preliminary report–.
29. Holsti, O.R. Content Analysis for the Social Sciences and Humanities. Addison Wesley, Reading, MA, 1969.
30. Holvitie, J., Licorish, S.A., Martini, A. and Leppänen, V., Co-Existence of the'Technical Debt'and'Software

Legacy'Concepts. in QuASoQ/TDA@ APSEC, (2016), 80-83.
31. Holvitie, J., Licorish, S.A., Spínola, R.O., Hyrynsalmi, S., MacDonell, S.G., Mendes, T.S., Buchan, J. and Leppänen,

V. Technical debt and agile software development practices and processes: An industry practitioner survey.
Information and Software Technology, 96. 141-160.

32. Hosseini, M., Shahri, A., Phalp, K., Taylor, J. and Ali, R. Crowdsourcing: A taxonomy and systematic mapping study.
Computer Science Review, 17. 43-69.

33. Jin, Y., Yang, X., Kula, R.G., Choi, E., Inoue, K. and Iida, H., Quick trigger on stack overflow: a study of
gamification-influenced member tendencies. in Proceedings of the 12th Working Conference on Mining Software
Repositories, (2015), IEEE Press, 434-437.

https://www.theverge.com/tldr/2016/5/4/11593084/dont-get-busted-copying-code-from-stack-overflow
https://www.castsoftware.com/

43

34. Johnson, B., Song, Y., Murphy-Hill, E. and Bowdidge, R., Why don't software developers use static analysis tools to
find bugs? in Software Engineering (ICSE), 2013 35th International Conference on, (2013), IEEE, 672-681.

35. Jones, C. and Bonsignour, O. The economics of software quality. Addison-Wesley Professional, 2011.
36. Kamiya, T., Kusumoto, S. and Inoue, K. CCFinder: a multilinguistic token-based code clone detection system for

large scale source code. IEEE Transactions on Software Engineering, 28 (7). 654-670.
37. Kan, S.H. Metrics and models in software quality engineering. Addison-Wesley Longman Publishing Co., Inc., 2002.
38. Knight, J.C. and Dunn, M.F. Software quality through domain-; driven certification. Annals of Software Engineering,

5 (1). 293.
39. Kottom, C. Code Quality: Metrics That Matter, 2015.
40. Krinke, J., A study of consistent and inconsistent changes to code clones. in Proceedings of the 14th Working

Conference on Reverse Engineering (WCRE), (2007), IEEE, 170-178.
41. Krüger, J., Schröter, I., Kenner, A. and Leich, T., Empirical studies in question-answering systems: a discussion. in

Proceedings of the 5th International Workshop on Conducting Empirical Studies in Industry, (2017), IEEE Press, 23-
26.

42. Letouzey, J.-L., The SQALE method for evaluating technical debt. in 2012 Third International Workshop on
Managing Technical Debt (MTD), (2012), IEEE, 31-36.

43. Lotter, A., Licorish, S.A., Savarimuthu, B.T.R. and Meldrum, S., Code Reuse in Stack Overflow and Popular Open
Source Java Projects. in 2018 25th Australasian Software Engineering Conference (ASWEC), (2018), IEEE, 141-150.

44. Lu, Y., Mao, X., Li, Z., Zhang, Y., Wang, T. and Yin, G., Does the Role Matter? An Investigation of the Code Quality
of Casual Contributors in GitHub. in Software Engineering Conference (APSEC), 2016 23rd Asia-Pacific, (2016),
IEEE, 49-56.

45. Marshall, M.N. Sampling for qualitative research. Family practice, 13 (6). 522-526.
46. Mojica, I.J., Adams, B., Nagappan, M., Dienst, S., Berger, T. and Hassan, A.E. A large-scale empirical study on

software reuse in mobile apps. IEEE Software, 31 (2). 78-86.
47. Mordal-Manet, K., Balmas, F., Denier, S., Ducasse, S., Wertz, H., Laval, J., Bellingard, F. and Vaillergues, P., The

squale model—A practice-based industrial quality model. in 2009 IEEE International Conference on Software
Maintenance, (2009), IEEE, 531-534.

