Sustainable Energy Systems School of Engineering and Computer Science Faculty of Engineering Victoria University of Wellington

Optimal Sizing of an Islanded Micro-Grid Using Meta-Heuristic Optimization Algorithms Considering Demand-Side Management

Soheil Mohseni

Supervisors: Professor Alan C. Brent and Dr. Daniel Burmester

Outline

2

Introduction and Significance
Research Objectives
Methodology
Simulation Results
Key Findings

Introduction and Significance

3

- The necessity of micro-grid sizing
- Considering DSM strategies: Peak load reduction
- The need for advanced heuristics to optimize the problem
- Alleviating the computational burden: Pave the way for incorporating other features (e.g. uncertainty analysis) into the problem

Research Objectives

4

Developing a method for optimal sizing of the components of micro-grids that:

- Incorporates a DRP
- Reduces the computational complexity
- Improves the solution accuracy compared with the stateof-the art

Micro-Grid Test System

Fig. 1. Micro-grid test system

Case study: Hengam Island, Persian Gulf, Iran

Fig. 2. Monthly average daily solar irradiance at the considered site

Fig. 3. Monthly average wind speed at the considered site

Fig. 4. Monthly average total load on the micro-grid

Methodology

6

The proposed method consists mainly of five parts:

- A model reduction technique
- A DLC-DR program
- A reliability assessment plan
- An objective function
- A meta-heuristic optimization algorithm, i.e. the MFOA [1]

Data compression-based model reduction technique: Reduces the annual profiles for weather and load forecasts to monthly-averaged daily profiles, motivated by [2].

DLC-DR program: Shifts an appropriate percentage of the electrical loads on the micro-grid system from peak to off-peak consumption hours.

Reliability assessment plan:

$$ELF_{load} = \frac{1}{n} \sum_{t=1}^{n} \frac{Q_{load}(t)}{P_{load}(t)}, \qquad ELF_{lot} = \frac{1}{n} \sum_{t=1}^{n} \frac{Q_{lot}(t)}{P_{lot}(t)}$$

 $* ELF_{load} < 0.01, ELF_{lot} < 0.02$

Objective function:

8

Optimization algorithm: the MFOA, i.e. a state of the art swarm-based meta-heuristic algorithm

9

Fig. 5. A panorama of the optimization process for micro-grid sizing

Simulation Results

Table 1. Verification of the model reduction technique

Case	PV panels	WTs	Battery packs	lnverter [kW]	EVSE	Total NPC [\$]	CPU utilization time [h]
With model reduction	687	45	58	339	6	4,506,020	13
Without model reduction	669	44	55	334	6	4,424,830	384

Table 2. Verification of the MFOA

Optimization algorithm	PV panels	WTs	Battery packs	lnverter [kW]	EVSE	Total NPC [\$]
MFOA	687	45	58	339	6	4,506,020
Hybrid GA-PSO	688	45	58	346	7	4,518,573
GA	688	46	59	341	7	4,532,088
PSO	687	45	82	335	7	4,552,670

A remarkable saving in CPU time with an only 2% increment in total NPC

10

Fig. 6. Total NPC of the micro-grid in terms of iterations

Verification of the load shifting property of the method:

Time window of the load shifting = 4 h

Percentage of deferrable loads in the total load demand = 20%

Fig. 7. Impact of employing the DR program on the load curve

Table 3. The results obtained with and without DR deployment

Case	PV panels	WTs	Battery packs	Inverter [kW]	EVSE	Total NPC [\$]
With DR	687	38	76	319	5	4,182,817
Without DR	687	45	58	339	6	4,506,020

7% reduction in total NPC

Sensitivity analysis

Fig. 8. Sensitivity of the total NPC to the operating characteristics of the DRP

12

13

Fig. 9. Cash flow breakdown by components and cost categories

LCOE=\$0.18/kWh < Actual (full) cost of electricity in Iran=\$0.21/kWh

Fig. 10. Balance between the energy production and consumption

14

Key Findings

- The MFOA outperforms the most-preferred MHs used in this research area
- Data compression remarkably reduces the computational burden without sacrificing too much the solution accuracy
- DSM strategies have the potential to considerably decrease the micro-grid total cost
- To further our research, we intend to incorporate the uncertainties into the model using the MCS, enabled by the model reduction technique

References

16

[1] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm," *Knowledge-Based Syst.*, vol. 89, pp. 228–249, 2015.

[2] G. Mavrotas, K. Florios, and D. Vlachou, "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," *Energy Convers. Manag.*, vol. 51, no. 4, pp. 722–731, 2010.

[3] S. M. Hakimi, S. M. M. Tafreshi, and a. Kashefi, "Unit Sizing of a Stand-alone Hybrid Power System Using Particle Swarm Optimization (PSO)," 2007 IEEE Int. Conf. Autom. Logist., pp. 3107–3112, 2007.

Questions and Discussion