Estimating the technical potential for residential Demand Response in New Zealand

OERC Symposium 2018 23.11.2018

Carsten Dortans

AGENDA

The Challenge Demand variability and

congestion periods

Results

Maximum demand and energy potential of DR. Impact of DR on national electricity generation and economic evaluation

Demand Side Management

Demand Response in contrast to Energy Efficiency

Methods

Scenario-based analysis and economic estimation

Limitations

Limitations and opportunities to enhance future work

01: THE CHALLENGE Demand volatility

2

01: THE CHALLENGE Congestion periods

DEMAND SIDE MANAGEMENT

DEMAND RESPONSE

Change of instantaneous demand, timing of electricity consumption, response to electricity price changes or to incentive payments

ENERGY EFFICIENCY

Reduces electricity demand in general

Does not taker variable conditions in electricity generation into account 03: METHODS Demand profiles

Heat pumps GREEN Grid monitored

Scaled to 638GWh p.a

 50% of total residential household electricity Electricity demand can in principle be shifted

04: RESULTS Demand and Energy

Demand Morning Peak Summer: Max. 860 MW

Winter: Max. 1,600 MW

Energy Morning Peak

Summer: 3,150 MWh per day Winter: 5,120 MWh per day^{*2}

Demand Evening Peak

Summer: Max. 760 MW Winter: Max. 1,200 MW

Energy Evening Peak

Summer: 3,120 MWh per day Winter: 4,920 MWh per day

*1HP=Heat Pumps, HW=Hot Water Heaters, REF=Refrigerators; *2Equivalent of running Huntly Power Station for 5.5 hours per day

Individual appliance demand as well as aggregated group demand

Load reduction to zero at peak demand

Load of peak times is equally spread over the prior period

New maximum demand 1,740 MW (previously 1,600 MW)

Applying load shifting reduces electricity generation per day at peak times by:

ng	Summer:	HW	REF	HP
	Morning Peak: 15 %	8%	5%	1%
	Evening Peak: 14 %	9%	5%	1%
	Winter:	HW	RFF	HP
	Winter: Morning Peak: 20 %	HW 10%	REF 4%	HP 4%

04: RESULTS Economic analysis

Annual cost predominately determined by hot water heaters and refrigeration

Annual cost without DR: \$539M

Savings per year with DR: Load shifting: \$72M Reduce congestion: \$107M*1

10

05: Limitations

Thank you for your attention

Carsten Dortans Masters Candidate Sustainable Energy Management University of Otago

Email: carsten.dortans@postgrad.otago.ac.nz Tel.: +64 22 392 8094 Assoc. Prof. Janet Stephenson

Dr. Ben Anderson

Prof. Michael Jack

Prof. Gerry Carrington

Dr. Sharee McNab

Assoc. Prof. David Eyers

Gwenda Crawford & Nicki Topliss

Ismaël Tall