48. Nasehi, S.M., Sillito, J., Maurer, F. and Burns, C., What makes a good code example?: A study of programming Q&A
in StackOverflow. in Software Maintenance (ICSM), 2012 28th IEEE International Conference on, (2012), IEEE, 25-
34.

49. Nikolaidis, N., Digkas, G., Ampatzoglou, A. and Chatzigeorgiou, A., Reusing Code from StackOverflow: The Effect
on Technical Debt. in, (2019), IEEE, 87–91.

50. Oman, P. and Hagemeister, J., Metrics for assessing a software system's maintainability. in Proceedings Conference
on Software Maintenance 1992, (1992), IEEE, 337-344.

51. Parnin, C. and Treude, C., Measuring API documentation on the web. in Proceedings of the 2nd international
workshop on Web 2.0 for software engineering, (2011), ACM, 25-30.

52. Ponzanelli, L., Bacchelli, A. and Lanza, M., Leveraging crowd knowledge for software comprehension and
development. in Proceedings of the 17th European Conference on Software Maintenance and Reengineering (CSMR),
(2013), IEEE, 57-66.

53. Ragkhitwetsagul, C., Krinke, J., Paixao, M., Bianco, G. and Oliveto, R. Toxic code snippets on stack overflow. IEEE
Transactions on Software Engineering.

54. Rahman, M.M., Roy, C.K. and Keivanloo, I., Recommending insightful comments for source code using
crowdsourced knowledge. in Source Code Analysis and Manipulation (SCAM), 2015 IEEE 15th International
Working Conference on, (2015), IEEE, 81-90.

55. Rigby, P.C. and Robillard, M.P., Discovering essential code elements in informal documentation. in Proceedings of
the 2013 International Conference on Software Engineering, (2013), IEEE Press, 832-841.

56. San Pedro, J. and Karatzoglou, A., Question recommendation for collaborative question answering systems with
rankslda. in Proceedings of the 8th ACM Conference on Recommender systems, (2014), ACM, 193-200.

57. Shah, C., Oh, S. and Oh, J.S. Research agenda for social Q&A. Library & Information Science Research, 31 (4). 205-
209.

58. Sommerville, I. Software engineering 9th Edition. ISBN-10, 137035152.
59. Spinellis, D. Code quality: the open source perspective. Adobe Press, 2006.
60. Squire, M. and Funkhouser, C., " A Bit of Code": How the Stack Overflow Community Creates Quality Postings. in

System Sciences (HICSS), 2014 47th Hawaii International Conference on, (2014), IEEE, 1425-1434.
61. Srba, I. and Bielikova, M. A Comprehensive Survey and Classification of Approaches for Community Question

Answering. Acm Transactions on the Web, 10 (3). 18.
62. Subramanian, S. and Holmes, R., Making sense of online code snippets. in Mining Software Repositories (MSR), 2013

10th IEEE Working Conference on, (2013), IEEE, 85-88.
63. Suri, H. Purposeful sampling in qualitative research synthesis. Qualitative research journal, 11 (2). 63.
64. Treude, C., Barzilay, O. and Storey, M.-A., How do programmers ask and answer questions on the web?: Nier track.

in 2011 33rd International Conference on Software Engineering (ICSE), (2011), IEEE, 804-807.
65. Treude, C. and Robillard, M.P., Understanding stack overflow code fragments. in, (2017), IEEE, 509–513.

44

66. Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A., Plösch, R., Seidl, A. and
Streit, J. Operationalised product quality models and assessment: The Quamoco approach. Information and Software
Technology, 62. 101-123.

67. Westen, D. and Rosenthal, R. Quantifying construct validity: two simple measures. Journal of Personality and Social
Psychology, 84 (3). 608.

68. Wu, Y., Wang, S., Bezemer, C.-P. and Inoue, K. How do developers utilize source code from stack overflow?
Empirical Software Engineering, 24 (2). 637–673.

