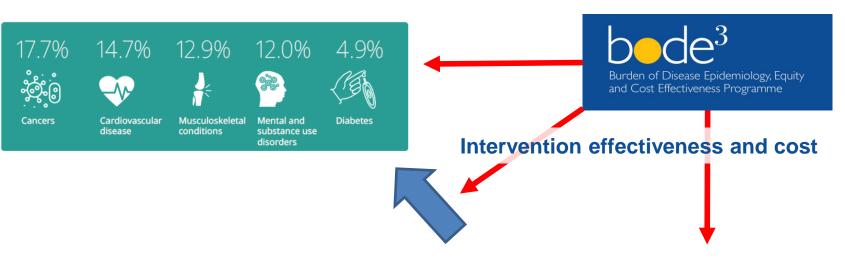
The priorities: Estimating impact of interventions on health outcomes

Professor Tony Blakely, and on behalf of BODE³ team

Productivity

Wellbeing



What chronic diseases are causing the most loss of health in NZ?

Health services 11% GDP

What risk factors are causing these diseases?

Aim of BODE³

To estimate health and wider societal gains, costs, cost-effectiveness and equity impacts of preventive interventions, and build capacity in modelling of preventive interventions.

HRC-funded BODE³ 2016-21

Obj 1: Dietary and physical activity interventions

Obj 2: Interventions targeted by absolute CVD risk

Obj 3: Morbidity & productivity in aging population

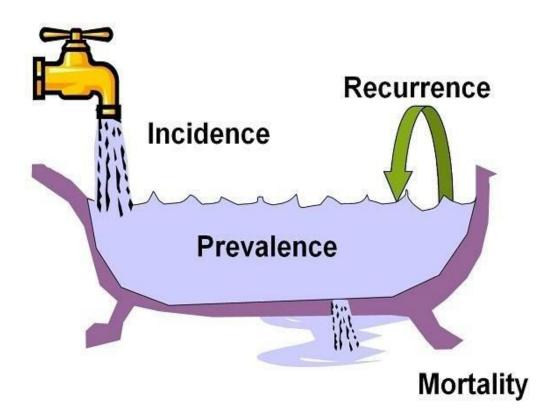
PLATFORM: Models, league tables, knowledge translation

Plus much more

- MBIE and other funding
- Tobacco, screening programmes, cancer treatments, palliation, health services effectiveness, health system costs
- Impacts on health inequalities

We use QALYs

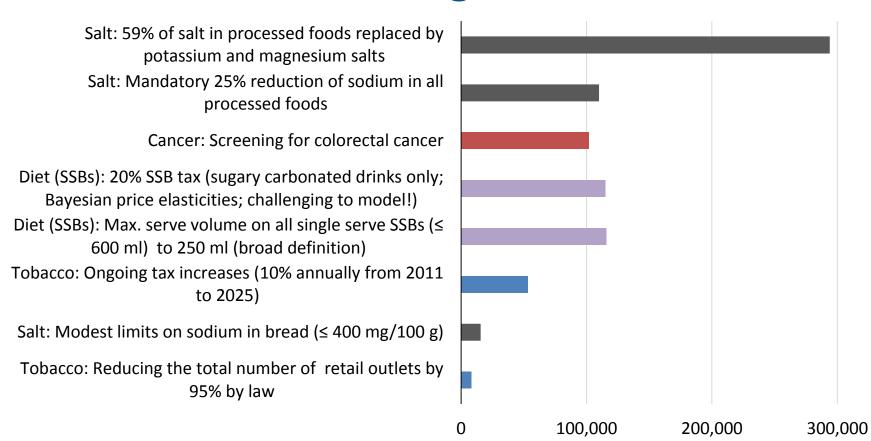
- QALYs = quality adjusted life years gained
 - Very similar to DALYs (disability adjusted life years) averted
- When we say "100,000 QALYs gained", we mean:
 - 100,000 QALYs gained for the 2011 New Zealand population alive (n= 4.4 million) over the remainder of their lives
 - Which would be:
 - 23 healthy life years gained per 1000 people, or
 - 8.3 healthy days per person
- We usually use 3% discounted QALYs (but also 0% and 6%)



So how do we actually do it?

