
Improving Surveillance for Emerging Infectious Diseases in NZ

Prof Michael Baker Prof Nick Wilson (presenter) University of Otago, Wellington, NZ

Health Environment Infection Research Unit University of Otago

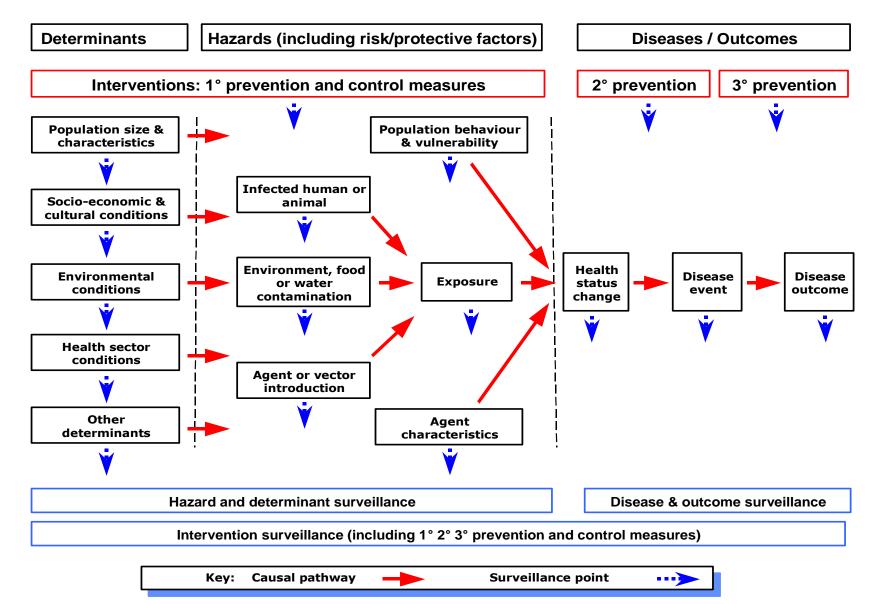
Outline

Qu 1. What events to place under surveillance for EIDs?

- Pandemic typology
- Position in causal pathway

Qu 2. What functional requirements for EID surveillance?

- Global Health Security Agenda framework
- Aims of public health surveillance
- Public health surveillance quality attributes
- Qu 3. What is our current capacity?
 - Learning from past experience
 - Pandemic influenza 2009
 - Syndromic surveillance for respiratory infections


Conclusions

HEIRU

Pandemic typology (Baker et al, unpublished)

Pandemic Type	Examples (*PHEIC)
A. Pandemic IDs transmitted between people with shor	t to medium incubation periods
1. ID with well-established pandemic potential	Pandemic influenza 1918, 1957, 2009*
2. Poorly characterised emerging ID with pandemic potential	SARS 2002, MERS-CoV 2012
3. Synthetic or weaponised ID with pandemic potential	Synthetic bioterrorist agent, eg smallpox
4. Well characterised ID with re-introduction potential	Diphtheria 1998, Polio 2014*, Measles (post-elimination)
5. Exotic ID with pandemic potential in low income countries	Plague in India 1994, Ebola 2014*
B. Pandemic IDs with predominantly asymptomatic transmission & long incubation	
6. ID with high asymptomatic transmission, long latency and pandemic potential	HIV/AIDS 1981, nvCJD 1996
7. Increase in serious antimicrobial resistance	Drug resistant tuberculosis (MDR / XDR / TDR)
C. Pandemic IDs predominantly transmitted from animals	s, vectors, food, and water
8. Exotic vector borne & zoonotic ID with moderate to high introduction potential	Arboviral diseases eg, Zika 2016*, Dengue, Chikungunya
9. Imported food, drink or other product with serious contaminant	Botulism in canned food, Radiological agent in food

Position in causal pathway

Source: Baker, Easther, Wilson. A surveillance sector review. BMC Public Health, 2010

Global Health Security Agenda

Identifies capacities under:

- Prevent
- Detect
- Respond

Surveillance needed to support all capacities

Source: Tappero et al. Lancet 2015;385:1884-2015

Global Health Security Agenda independent assessment: Country X

Target

Summary	\bigcirc
Prevent	\bigcirc
Antimicrobial resistance	
Zoonotic disease	\bigcirc
Biosafety and biosecurity	
Immunisation	\bigcirc
Detect	\bigcirc
National laboratory system	\bigcirc
Surveillance for priority syndromes	\bigcirc
Real-time reportable disease surveillance	\bigcirc
Reporting	\bigcirc
Workforce development	\bigcirc
Respond	\bigcirc
Emergency operations centres	\bigcirc
Multisectoral response	\bigcirc
Medical countermeasures/deployment	
 No capacity Limited capacity Demonstrated capacity 	

HEIRU

Health Environment Infection Research Unit University of Otago

Status

Public health surveillance aims

Control-focussed surveillance provides information to support <u>control</u> measures – EID detection & response