69. Yang, D., Hussain, A. and Lopes, C.V., From query to usable code: an analysis of stack overflow code snippets. in
Proceedings of the 13th International Conference on Mining Software Repositories, (2016), ACM, 391-402.

70. Yang, D., Martins, P., Saini, V. and Lopes, C., Stack overflow in github: any snippets there? in Proceedings of the
14th International Conference on Mining Software Repositories, (2017), IEEE Press, 280-290.

71. Zou, J., Xu, L., Guo, W., Yan, M., Yang, D. and Zhang, X., Which non-functional requirements do developers focus
on? an empirical study on stack overflow using topic analysis. in Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on, (2015), IEEE, 446-449.

ACKNOWLEDGMENTS

We thank Stack Overflow for granting us access to the data that were analysed in this study. Thanks to the reviewers
for their detailed and insightful comments on the early version of this work. This work is funded by a University of
Otago Commerce Research Grant Award — accessed through the Otago Business School Research Committee.

APPENDIX A: ANSWER POST DATA SUMMARY

answerId: The unique identifier given to answers on Stack Overflow.
questionId: The unique identifier given to questions on Stack Overflow.
answerScore: The score of the answer, reached by adding the total number of upvotes and subtracting the total number
of downvotes.
answerCreationDate: The date and time the answer was first given.
answerBody: The entire body of the answer including the code snippet(s).
questionDate: The date and time the question was first given.
questionScore: The score of the question, reached by adding the total number of upvotes and subtracting the total
number of downvotes.
ViewCount: The number of times the question has been viewed.
AnswerCount: The total number of answers that a specific question received.
CommentCount: The number of comments a question received.

answerScore
Minimum: -9
Average: 1.89
Maximum: 3,228

AnswerCreationDate
Earliest: 01/01/2014
Latest: 26/11/2016

answerBody
Minimum length (words): 2
Average length (words): 300
Maximum length (words): 29,038
Minimum no. of code snippets: 1
Average no. of code snippets: 3
Maximum no. of code snippets: 21

questionDate
Earliest: 01/01/2014

45

Latest: 01/11/2015

questionScore
Minimum: -12
Average: 1.51
Maximum: 1,943

ViewCount
Minimum: 16
Average: 1,521
Maximum: 303,952

AnswerCount
Minimum: 2
Average: 2.73
Maximum: 43

CommentCount
Minimum: 0
Average: 2.58
Maximum: 41

Code Snippets
Minimum LOC: 2
Average LOC: 12
Maximum LOC: 859

Minimum length (characters): 0
Average length (characters): 119
Maximum length (characters): 29,038

Minimum no. of space (“ ”) characters: 0
Average no. of space (“ ”) characters: 25
Maximum no. of space (“ ”) characters: 12,064

Minimum SPA: 1
Average SPA: 1.61
Maximum SPA: 19

46

APPENDIX B: EXAMPLE ERRORS CAUSED BY CLASS DECLARATION WRAPPER AND
JAVA FILE NAMES

The errors associated with the code snippets below are highlighted in red.

‘ClassWithOnlyPrivateConstructorsShouldBeFinal’ Error (PMD)

Error: the ‘C189150’ class should be ‘final’.

‘CloneMethodMustImplementCloneable’ Error (PMD)

Error: the ‘C371214’ class declaration requires “implements Cloneable”.

‘CloneMethodReturnTypeMustMatchClassName’ Error (PMD)

Error: the class name ‘C371214’ and return type ‘Personne’ do not match.

47

‘ProperLogger’ Error (PMD)

Error: the class name ‘C58419’ and class name ‘YourClassName’ parameter do not match.

‘UseUtilityClass’ Error (PMD)

Error: the ‘C404764’ class should be ‘abstract’.

‘CommentsIndentationCheck’ (Checkstyle)

Error: the comment has an indentation level of 0 rather than 2.

