

Otago Spotlight Series Cardiovascular Disease

Modelling Dietary Sodium Reductions & Abdominal Aortic Aneurysm Screening

Professor Nick Wilson, Dr Nisha Nair, Professor Tony Blakely, Dr Nhung Nghiem, Dr Cristina Cleghorn, Dr Linda Cobiac & Other BODE³ Team members, University of Otago, Wellington

Dietary salt interventions– contributing to a NZ league table

- Dietary salt → blood pressure → heart disease & stroke
- NZ mainly uses: counselling; Tick Programme
- Other countries:
 - Media campaigns (eg, UK)
 - Maximum levels in foods (eg, bread: EU countries)
 - Taxing salty foods (eg, Hungary)
 - Encouraging industry to reformulate food (eg, UK)
 - Substitution with KCI (eg, Finland)

Methods (sodium reduction)

- Markov macro-simulation model (in TreeAge, with comparison made with MSLT model)
- Estimates QALYs gained (\(\psi CHD & \psi stroke \))
- Estimates net health system costs (life course)
- Population: 2.3 m NZ adults, aged 35+
- Health system perspective
- Discounting of QALYs & costs at 3% per annum
- Online Reports: Model validation, background to interventions

Selected interventions & QALYs gained in NZ adults

(Ngheim et al 2015 PLoS One, Nghiem et al 2016 BMC Public Health)

QALYs

Building up a league table – QALYs, cost savings, cost-effectiveness

UNIVERSITY OTAGO						
Modelled intervention	Health gain (QALYs for remainder of the cohort's life)	Health system cost (NZ\$; millions) for remainder of the cohort's life	Incremental cost- effectiveness ratio (ICER)			
1) Salt substitution at the 59% level (processed food)	294,000	-1500	Dominant			
2) "Sinking lid" for salt supply to the market	211,000	-1110	Dominant			
3) Salt tax	195,000	-1000	Dominant			
4) Salt substitution at 25%	121,000	-620	Dominant			
5) Mandatory 25% reduction of sodium in all processed foods ("Mandatory-All")	110,000	-600	Dominant			
6) UK Package (media campaign and voluntary action by industry)	85,100	-440	Dominant			
7) Mandatory 25% reduction of sodium in bread, processed meats and sauces ("Mandatory-3G")	61,700	-340	Dominant			
8) Tight limits on sodium in bread (280 mg/100 g)	43,500	-220	Dominant			
9) UK style "Mass Media Campaign"	25,200	-120	Dominant			
10) Modest limits on sodium in bread (400 mg / 100 g)	15,600	-83	Dominant			
11) Endorsement Label Programme (current practice in NZ)	7900	-34	Dominant			
12) Dietary counselling by dietitians (current practice in NZ)	200	6.90	NZ\$36,900 per QALY gained			

But notable uncertainty persists [Nghiem et al 2015 PLoS One]

Who gains QALYs: mainly older NZers

Selected Issues

- Some policy-makers may want to maximise QALYs in working-age adults: sodium reduction limited value
- Pro-equity: 33% higher per capita QALY gain for Māori
- Can compare personal (counselling) with population-level interventions
- Can compare voluntary labelling (Pick the Tick) with mandatory regulations (see also re salt targets: Wilson et al 2016, Nutr J)
- Tax revenue from a salt tax a potential plus, but depends on use of the revenue

A Closer Look: Salt substitution

- Various products on market: ↓NaCl & ↑KCl
- Used for decades in Finland, but modest use in NZ (eg, Continental soups)
- RCT data 59% substitution acceptable
- Our bread design research suggests feasibility (Wilson et al 2016 BMC Nutrition)

RESEARCH ARTICLE

Open Access

Designing low-cost "heart healthy bread": optimization using linear programing and 15-country comparison

Nick Wilson*, Nhung Nghiem, Sian Ryan, Christine Cleghom, Nisha Nair and Tony Blakely

Abstract

Background: Bread is an important comp also typically too much of other nutrients the optimal design of low-cost "heart heal 15 countries.

Methods: Optimization using linear programge of minimal sodium levels. Then with then dietary fiber, and then polyunsaturate and comparison nutrient and price data ca

Results: The optimized loaf costing NZ\$1. three out of the eight heart health nutrien in incredients (HHR\$3), was nutritionally su

otago.ac.nz/cvd

Media coverage of these bread designs: also suggests high public interest

NZ Herald "Kiwi researchers design super-loaf"

HEART-HEALTHY BREAD FOR \$1.50

is the cost of production

(ingredients, packaging, production wages, vehicle fuels costs, energy and water). They also modelled various profit margins. A 25% profit lifted the price to \$1.82. The loaf is on average 1036g, compared with 600g for a supermarket \$1 white loaf

But what if sodium reduction just benefits high-intake consumers?