- 1. Identify events that require a specific response
- 2. Track delivery and quality of control measures
- **Strategy-focussed** surveillance provides information to support *prevention* strategies EID prevention
 - 3. Monitor event occurrence & distribution
 - 4. Monitor event impacts & help set priorities
 - 5. Monitor hazards, risk factors & determinants to improve prevention
 - 6. Monitor & evaluate interventions
 - 7. Support modelling of future scenarios
 - 8. Support research & identify hypotheses
 - 9. Fulfil legislative & international reporting
 - 10. Monitor context for surveillance

Source: Baker, Easther, Wilson. A surveillance sector review. BMC Public Health, 2010

Public health surveillance quality attributes

- **Control-focused** surveillance (case-based, event-based screening, service tracking)
- Sensitivity
- Timeliness
- Stability

Strategy-focused surveillance (monitoring, prevalence surveys)

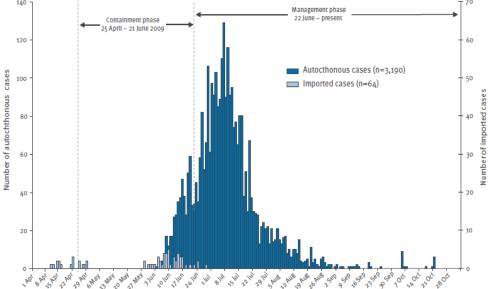
- Representativeness
- Data quality (completeness, validity)

HEIRU

Current NZ capacity

Experience with early detection and assessment

- Surveillance of 2009 influenza H1N1 pandemic
- Syndromic surveillance for respiratory infections

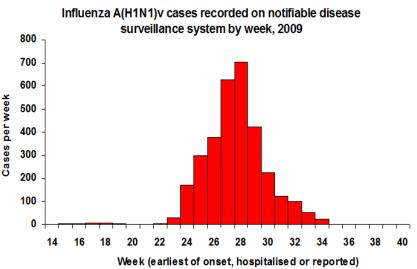


Health Environment Infection Research Unit University of Otago

Surveillance of H1N1 pandemic & NZ

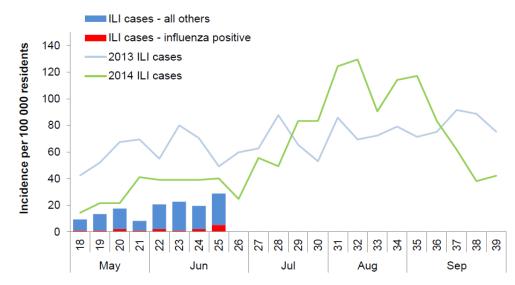
Timeline

- 11 April 2009, Mexico notified potential PHEIC to WHO
- 25 April, WHO Director General declared outbreak constituted a PHEIC
- 25 April, group of students & teachers arrived in Auckland after a trip to Mexico. 9 confirmed as NZ's first cases



Surveillance of H1N1 pandemic in NZ

Assessment


- Good rapid assessment of key epidemiological parameters (published rapidly: *Eurosurveillance*)
- Good laboratory capacity & response
- Surveillance data informed transition to management phase (albeit could have been faster?)
- Poor limited behavioural surveillance (response to hygiene messages etc)
 Influenza A(H1N1)v cases recorded on notifiable disease surveillance system by week, 2009
- Poor no official review

Source: Baker, Wilson et al. Eurosurveillance 2009;14:pii=19319

Establishing Syndromic Surveillance for Respiratory Infections (SHIVERS Project funded by CDC)

Figure 1 Weekly resident ILI and influenza incidence since 27 April 2015

ILI surveillance in primary care 45% no influenza or other virus detected (Auckland region)

SARI surveillance in hospital 25% no influenza or other virus detected

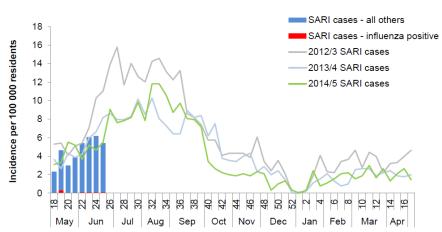


Figure 2 Weekly resident SARI and influenza incidence since 27 April 2015 and previous seasons SARI incidence

Possible Next Steps for Improving Emerging ID Surveillance in NZ

- Review EID surveillance needs EID scenarios including extreme events eg, where border closure needed for NZ (Boyd et al – submitted)
- 2. Stocktake of surveillance capacity
 - Learning from SHIVERS, AMR, & recent international work (Global Health Security Agenda, IHR, APSED Framework)
 - Potential of 'Big data' including NZ's national linked data (IDI – hospitalisations, primary care)
- 3. Develop a suitable EID Surveillance Strategy implement & test in exercises

Conclusions

1) EID are unpredictable, but are likely to fall into distinct typologies

- 2) NZ well positioned for effective EID surveillance
- 3) Need an EID Surveillance Strategy for NZ

HEIRU

Health Environment Infection Research Unit University of Otago