‘IndentationCheck’ (Checkstyle)

This code snippet is associated with two errors:

• 'method def modifier' has incorrect indentation level 0, expected level should be 2 (code line 2)
• 'method def rcurly' has incorrect indentation level 0, expected level should be 2 (code line 5)

48

‘OuterTypeFilenameCheck’ Error (Checkstyle)

If a code snippet did not contain a class declaration, a class wrapper was added. Therefore, the outer type matches the
filename as shown below:

However, if the code snippet already contained an outer type/class declaration, a class wrapper was not added.
Therefore, the name of the Java file causes an error. An example code snippet is shown below:

‘WhitespaceAroundCheck’ Error (Checkstyle)

Error: there should be a space between class name ‘C266368’ and ‘{‘.

49

APPENDIX C: EXAMPLE OUTPUT OF TOOLS

Sample output of PMD

50

Sample output of Checkstyle

51

Sample output of FindBugs - File Summary

Sample output of FindBugs - Bug Summary

52

APPENDIX D: CHECKS/BUGS ASSESSED

D.1 Reliability and Conformance to Programming Rules (PMD23,24)
All rules (checks) included in the categories below were used to assess reliability and conformance to programming
rules.

Reliability (Error Prone)

• AssignmentToNonFinalStatic
• AvoidAssertAsIdentifier
• AvoidBranchingStatementAsLastInLoop
• AvoidCallingFinalize
• AvoidCatchingNPE
• AvoidCatchingThrowable
• AvoidDecimalLiteralsInBigDecimalConstructor
• AvoidDuplicateLiterals
• AvoidEnumAsIdentifier
• AvoidInstanceofChecksInCatchClause
• AvoidLosingExceptionInformation
• AvoidMultipleUnaryOperators
• AvoidUsingOctalValues
• BadComparison
• BeanMembersShouldSerialize
• BrokenNullCheck
• CallSuperFirst
• CallSuperLast
• CheckSkipResult
• ClassCastExceptionWithToArray
• CloneMethodMustBePublic
• CloneMethodMustImplementCloneable
• CloneMethodReturnTypeMustMatchClassName
• CloneThrowsCloneNotSupportedException
• CloseResource
• CompareObjectsWithEquals
• ConstructorCallsOverridableMethod
• DoNotCallSystemExit
• DoNotHardCodeSDCard
• DoNotThrowExceptionInFinally
• DontUseFloatTypeForLoopIndices
• EmptyCatchBlock
• EmptyFinalizer
• EmptyFinallyBlock
• EmptyIfStmt
• EmptyInitializer
• EmptyStatementBlock
• EmptyStatementNotInLoop
• EmptySwitchStatements
• EmptySynchronizedBlock

23 https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
24 https://pmd.github.io/latest/pmd_rules_java_errorprone.html

https://pmd.github.io/pmd-5.8.1/pmd-java/rules/index.html
https://pmd.github.io/latest/pmd_rules_java_errorprone.html

53

• EmptyTryBlock
• EmptyWhileStmt
• EqualsNull
• FinalizeDoesNotCallSuperFinalize
• FinalizeOnlyCallsSuperFinalize
• FinalizeOverloaded
• FinalizeShouldBeProtected
• IdempotentOperations
• ImportFromSamePackage
• InstantiationToGetClass
• JumbledIncrementer
• JUnitSpelling
• JUnitStaticSuite
• LoggerIsNotStaticFinal
• MisplacedNullCheck
• MissingBreakInSwitch
• MissingSerialVersionUID
• MissingStaticMethodInNonInstantiatableClass
• MoreThanOneLogger
• NonCaseLabelInSwitchStatement
• NonStaticInitializer
• OverrideBothEqualsAndHashcode
• ProperCloneImplementation
• ProperLogger
• ReturnEmptyArrayRatherThanNull
• ReturnFromFinallyBlock
• SimpleDateFormatNeedsLocale
• SingleMethodSingleton
• SingletonClassReturningNewInstance
• StaticEJBFieldShouldBeFinal
• StringBufferInstantiationWithChar
• TestClassWithoutTestCases
• UnconditionalIfStatement
• UnnecessaryBooleanAssertion
• UnnecessaryCaseChange
• UnnecessaryConversionTemporary
• UnusedNullCheckInEquals
• UseCorrectExceptionLogging
• UseEqualsToCompareStrings
• UselessOperationOnImmutable
• UseLocaleWithCaseConversions
• UseProperClassLoader