- Build a 'business as usual' model of New Zealand population alive in 2011, over the rest of their lives
- Conceptualize and intervention, e.g. dietary counselling or an SSB tax or food reformulation
- Source the input parameters for the intervention (e.g. uptake rates, attrition, etc for counselling; price elasticities for taxes)
- Overlay intervention on BAU, and determine the change in QALYs and costs between intervention and BAU = intervention effect

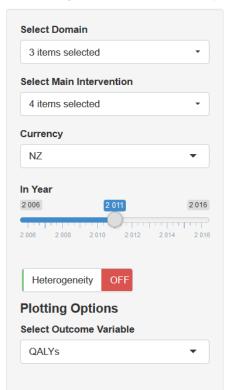
We use macro-simulation, in particular a multistate lifetable

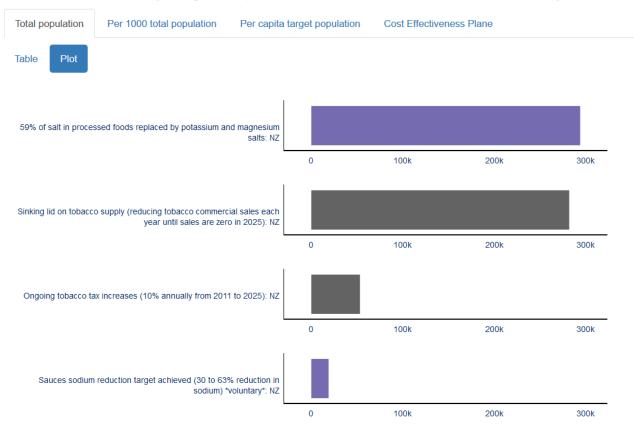


Methods – multistate lifetable

 A multistate lifetable is literally that – a lifetable in which subjects (proportions of a cohort) can be in multiple states simultaneously

			_	_	_	_	_			
	Α	В	С	D	Е	F	G	Н		A
					Life table	Deaths in				
1					cohort	cohort				
				probability of	no. of survivors at	no. who die	no. of person-years			
			average mortality	dying between	age x out of those	between age x	lived by cohort to		prevYLD rate	disa
2	sex	age	rate at age x	age x and x+1	in year 1	and x+1	age x+1/2	life expectancy	from all causes	p
3		x	m _x	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l}_{\mathbf{x}}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{w}_{\mathbf{x}}$	
					1_0 = population		$L_x = (1_x + 1_{x+1})/2$			
4		_ <u>I</u>	mortality data	$q_x = 1 - EXP(-m_x)$	$1_x = 1_{x-1} - d_{x-1}$	$\mathbf{d}_{x} = \mathbf{q}_{x} \times 1_{x}$	$L_{110+} = 1_{110+}/m_{110+}$	$\mathbf{e}_{\mathbf{x}} = \sum \mathbf{L}_{\mathbf{x}} / 1_{\mathbf{x}}$	from BOD data	Lw _x =
7	male	4	0.000135194	0.0001	114928	16	114920	79.14	0.026408649	
8	male	5	0.00010438	0.0001	114912	12	114906	78.15	0.03374444	
9	male	6	8.39192E-05	0.0001	114900	10	114895	77.16	0.03374444	
10	male	7	6.41376E-05	0.0001	114891	7	114887	76.17	0.03374444	
11	male	8	5.40211E-05	0.0001	114883	6	114880	75.17	0.03374444	-
H 4		LifeTabl	e CHD Strok	COPD LR	BladderCan	CervicalCan	/ EndometrialCan)
Rea	dy							100% (-)	(+)

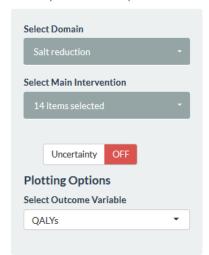

What we are aiming to achieve is.....