- Little scientific debate about risk from high intakes (>5g/d Na+, >13g/d salt)
- But recent studies: uncertainty about hazard from Na+ <5g/d. Even U-shaped association (highly disputed).
- GBD 2013: Theoretical minimum risk exposure level (TMREL) varied: Na+ 1-5g/d
- So we have started exploring these possibilities

Preliminary Results: QALYs gained (DR=3%)

Intervention	Our previous modelling	RRs from GBD 2013, (TMREL=1-5g)	RRs from Mente et al, no U-shape (TMREL=4-5g)	RRs from Mente et al, U-shape (TMREL=4-5g)
Tick Programme intervention	7900	10,200	550	-15,700
Maximum level in bread (400mg/100g)	15,600	21,500	1160	-33,500
UK package	85,100	104,900	5300	-186,000
Processed meats (mandatory 30%↓)	13,400	185,200	16,700	-27,800

UK Package (media campaign, reformulation): Preliminary Results with QALYs gained (DR=3%)

Summary: Sodium reduction

- Our modelling of many interventions many large health gains, nearly all cost saving
- Sodium substitution largest gains (& feasible as per bread research)
- Research to clarify TMREL & U-shape issue critical
- Policy-makers concerned about the scientific uncertainty could target interventions to high intake consumers (eg, \Na+ in processed meats)
- But if research confirms a U-shaped association > would need personalised targeting of sodium advice

A screening program for abdominal aortic aneurysms:

Would an NHS-style AAA screening program be cost-effective in NZ?

Why are we thinking about AAAs?

- AAAs are dilatations of the abdominal aorta
- Present in ? 5-10% of men aged 65-79 years
- AAAs expand asymptomatically until they rupture-unless individual dies of something else
- AAA rupture carries high mortality:
 - individual may die before they can get emergency repair
 - emergency repair itself carries high mortality

Screening can help

- AAAs can be detected before rupture by abdominal ultrasound scan
- Idea is that individuals with large AAAs (> 5.5 cm) can be offered elective repair (<5% mortality)
- Population-based screening for AAA in older men reduces AAArelated mortality by about 40%

bdominal aortic

Graft being

• In the UK, NHS has had a AAA screening program (one-off

ultrasound for men aged 65 years) since 2009

- Sweden since 2006
- US: Medicare funds same for men aged 65-75 who have 'ever smoked' since 2007
- NZ: nothing yet

otago.ac.nz/cvd

- 1. Borrowed Markov model from UK
- 2. Replaced with NZ inputs as far as possible:
- □ NZ life expectancy
- NZ background morbidity
- □ NZ health system costs
- □ NZ's own pattern of operative repair and postoperative mortality
- □ NZ surveillance regimen for small and medium AAAs
- ☐ Etc.
- 3. Re-ran the model

Pretty cost-effective

Can Stock Photo

	Incr QALYs	Incr costs	ICER
Non-Māori	0.023 [0.007 to 0.047]	\$ 142 [\$63 to \$267]	\$ 6647 [\$4262 to \$12,176]
Māori	0.014 [0.004 to 0.030]	\$ 133 [\$60 to \$248]	\$ 9692 [\$5949 to \$18,178]
Both	0.022 [0.007 to 0.045]	\$ 141 [\$62 to \$266]	\$ 6793 [\$4348 to \$12,497]

ota

Draft results—may change once model finalised

Criteria for assessing screening programmes

- The condition is a suitable candidate for screening.
- There is a suitable test.
- There is an effective and accessible treatment or intervention for the condition identified through early detection.
- There is high quality evidence, ideally from randomised controlled trials, that a screening programme is effective in reducing mortality or morbidity.
- The potential benefit from the screening programme should outweigh the potential physical and psychological harm (caused by the test, diagnostic procedures and treatment).
- The health care system will be capable of supporting all necessary elements of the screening pathway, including diagnosis, follow-up and programme evaluation.
- 7. There is consideration of social and ethical issues.
- 8. There is consideration of cost-benefit issues.

BODE³ Team Members

Otago Spotlight Series Cardiovascular Disease

Questions?