Conformance to Programming Rules

• Best Practices
o AbstractClassWithoutAbstractMethod
o AccessorClassGeneration
o AccessorMethodGeneration
o ArrayIsStoredDirectly
o AvoidPrintStackTrace
o AvoidReassigningParameters

54

o AvoidStringBufferField
o AvoidUsingHardCodedIP
o CheckResultSet
o ConstantsInInterface
o DefaultLabelNotLastInSwitchStmt
o GuardLogStatement
o JUnit4SuitesShouldUseSuiteAnnotation
o JUnit4TestShouldUseAfterAnnotation
o JUnit4TestShouldUseBeforeAnnotation
o JUnit4TestShouldUseTestAnnotation
o JUnitAssertionsShouldIncludeMessage
o JUnitTestContainsTooManyAsserts
o JUnitTestsShouldIncludeAssert
o JUnitUseExpected
o LooseCoupling
o MethodReturnsInternalArray
o PositionLiteralsFirstInCaseInsensitiveComparisons
o PositionLiteralsFirstInComparisons
o PreserveStackTrace
o ReplaceEnumerationWithIterator
o ReplaceHashtableWithMap
o ReplaceVectorWithList
o SwitchStmtsShouldHaveDefault
o SystemPrintln
o UnusedFormalParameter
o UnusedImports
o UnusedLocalVariable
o UnusedPrivateField
o UnusedPrivateMethod
o UseAssertEqualsInsteadOfAssertTrue
o UseAssertNullInsteadOfAssertTrue
o UseAssertSameInsteadOfAssertTrue
o UseAssertTrueInsteadOfAssertEquals
o UseCollectionIsEmpty
o UseVarargs

• Code Style
o AvoidProtectedFieldInFinalClass
o AvoidProtectedMethodInFinalClassNotExtending
o ConfusingTernary
o DontImportJavaLang
o DuplicateImports
o EmptyMethodInAbstractClassShouldBeAbstract
o ExtendsObject
o FieldDeclarationsShouldBeAtStartOfClass
o ForLoopShouldBeWhileLoop
o LocalHomeNamingConvention
o LocalInterfaceSessionNamingConvention
o LocalVariableCouldBeFinal
o MDBAndSessionBeanNamingConvention
o MethodArgumentCouldBeFinal
o PrematureDeclaration
o RemoteInterfaceNamingConvention
o RemoteSessionInterfaceNamingConvention

55

o TooManyStaticImports
o UnnecessaryFullyQualifiedName
o UnnecessaryLocalBeforeReturn
o UnnecessaryModifier
o UnnecessaryReturn
o UselessParentheses
o UselessQualifiedThis

• Design
o AbstractClassWithoutAnyMethod
o AvoidCatchingGenericException
o AvoidDeeplyNestedIfStmts
o AvoidRethrowingException
o AvoidThrowingNewInstanceOfSameException
o AvoidThrowingNullPointerException
o AvoidThrowingRawExceptionTypes
o ClassWithOnlyPrivateConstructorsShouldBeFinal
o CollapsibleIfStatements
o CouplingBetweenObjects
o DoNotExtendJavaLangError
o ExceptionAsFlowControl
o ExcessiveImports
o FinalFieldCouldBeStatic
o GodClass
o ImmutableField
o LawOfDemeter
o LogicInversion
o LoosePackageCoupling
o SignatureDeclareThrowsException
o SimplifiedTernary
o SimplifyBooleanAssertion
o SimplifyBooleanExpressions
o SimplifyBooleanReturns
o SimplifyConditional
o SingularField
o SwitchDensity
o UselessOverridingMethod
o UseSingleton
o UseUtilityClass