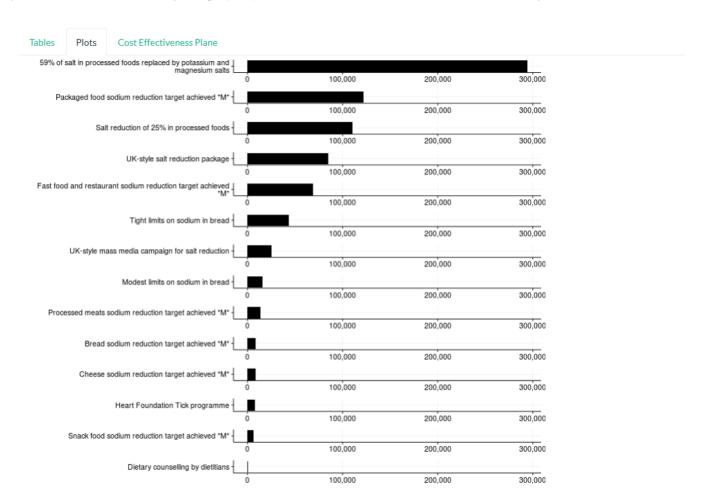


QALYs (3% discounted; over remainder of 2011 popn lifespan)

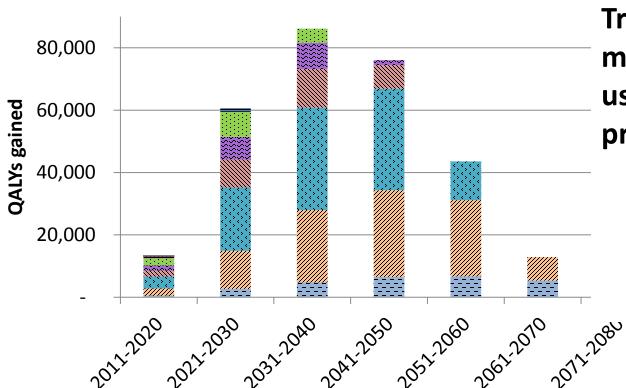
BODE³ League Table

This interactive league table allows researchers and policy-makers to rank health 'interventions' by health gains, costs, or cost-effectiveness. You can use the section on the left to customize your search.





BODE³ League Table


This interactive league table allows researchers and policy-makers to rank health 'interventions' by health gains, costs, or cost-effectiveness. You can use the section on the left to customize your search.

Please allow up to 30 seconds for plots to be created.

How soon do we get these health gains? Example of salt substitution (NaCl for KCl)

Treatments usually much earlier (but usually smaller than prevention)

Public Health Expert

What could we do, and what should we not do, to improve public health? This Blog has postings from Tony Blakely, Nick Wilson and other public health experts on issues such as efficiency, equity, interventions, politics, cost effectiveness and much more.

SUBSCRIBE BY EMAIL

Trouble subscribing? Email hilary.day@otago.ac.nz

Email address

ex: someone@mydor

Subscribe

RECENT POSTS

The case for lowering salt levels in processed

The case for lowering salt levels in processed foods is now even stronger – new research

Tuesday, June 26th, 2018 | dayhi34p | No Comments

Like 3 people like this. Be the first of your friends.

Prof Nick Wilson, Dr Cristina Cleghorn, Dr Nhung Nghiem, Prof Tony Blakely

The scientific case for lowering dietary salt intakes became a bit confused in recent years by studies which suggested that *both* low sodium (salt) intake and high sodium intake were associated with higher risk of death. But new research suggests that low sodium intakes are not associated with a higher risk of death and the results for low sodium intake in these other studies may be largely due to inaccurate measurement of sodium intake. So the scientific community can now more confidently recommend that governments progress interventions to reduce sodium levels in processed foods. This could substantially benefit health, reduce

Search Search

TAGS

alcohol alcohol tax
cancer climate
change cost-effective
cost
effectiveness cvd
DALYS diet
e-cigarettes
environmental health food
health inequalities Health
policy healthy culture
healthy eating

Key messages

- Dietary interventions have massive variation in impact on QALYs, from a few 100 (e.g. dietary counselling) to several 100s of thousands (e.g. substituting potassium chloride for sodium chloride in foods).
- Many preventive interventions are cost saving to the health system.
- Generalizing:
 - population-wide interventions (e.g. reformulation) tend to have greater impact than targeted or personalized interventions (e.g. counselling)
 - health gains and costs tend to start within years of an intervention, but for preventive interventions often take decades to reap full benefits.
- There is genuine and large uncertainty in modelling, but when impacts differ by an order of magnitude, we are confident in their ranking.