• Documentation
o UncommentedEmptyConstructor
o UncommentedEmptyMethodBody

• Multithreading
o AvoidSynchronizedAtMethodLevel
o AvoidThreadGroup
o DoNotUseThreads
o DontCallThreadRun
o DoubleCheckedLocking
o NonThreadSafeSingleton
o UnsynchronizedStaticDateFormatter
o UseNotifyAllInsteadOfNotify

• Performance
o AddEmptyString
o AppendCharacterWithChar

56

o AvoidArrayLoops
o AvoidInstantiatingObjectsInLoops
o BigIntegerInstantiation
o BooleanInstantiation
o ByteInstantiation
o ConsecutiveAppendsShouldReuse
o ConsecutiveLiteralAppends
o InefficientEmptyStringCheck
o InefficientStringBuffering
o InsufficientStringBufferDeclaration
o IntegerInstantiation
o LongInstantiation
o OptimizableToArrayCall
o RedundantFieldInitializer
o ShortInstantiation
o SimplifyStartsWith
o StringInstantiation
o StringToString
o TooFewBranchesForASwitchStatement
o UnnecessaryWrapperObjectCreation
o UseArrayListInsteadOfVector
o UseArraysAsList
o UseIndexOfChar
o UselessStringValueOf
o UseStringBufferForStringAppends
o UseStringBufferLength

• Additional rulesets
o EmptyStaticInitializer
o UnnecessaryFinalModifier

• Jakarta Commons Logging
o GuardDebugLogging

• Java Logging
o GuardLogStatementJavaUtil
o InvalidSlf4jMessageFormat

D.2 Readability (Checkstyle25)

• AbbreviationAsWordInName
• AnnotationLocation
• ArrayTypeStyle
• AtclauseOrder
• AvoidEscapedUnicodeCharacters
• AvoidStarImport
• CatchParameterName
• ClassTypeParameterName
• CommentsIndentation
• CustomImportOrder
• EmptyBlock
• EmptyCatchBlock
• EmptyLineSeparator
• FallThrough

25 https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml

57

• FileTabCharacter
• GenericWhitespace
• IllegalTokenText
• Indentation
• InterfaceTypeParameterName
• InvalidJavadocPosition
• JavadocMethod
• JavadocParagraph
• JavadocTagContinuationIndentation
• LambdaParameterName
• LeftCurly
• LineLength
• LocalVariableName
• MemberName
• MethodName
• MethodParamPad
• MethodTypeParameterName
• MissingJavadocMethod
• MissingSwitchDefault
• ModifierOrder
• MultipleVariableDeclarations
• NeedBraces
• NoFinalizer
• NoLineWrap
• NonEmptyAtclauseDescription
• NoWhitespaceBefore
• OneStatementPerLine
• OneTopLevelClass
• OperatorWrap
• OuterTypeFilename
• OverloadMethodsDeclarationOrder
• PackageName
• ParameterName
• ParenPad
• RightCurly
• SeparatorWrap
• SingleLineJavadoc
• SummaryJavadoc
• TypeName
• UpperEll
• VariableDeclarationUsageDistance
• WhitespaceAround

D.3 Performance (FindBugs26)
• Bx: Primitive value is boxed and then immediately unboxed
• Bx: Primitive value is boxed then unboxed to perform primitive coercion
• Bx: Primitive value is unboxed and coerced for ternary operator
• Bx: Boxed value is unboxed and then immediately reboxed
• Bx: Boxing a primitive to compare
• Bx: Boxing/unboxing to parse a primitive

26 http://findbugs.sourceforge.net/bugDescriptions.html

http://findbugs.sourceforge.net/bugDescriptions.html

58

• Bx: Method allocates a boxed primitive just to call toString
• Bx: Method invokes inefficient floating-point Number constructor; use static valueOf instead
• Bx: Method invokes inefficient Number constructor; use static valueOf instead
• Dm: The equals and hashCode methods of URL are blocking
• Dm: Maps and sets of URLs can be performance hogs
• Dm: Method invokes inefficient Boolean constructor; use Boolean.valueOf(...) instead
• Dm: Explicit garbage collection; extremely dubious except in benchmarking code
• Dm: Method allocates an object, only to get the class object
• Dm: Use the nextInt method of Random rather than nextDouble to generate a random integer
• Dm: Method invokes inefficient new String(String) constructor
• Dm: Method invokes toString() method on a String
• Dm: Method invokes inefficient new String() constructor
• HSC: Huge string constants is duplicated across multiple class files
• SBSC: Method concatenates strings using + in a loop
• SIC: Should be a static inner class
• SIC: Could be refactored into a named static inner class
• SIC: Could be refactored into a static inner class
• SS: Unread field: should this field be static?
• UM: Method calls static Math class method on a constant value
• UPM: Private method is never called
• UrF: Unread field
• UuF: Unused field
• WMI: Inefficient use of keySet iterator instead of entrySet iterator

D.4 Security (FindBugs)
Security Checks

• Dm: Hardcoded constant database password
• Dm: Empty database password
• HRS: HTTP cookie formed from untrusted input
• HRS: HTTP Response splitting vulnerability
• PT: Absolute path traversal in servlet
• PT: Relative path traversal in servlet
• SQL: Nonconstant string passed to execute or addBatch method on an SQL statement
• SQL: A prepared statement is generated from a nonconstant String
• XSS: JSP reflected cross site scripting vulnerability
• XSS: Servlet reflected cross site scripting vulnerability in error page
• XSS: Servlet reflected cross site scripting vulnerability

Malicious Code Vulnerability Checks
• DP: Classloaders should only be created inside doPrivileged block
• DP: Method invoked that should be only be invoked inside a doPrivileged block
• EI: May expose internal representation by returning reference to mutable object
• EI2: May expose internal representation by incorporating reference to mutable object
• FI: Finalizer should be protected, not public
• MS: May expose internal static state by storing a mutable object into a static field
• MS: Field isn't final and can't be protected from malicious code
• MS: Public static method may expose internal representation by returning array
• MS: Field should be both final and package protected
• MS: Field is a mutable array
• MS: Field is a mutable collection
• MS: Field is a mutable collection which should be package protected
• MS: Field is a mutable Hashtable

59

• MS: Field should be moved out of an interface and made package protected
• MS: Field should be package protected
• MS: Field isn't final but should be
• MS: Field isn't final but should be refactored to be so

	ABSTRACT
	1. INTRODUCTION
	2. Background and Research Questions
	2.1 Code Quality on Stack Overflow
	2.2 Research Questions

	3. Methodology
	3.1 Code Snippet Quality Criteria
	3.2 Code Quality on Stack Overflow
	3.2.1 Data Extraction and Analysis
	3.2.2 Tool Selection
	3.2.3 Code Snippet Pilot
	3.2.4 Final Tool Analysis Process
	3.2.5 Qualitative Analysis

	4. Results
	4.1 Reliability and Conformance to Programming Rules (RQ1)
	4.1.1 All Reliability and Conformance to Programming Rules Violations
	4.1.2 Snippet Relevant Violations
	4.1.3 Qualitative Analysis

	4.2 Readability (RQ2)
	4.2.1 All Readability Violations
	4.2.2 Snippet Relevant Violations
	4.2.3 Qualitative Analysis

	4.3 Performance (RQ3)
	4.3.1 All Performance Violations
	4.3.2 Snippet Relevant Violations
	4.3.3 Qualitative Analysis

	4.4 Security (RQ4)
	4.4.1 All Security Violations
	4.4.2 Snippet Relevant Violations
	4.4.3 Qualitative Analysis

	4.5 Results Summary (Triangulation)

	5. Discussion and Implications
	5.1 Reliability and Conformance to Programming Rules (RQ1)
	5.2 Readability (RQ2)
	5.3 Performance (RQ3)
	5.4 Security (RQ4)
	5.5 Summary

	6. Threats
	7. Conclusion and Future Research
	8. References
	ACKNOWLEDGMENTS
	Appendix A: Answer post data summary
	Appendix B: Example errors caused by class declaration wrapper and java file names
	Appendix C: Example output of tools
	Appendix D: Checks/bugs assessed

